用户名: 密码: 验证码:
布鲁氏菌中国分离株遗传多态性研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
布鲁氏菌病是由布鲁氏菌侵入机体引起的一类传染-变态反应性的全球性分布的人畜共患病,在许多发展中国家流行并造成很大的经济损失。依据对宿主偏好性以及培养和生物学特性的不同,布鲁氏菌分为6个经典的种,其中羊种、牛种、猪种、犬种4个种能够使人致病。布鲁氏菌基因的高度保守性使得建立种型之间的遗传关系极具挑战性。了解布鲁氏菌基因水平的差异,有助于了解布鲁氏菌的进化与毒力特征。目前布鲁氏菌基因分型方法中以多位点序列分型(MLST)和多位点VNTR (MLVA)法重复性好、分辨率高,但是由于布鲁氏菌的变异,在实际工作中已遇到问题。寻找一种更好的分型方法或者是多种方法的联合运用,可能会更好地解决布鲁氏菌的分种分型问题。
     通过十株已测序的布鲁氏菌全基因组的比较分析和布鲁氏菌全基因组芯片杂交的结果,共鉴定出53个差异基因区段(DFR),其中位于I号染色体上的DFR有26个,II号染色体上的DFR为27个,II号染色体的DFR密度远远高于I号染色体。探讨这些差异区段在19株标准菌株和129株我国不同种型布鲁氏菌分离株的分布特征表明,差异区段可能是进化过程中获得或缺失的,与菌株的遗传关系没有必然的联系,为研究不同疫源地或不同年代的布鲁氏菌菌株基因水平差异提供了依据。
     为了提高传统的MLST方法(CMLST)的分型分辨率,我们在本研究中探讨通过加长基因的PCR扩增片段来用于MLST分型研究,即为改良的MLST方法(EMLST)。对129株我国布鲁氏菌分离株进行了CMST和EMLST的分析,用CMLST方法定义了23个ST型,而用EMLST方法则定义了35个ST型,多种方法分析表明,EMLST较CMLST具有更高的分型分辨率。和已报道的国外布鲁氏菌菌株的CMLST结果比较分析发现,我国布鲁氏菌分离株具有自己的基因型构成特点。基于看家基因的改良的MLST方法适合于亲缘关系较远的布鲁氏菌菌株的分型。
     传统的MLVA方法采用PCR扩增并电泳区分的方法,但是存在不稳定及费时费力的缺点,因此本研究采用测序的方法对120株分离株的15个多态性较高的MLVA位点进行分析,共分为87个型。基于VNTR位点的改良的MLVA方法应用于我国布鲁氏菌分离株的结果表明,该方法适合于亲缘关系较近的布鲁氏菌菌株的分型。对120株CMLST、EMLST以及MLVA数据综合比较分析表明,EMLST较CMLST具有更多的分支,有着更高的分辨率,而MLVA则是三种分型方法中分辨率最高的方法。
Bacteria of the genus Brucella are the etiological agents of brucellosis, which is azoonotic disease endemic in many areas of the world. This disease remains endemicin some countries, especially in developing ones and it is still a substantial economicburden for many areas of the world. The genus Brucella is divided into six classicalspecies: B.abortus (bovine), B.melitensis (caprine and ovine), B. ovis (ovine), B.canis(canine), B. suis (porcine), and B.neotomae (only seen in the desert wood rat) on thebasis of host specificity, antigenic differences and biochemical characteristics. Fourout of six species are pathogenic for humans, i.e. B. abortus, B. melitensis, B. suis andrarely B. canis. B. melitensis and B. abortus are highly pathogenic and is a frequentcause of human brucellosis. The conservation of this genus makes it difficult toestablish the true relationships between some classical Brucella species and biovars.
     Brucella has several host and widely distributed foci. Different location ofBrucella strains lead differences in biochemical features and pathogenicity. Alsodifferent species of Brucella have diversity in host range and virulence. Gene obtainedand deletion which relevant with adaption to the environment, host specificity andvirulence are an important mechanism of bacterial evolution. Understanding theevolution and virulence characteristics of Brucella depends on the knowlege ofgenetic differences of Brucella. In present, the typing methods of Brucella arephenotyping and genotyping. A variety of methods exist in the genotyping, and typingmethods have advantages and disadvantages, especially the typing results aredifference but have some contacts. In particular, multi-locus sequence typing (MLST)and multi locus VNTR analysis (MLVA) method possess repeatability and highresolution. However, due to the variation of Brucella, some atypical strains cannot betyped in the actual work. A better typing methods, or associated with a variety of methods may be better to solve the typing problem in Brucella.
     The comparative analysis of ten Brucella whole genome and Brucellawhole-genome microarray hybridization results identified a total of53DFR, and26in chromosome I, moreover the number of gene differences were102.27DFR werein chromosome II, including a total of194genes, and the DFR density inchromosome II was higher than I. The cluster analysis of53DFR in19standardstrains suggested that all abortus and melitensis, suis biovar4/5were clustered intoone branch, and suis biovar1/2/3, canis, neotomae and ovis were another.129Brucella isolates were also analyzed and it consisted two branches, one was abortusand melitensis isolates, another for suis and canis. DFR may be the acquisition ormissing in evolutionary process and there is no relationship with strains hereditary.18abortus isolates in the1970s and14canis isolates in the1980s were Clusteringanalyzed. It indicates that the propagation of abortus Brucella isolates is only inwestern area in the1970s,basically among several adjacent several provinces.However, in the1980s, the propagation of canis Brucella isolates limites in China'seastern region. The first canis Brucella strain may originate from Xinjiang provinceand then spread in Jiangshu and Zhejiang Provinces.
     The product length amplified by traditional MLST(CMLST) primers aregenerally400to500bp, and the valid sequences are between350to450bp afterremoving low quality sequence on both ends. Therefore, the available sequenceinformation by the conventional MLST is greatly limited. With the development ofsequencing instrument and technology, the length per sequencing reaction was greatlyimproved. In this study, all sequences sequenced by the3730sequencer werestatistical analyzed and it showed that at least800bp reading length with high qualitycould be generated. To improve the resolution of MLST for Brucella, and also extendthe application of MLST in other pathogenic bacteria, in the present study, we testedthe feasibility of improving resolution of MLST by increase of the sequencing length,defined as extended MLST (EMLST). To compare with the CMLST method,the nucleic acid length of all loci for EMLST were increased from128bp to301bpwith the proportion increasing about26.12%to71.33%.
     129Chinese Brucella isolates were analyzed with CMST and EMLST,23STswere defined by CMLST method, and35STs by EMLST. Except for aroA,gyrB andInt-hyp,alleles identified of six loci were at least increased one allele, such as thatcobQ increased five alleles and omp25increased2alleles. Alleles identified of eachloci dependent on polymorphic sites. polymorphic sites of six loci of nine genes wereincreased by increasing amplified product length.All data of CMLST and EMLSTmethod were analyzed by splittree, eBURST and BioNumerics software. It indicatesthat some of the strains that could be differentiated by CMLST were clearlydifferentiated by EMLST and the resolution of the EMLST is greatly improved.EMLST method can differentiate some canis strains from suis strains.EMLST has ahigher genotyping resolution than CMLST.
     27STs were defined in foreign Brucella strains by MLST analysis, and15STswere firstly defined in129Brucella of China which had23STs defined.8STs firstlydefined for abortus Brucella strains were ST8,ST28-33and ST42. ST33,ST34andST35were firstly defined for melitensis isolations. There were4STs and3STs firstlydefined respectively for suis and canis Brucella strains, that is,ST36-37and ST40-41for suis isolations; ST38,ST39and ST40for canis strains.
     PCR amplification and electrophoresis were used to distinguish in traditionalMLVA method, but an instability and time-consuming drawback. However,15highlypolymorphic MLVA sites in120isolates were analyzed by this method in our study,and obtained87types. There were13Brucella strains defined the same type81andtype6was consist of5Brucella isolations.The cluster analysis showed that abortusgenotypes were clustered into one branch, suis and canis for one, melitensis were theother one. We analyzed the evolutionary relationships or phylogenetic relationships of all genotypes for all strains by using maximum parsimony method. There is ahypothesis that canis strains may be evolved by the suis strains and abortus strainsmay be due to the melitensis strains.
     The CMLST, EMLST and MLVA data of120isolates showed that EMLSTcompared CMLST has more branches and a higher resolution. MLVA possessed thehighest resolution in the three methods, and it can nearly type each strains. However,all three methods can not differentiated biovars of Brucella strains.
引文
[1] Schurig GG, Sriranganathan N, Corbel MJ. Brucellosis vaccines: past, presentand future[J]. Veterinary microbiology,2002,90(1-4):479-496.
    [2] Boschiroli ML, Foulongne V, O'Callaghan D. Brucellosis: a worldwidezoonosis[J]. Current opinion in microbiology,2001,4(1):58-64.
    [3] Young EJ. An overview of human brucellosis[J]. Clin Infect Dis,1995,21(2):283-289.
    [4] Scholz HC, Nockler K, Gollner C,et al.Brucella inopinata sp. nov., isolated froma breast implant infection[J]. Int J Syst Evol Microbiol,60(Pt4):801-808.
    [5] De BK, Stauffer L, Koylass MS,et al.Novel Brucella strain (BO1) associatedwith a prosthetic breast implant infection[J]. J Clin Microbiol,2008,46(1):43-49.
    [6] Tiller RV, Gee JE, Lonsway DR,et al.Identification of an unusual Brucella strain(BO2) from a lung biopsy in a52year-old patient with chronic destructivepneumonia[J]. BMC Microbiol,10:23.
    [7] Eisenberg T, Hamann HP, Kaim U,et al.Isolation of potentially novel Brucellaspp. from frogs[J].Applied and environmental microbiology,2012,78(10):3753-3755.
    [8] Franco MP, Mulder M, Gilman RH,et al.Human brucellosis[J]. Lancet Infect Dis,2007,7(12):775-786.
    [9]尚德秋.布氏菌病研究进展[J].中国地方病防治杂志,2004,19(004):204-212.
    [10] Baily GG, Krahn JB, Drasar BS,et al.Detection of Brucella melitensis andBrucella abortus by DNA amplification[J]. J Trop Med Hyg,1992,95(4):271-275.
    [11] Deqiu S, Donglou X, Jiming Y. Epidemiology and control of brucellosis inChina[J]. Veterinary microbiology,2002,90(1-4):165-182.
    [12] Jarvis BW, Harris TH, Qureshi N,et al.Rough lipopolysaccharide from Brucellaabortus and Escherichia coli differentially activates the same mitogen-activatedprotein kinase signaling pathways for tumor necrosis factor alpha in RAW264.7macrophage-like cells[J]. Infection and immunity,2002,70(12):7165.
    [13] Pappas G, Panagopoulou P, Christou L,et al.Brucella as a biological weapon[J].Cell Mol Life Sci,2006,63(19-20):2229-2236.
    [14]齐景文.布鲁氏菌病概述[J].中国兽医杂志,2004,40(9):50-53.
    [15] Brinley Morgan W, Corbel M. Brucella infections in man and animals:contagious equine metritis[J]. Topley and Wilson's principles of bacteriology, virologyand immunology,8th ed. Edward Arnold, London, England,1990:547-570.
    [16] David R. Cellular microbiology: An unconventional exit for Brucella[J]. NatureReviews Microbiology,2012,10:160-161.
    [17] Ko J, Splitter GA. Molecular host-pathogen interaction in brucellosis: currentunderstanding and future approaches to vaccine development for mice andhumans[J]. Clinical microbiology reviews,2003,16(1):65-78.
    [18] Young EJ, Tarry A, Genta RM,et al.Thrombocytopenic purpura associated withbrucellosis: report of2cases and literature review[J]. Clin Infect Dis,2000,31(4):904-909.
    [19] Chevalier P, Bonnefoy E, Kirkorian G,et al.Brucella pancarditis with fataloutcome[J]. Presse Med,1996,25(13):628-630.
    [20] McQuiston J, Vemulapalli R, Inzana T,et al.Genetic characterization of aTn5-disrupted glycosyltransferase gene homolog in Brucella abortus and itseffect on lipopolysaccharide composition and virulence[J]. Infection andimmunity,1999,67(8):3830.
    [21] Brown J, Bowling A, Flynn T. In Models of quality of life: A taxonomy,overview and systematic review of the literature.European Forum on PopulationAgeing Research:2004:113.
    [22] Teugels GG. Taxonomy, phylogeny and biogeography of catfishes (Ostariophysi,Siluroidei): an overview[J]. Aquatic Living Resources,1996,9(00):9-34.
    [23] Krathwohl DR. A revision of Bloom's taxonomy: An overview[J]. Theory intopractice,2002,41(4):212-218.
    [24] Gonzalez J, Saiz Jimenez C. A fluorimetric method for the estimation of G+Cmol%content in microorganisms by thermal denaturation temperature[J].Environmental microbiology,2002,4(11):770-773.
    [25] Fontana J, Stout A, Bolstorff B,et al.Automated ribotyping and pulsed-field gelelectrophoresis for rapid identification of multidrug-resistant Salmonellaserotype Newport[J]. Emerging infectious diseases,2003,9(4):496.
    [26] Aanensen DM, Spratt BG. The multilocus sequence typing network: mlst. net[J].Nucleic acids research,2005,33(suppl2): W728-W733.
    [27] Bricker BJ, Halling SM. Differentiation of Brucella abortus bv.1,2, and4,Brucella melitensis, Brucella ovis, and Brucella suis bv.1by PCR[J]. Journal ofclinical microbiology,1994,32(11):2660.
    [28] Maiden MC, Bygraves JA, Feil E,et al.Multilocus sequence typing: a portableapproach to the identification of clones within populations of pathogenicmicroorganisms[J]. Proc Natl Acad Sci U S A,1998,95(6):3140-3145.
    [29] Pullinger GD, Lopez-Benavides M, Coffey TJ,et al.Application of Streptococcusuberis multilocus sequence typing: analysis of the population structure detectedamong environmental and bovine isolates from New Zealand and the UnitedKingdom[J]. Applied and environmental microbiology,2006,72(2):1429.
    [30] Maiden MC. Multilocus sequence typing of bacteria[J]. Annual review ofmicrobiology,2006,60:561-588.
    [31] Enright MC, Robinson DA, Randle G,et al.The evolutionary history ofmethicillin-resistant Staphylococcus aureus (MRSA)[J]. Proc Natl Acad Sci U SA,2002,99(11):7687-7692.
    [32] Urwin R, Maiden MC. Multi-locus sequence typing: a tool for globalepidemiology[J]. Trends in microbiology,2003,11(10):479-487.
    [33] Feil EJ, Li BC, Aanensen DM,et al.eBURST: inferring patterns of evolutionarydescent among clusters of related bacterial genotypes from multilocus sequencetyping data[J]. Journal of bacteriology,2004,186(5):1518-1530.
    [34] Jolley K, Feil E, Chan MS,et al.Sequence type analysis and recombinational tests(START)[J]. Bioinformatics,2001,17(12):1230-1231.
    [35] Spratt BG. Multilocus sequence typing: molecular typing of bacterial pathogensin an era of rapid DNA sequencing and the internet[J]. Current opinion inmicrobiology,1999,2(3):312-316.
    [36] Enright MC, Day NPJ, Davies CE,et al.Multilocus Sequence Typing forCharacterization of Methicillin-Resistant and Methicillin-Susceptible ClonesofStaphylococcus aureus[J]. Journal of clinical microbiology,2000,38(3):1008-1015.
    [37] Jolley KA, Kalmusova J, Feil EJ,et al.Carried meningococci in the CzechRepublic: a diverse recombining population[J]. J Clin Microbiol,2000,38(12):4492-4498.
    [38] Weller P, Jeffreys A, Wilson V,et al.Organization of the human myoglobingene[J]. The EMBO journal,1984,3(2):439.
    [39] Hammerschmidt S, Müller A, Sillmann H,et al.Capsule phase variation inNeisseria meningitidis serogroup B by slipped‐strand mispairing in thepolysialyltransferase gene (siaD): correlation with bacterial invasion and the outbreakof meningococcal disease[J]. Molecular microbiology,1996,20(6):1211-1220.
    [40] Elena SF, Cooper VS, Lenski RE. Punctuated evolution caused by selection ofrare beneficial mutations[J]. Science,1996,272(5269):1802.
    [41] Bricker B, Ewalt D, Halling S. Brucella'HOOF-Prints': strain typing bymulti-locus analysis of variable number tandem repeats (VNTRs)[J]. BMCmicrobiology,2003,3(1):15.
    [42] Lindstedt BA. Multiple‐locus variable number tandem repeats analysis forgenetic fingerprinting of pathogenic bacteria[J]. Electrophoresis,2005,26(13):2567-2582.
    [43] Wilson G, Miles A. The serological differentiation of smooth strains of theBrucella group[J]. British journal of experimental pathology,1932,13(1):1.
    [44] FAO WHOJ. WHO. Expert Committee on Brucellosis. Sixth Report[J]. WHOtechnical report series. Geneva, Switzerland,1986:89-100.
    [45] Diaz-Aparicio E, Marin C, Alonso-Urmeneta B,et al.Evaluation of serologicaltests for diagnosis of Brucella melitensis infection of goats[J]. J Clin Microbiol,1994,32(5):1159-1165.
    [46] Perry MB, Bundle DR. Antigenic relationships of the lipopolysaccharides ofEscherichia hermannii strains with those of Escherichia coli O157:H7, Brucellamelitensis, and Brucella abortus[J]. Infect Immun,1990,58(5):1391-1395.
    [47] Verger J, Grimont F, Grimont P,et al.In Taxonomy of the genus Brucella,1987:235.
    [48] Holt J, Krieg N, Sneath P,et al.Bergey's manual of determinative bacteriology,Williams and Wilkins[J]. Baltimore, Maryland,1994,10(2):110-118.
    [49]吴从雅.布鲁氏菌属细菌分种分型简史和研究进展(综述)[J].地方病通报,1990:1.
    [50]张秀梅,郭秀兰,马志东.用紫外可见分光光度计分析法测定布鲁氏菌DNA[J].中国人兽共患病杂志,1993,9(6):34-35.
    [51] VERGER JM, GRIMONT F, GRIMONT PAD,et al.Brucella, a monospecificgenus as shown by deoxyribonucleic acid hybridization[J]. International journalof systematic bacteriology,1985,35(3):292-295.
    [52] Meyer M. Evolutionary development and taxonomy of the genus Brucella[J].Advances in Brucellosis Research,1990,2(Part1):12-35.
    [53] Fekete A, Bantle JA, Halling S,et al.Amplification fragment lengthpolymorphism in Brucella strains by use of polymerase chain reaction witharbitrary primers[J]. Journal of bacteriology,1992,174(23):7778.
    [54] Jensen A, Cheville N, Ewalt D,et al.Application of pulsed-field gelelectrophoresis for differentiation of vaccine strain RB51from field isolates ofBrucella abortus from cattle, bison, and elk[J]. American journal of veterinaryresearch,1995,56(3):308.
    [55] Ridler A, Leyland M, Fenwick S,et al.Demonstration of polymorphism amongBrucella ovis field isolates by pulsed-field gel electrophoresis[J]. Veterinarymicrobiology,2005,108(1-2):69-74.
    [56] Whatmore AM, Murphy TJ, Shankster S,et al.Use of amplified fragment lengthpolymorphism to identify and type Brucella isolates of medical and veterinaryinterest[J]. Journal of clinical microbiology,2005,43(2):761.
    [57] Tcherneva E, Rijpens N, Jersek B,et al.Differentiation of Brucella species byrandom amplified polymorphic DNA analysis[J]. Journal of appliedmicrobiology,2000,88(1):69-80.
    [58]崔步云,尹继明,李兰玉,等.布鲁氏菌的Rep-PCR分型研究[J].疾病监测,2006,20(8):397-400.
    [59] Mercier E, Jumas-Bilak E, Allardet-Servent A,et al.Polymorphism in Brucellastrains detected by studying distribution of two short repetitive DNAelements[J]. Journal of clinical microbiology,1996,34(5):1299.
    [60] Vazquez JA, Berron S. Multilocus sequence typing: the molecular marker of theInternet era[J]. Enfermedades infecciosas y microbiologia clinica,2004,22(2):113-120.
    [61] Whatmore AM, Perrett LL, MacMillan AP. Characterisation of the geneticdiversity of Brucella by multilocus sequencing[J]. BMC Microbiol,2007,7:34-42.
    [62] Suerbaum S, Lohrengel M, Sonnevend A,et al.Allelic diversity andrecombination in Campylobacter jejuni[J]. J Bacteriol,2001,183(8):2553-2559.
    [63] Dingle KE, Colles FM, Wareing DR,et al.Multilocus sequence typing system forCampylobacter jejuni[J]. J Clin Microbiol,2001,39(1):14-23.
    [64] Bricker BJ, Ewalt DR, Halling SM. Brucella 'HOOF-Prints': strain typing bymulti-locus analysis of variable number tandem repeats (VNTRs)[J]. BMCMicrobiol,2003,3:15.
    [65] Bricker BJ, Ewalt DR. Evaluation of the HOOF-Print assay for typing Brucellaabortus strains isolated from cattle in the United States: results with fourperformance criteria[J]. BMC Microbiol,2005,5:37.
    [66] Le Fleche P, Jacques I, Grayon M,et al.Evaluation and selection of tandem repeatloci for a Brucella MLVA typing assay[J]. BMC Microbiol,2006,6:9.
    [67] Garcia-Yoldi D, Le Fleche P, Marin CM,et al.Assessment of genetic stability ofBrucella melitensis Rev1vaccine strain by multiple-locus variable-numbertandem repeat analysis[J]. Vaccine,2007,25(15):2858-2862.
    [68] Garcia-Yoldi D, Le Fleche P, De Miguel MJ,et al.Comparison of multiple-locusvariable-number tandem-repeat analysis with other PCR-based methods fortyping Brucella suis isolates[J]. J Clin Microbiol,2007,45(12):4070-4072.
    [69] Kattar MM, Jaafar RF, Araj GF,et al.Evaluation of a multilocus variable-numbertandem-repeat analysis scheme for typing human Brucella isolates in a region ofbrucellosis endemicity[J]. J Clin Microbiol,2008,46(12):3935-3940.
    [70] Whatmore AM, Shankster SJ, Perrett LL,et al.Identification and characterizationof variable-number tandem-repeat markers for typing of Brucella spp[J].Journal of clinical microbiology,2006,44(6):1982.
    [71] Jensen AE, Cheville NF, Thoen CO,et al.Genomic fingerprinting anddevelopment of a dendrogram for Brucella spp. isolated from seals, porpoises, anddolphins[J]. Journal of Veterinary Diagnostic Investigation,1999,11(2):152.
    [72] Bricker BJ, Ewalt DR, MacMillan AP,et al.Molecular characterization ofBrucella strains isolated from marine mammals[J]. Journal of clinicalmicrobiology,2000,38(3):1258.
    [73] Cloeckaert A, Verger JM, Grayon M,et al.Classification of Brucella spp. isolatedfrom marine mammals by DNA polymorphism at the omp2locus[J]. Microbesand infection,2001,3(9):729-738.
    [74]李元凯,邱海燕.布鲁氏菌非典型菌株及R型菌株生物学特性和产生原因的探讨[J].中国人兽共患病杂志,1996,12(005):22-25.
    [75] Trevors J. Evolution of bacterial genomes[J]. Antonie van Leeuwenhoek,1997,71(3):265-270.
    [76] Arber W. Genetic variation: molecular mechanisms and impact on microbialevolution[J]. FEMS microbiology reviews,2000,24(1):1-7.
    [77] Casjens S. The diverse and dynamic structure of bacterial genomes[J]. Annualreview of genetics,1998,32(1):339-377.
    [78] Achtman M, Morelli G, Zhu P,et al.Microevolution and history of the plaguebacillus, Yersinia pestis[J]. Proceedings of the National Academy of Sciences ofthe United States of America,2004,101(51):17837.
    [79] Achtman M. Population structure of pathogenic bacteria revisited[J].International journal of medical microbiology,2004,294(2-3):67-73.
    [80] Tong Z, Zhou D, Song Y,et al.Pseudogene accumulation might promote theadaptive microevolution of Yersinia pestis[J]. Journal of medical microbiology,2005,54(3):259-268.
    [81] Rocha EPC, Smith JM, Hurst LD,et al.Comparisons of dN/dS are time dependentfor closely related bacterial genomes[J]. Journal of theoretical biology,2006,239(2):226-235.
    [82] Levin BR, Bergstrom CT. Bacteria are different: observations, interpretations,speculations, and opinions about the mechanisms of adaptive evolution inprokaryotes[J]. Proceedings of the National Academy of Sciences,2000,97(13):6981.
    [83] Dybvig K. DNA rearrangements and phenotypic switching in prokaryotes[J].Molecular microbiology,1993,10(3):465-471.
    [84] Tillier ERM, Collins RA. Genome rearrangement by replication-directedtranslocation[J]. Nature genetics,2000,26(2):195-197.
    [85] Mira A, Ochman H, Moran NA. Deletional bias and the evolution of bacterialgenomes[J]. Trends in Genetics,2001,17(10):589-596.
    [86] Saunders NJ, Hood DW, Moxon ER. Bacterial evolution::: Bacteria play pass thegene[J]. Current biology,1999,9(5): R180-R183.
    [87] Gerrish PJ, Lenski RE. The fate of competing beneficial mutations in an asexualpopulation[J]. Genetica,1998,102:127-144.
    [88] Cheetham BF, Katz ME. A role for bacteriophages in the evolution and transferof bacterial virulence determinants[J]. Molecular microbiology,1995,18(2):201-208.
    [89] Kolst AB. Dynamic bacterial genome organization[J]. Molecular microbiology,1997,24(2):241-248.
    [90] Hall BG. Adaptive mutagenesis: a process that generates almost exclusivelybeneficial mutations[J]. Genetica,1998,102:109-125.
    [91] Koonin EV, Aravind L, Kondrashov AS. The impact of comparative genomics onour understanding of evolution[J]. Cell,2000,101(6):573.
    [92] Fraser CM, Eisen J, Fleischmann RD,et al.Comparative genomics and understanding ofmicrobial biology[J]. Emerging infectious diseases,2000,6(5):505.
    [93] Hughes D. Evaluating genome dynamics: the constraints on rearrangementswithin bacterial genomes[J]. Genome Biol,2000,1(6):6-8.
    [94] Ochman H, Lawrence JG, Groisman EA. Lateral gene transfer and the nature ofbacterial innovation[J]. Nature,2000,405(6784):299-304.
    [95] Lawrence JG. Gene transfer, speciation, and the evolution of bacterial genomes[J].Current opinion in microbiology,1999,2(5):519-523.
    [96] Eisen JA. Horizontal gene transfer among microbial genomes: new insights fromcomplete genome analysis[J]. Current opinion in genetics&development,2000,10(6):606-611.
    [97] Jayapal M, Melendez AJ. DNA microarray technology for target identificationand validation[J]. Clinical and experimental pharmacology and physiology,2006,33(5‐6):496-503.
    [98] Kostrzynska M, Bachand A. Application of DNA microarray technology fordetection, identification, and characterization of food-borne pathogens[J].Canadian journal of microbiology,2006,52(1):1-8.
    [99] Kumar RM. The widely used diagnostics “DNA microarray”-a review[J].American Journal of Infectious Diseases,2009,5(3):207-218.
    [100] Pirrung MC. How to make a DNA chip[J]. Angewandte Chemie InternationalEdition,2002,41(8):1276-1289.
    [101] Kurian KM, Watson CJ, Wyllie AH. DNA chip technolgy[J]. The Journal ofpathology,1999,187(3):267-271.
    [102] Shim J, Lee S, Park C, et al., Method of manufacturing DNA chip. In GooglePatents:2010:200-208.
    [103] Li C, Wong W. DNA-chip analyzer (dChip)[J]. The Analysis of GeneExpression Data,2003:120-141.
    [104] Jumas‐Bilak E, Michaux‐Charachon S, Bourg G,et al.Differences inchromosome number and genome rearrangements in the genus Brucella[J].Molecular microbiology,1998,27(1):99-106.
    [105] Michaux S, Paillisson J, Carles-Nurit MJ,et al.Presence of two independentchromosomes in the Brucella melitensis16M genome[J]. J Bacteriol,1993,175(3):701-705.
    [106] Michaux-Charachon S, Bourg G, Jumas-Bilak E,et al.Genome structure andphylogeny in the genus Brucella[J]. J Bacteriol,1997,179(10):3244-3249.
    [107] DelVecchio VG, Kapatral V, Redkar RJ,et al.The genome sequence of thefacultative intracellular pathogen Brucella melitensis[J]. Proceedings of theNational Academy of Sciences,2002,99(1):443.
    [108] Medini D, Donati C, Tettelin H,et al.The microbial pan-genome[J]. Currentopinion in genetics&development,2005,15(6):589-594.
    [109] Hoyer BH, McCullough NB. Polynucleotide homologies of Brucelladeoxyribonucleic acids[J]. J Bacteriol,1968,95(2):444-448.
    [110] Hoyer BH, McCullough NB. Homologies of deoxyribonucleic acids fromBrucella ovis, canine abortion organisms, and other Brucella species[J]. JBacteriol,1968,96(5):1783-1790.
    [111] Allardet-Servent A, Carles-Nurit MJ, Bourg G,et al.Physical map of the Brucellamelitensis16M chromosome[J]. J Bacteriol,1991,173(7):2219-2224.
    [112] Paulsen IT, Seshadri R, Nelson KE,et al.The Brucella suis genome revealsfundamental similarities between animal and plant pathogens and symbionts[J].Proc Natl Acad Sci U S A,2002,99(20):13148-13153.
    [113] Tsolis RM. Comparative genome analysis of the alpha-proteobacteria:relationships between plant and animal pathogens and host specificity[J]. ProcNatl Acad Sci U S A,2002,99(20):12503-12505.
    [114] Mahillon J, Léonard C, Chandler M. IS elements as constituents of bacterialgenomes[J]. Research in microbiology,1999,150(9-10):675-687.
    [115] Ouahrani S, Michaux S, Sri Widada J,et al.Identification and sequence analysisof IS6501, an insertion sequence in Brucella spp.: relationship between genomicstructure and the number of IS6501copies[J]. J Gen Microbiol,1993,139(12):3265-3273.
    [116] Halling SM, Zehr ES. Polymorphism in Brucella spp. due to highly repeatedDNA[J]. J Bacteriol,1990,172(12):6637-6640.
    [117] Vemulapalli R, McQuiston JR, Schurig GG,et al.Identification of an IS711element interrupting the wboA gene of Brucella abortus vaccine strain RB51and a PCR assay to distinguish strain RB51from other Brucella species andstrains[J]. Clinical and diagnostic laboratory immunology,1999,6(5):760-764.
    [118] Rajashekara G, Covert J, Petersen E,et al.Genomic island2of Brucellamelitensis is a major virulence determinant: functional analyses of genomicislands[J]. Journal of bacteriology,2008,190(18):6243.
    [119] Sangari FJ, Seoane A, Rodriguez MC,et al.Characterization of the urease operonof Brucella abortus and assessment of its role in virulence of the bacterium[J].Infection and immunity,2007,75(2):774.
    [120] Jubier-Maurin V, Rodrigue A, Ouahrani-Bettache S,et al.Identification of the nikgene cluster of Brucella suis: regulation and contribution to urease activity[J].Journal of bacteriology,2001,183(2):426.
    [121] Gándara B, Merino AL, Rogel MA,et al.Limited Genetic Diversity ofBrucellaspp[J]. Journal of clinical microbiology,2001,39(1):235-240.
    [122] Michaux-Charachon S, Bourg G, Jumas-Bilak E,et al.Genome structure andphylogeny in the genus Brucella[J]. Journal of bacteriology,1997,179(10):3244-3249.
    [123] Cloeckaert A, Verger JM, Grayon M,et al.Restriction site polymorphism of thegenes encoding the major25kDa and36kDa outer-membrane proteins ofBrucella[J]. Microbiology,1995,141(9):2111-2121.
    [124] Cloeckaert A, Verger JM, Grayon M,et al.Molecular and immunologicalcharacterization of the major outer membrane proteins of Brucella[J]. FEMSmicrobiology letters,1996,145(1):1-8.
    [125] Whatmore AM, Murphy TJ, Shankster S,et al.Use of amplified fragment lengthpolymorphism to identify and type Brucella isolates of medical and veterinaryinterest[J]. Journal of clinical microbiology,2005,43(2):761-769.
    [126] Ouahrani S, Michaux S, Widada JS,et al.Identification and sequence analysis ofIS6501, an insertion sequence in Brucella spp.: relationship between genomicstructure and the number of IS6501copies[J]. Journal of general microbiology,1993,139(12):3265-3273.
    [127] Groussaud P, Shankster SJ, Koylass MS,et al.Molecular typing divides marinemammal strains of Brucella into at least three groups with distinct hostpreferences[J]. Journal of medical microbiology,2007,56(11):1512-1518.
    [128] Whatmore AM, Dawson C, Groussaud P,et al.Marine mammal Brucellagenotype associated with zoonotic infection[J]. Emerging infectious diseases,2008,14(3):517.
    [129] Maquart M, Le Flèche P, Foster G,et al.MLVA-16typing of295marine mammalBrucella isolates from different animal and geographic origins identifies7major groups within Brucella ceti and Brucella pinnipedialis[J]. BMCmicrobiology,2009,9(1):145.
    [130] Maquart M, Le Fleche P, Foster G,et al.MLVA-16typing of295marine mammalBrucella isolates from different animal and geographic origins identifies7major groups within Brucella ceti and Brucella pinnipedialis[J]. BMCMicrobiol,2009,9:145.
    [131]姜海,崔步云,李兰玉,等.用MLVA技术和多重PCR对犬种布氏菌基因分型[J].生物技术通讯,2009,20(003):336-338.
    [132] Al Dahouk S, Flèche PL, N ckler K,et al.Evaluation of Brucella MLVAtyping for human brucellosis[J]. Journal of microbiological methods,2007,69(1):137-145.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700