用户名: 密码: 验证码:
激波驱动下液体与固体颗粒的抛撒研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
气溶胶是指长时间悬浮于气体介质中的固体或液体分子团簇,它具有原介质的化学、物理特性,且有特定的运动规律。除气象和消防等民用领域之外,其广泛用于军事领域。气溶胶的形成机理及气溶胶云团形成后的特性参数是当前军事领域研究的热点。本文借助白行设计的激波管测试系统,理论和实验研究了管口激波驱动下液体和固体颗粒群的抛撒及气溶胶云团的形成过程,主要内容如下:
     (1)在激波与液滴作用过程的理论和实验基础上,通过类比分析及引入We数、Oh数等无量纲参数,理论研究了激波与液膜的作用过程;从能量转换角度出发,分析了激波与固体颗粒群作用的流场状态。借助激波与多种物质作用的实验结果,理论分析了激波与不同物质作用后的激波状态和流场变化情况。
     (2)实验研究了激波与液膜的相互作用及激波驱动下液膜的变形、破碎和抛撒。实验中以激波的马赫数、液膜的种类、液膜的厚度为参数,系统分析了各参数对液膜变形破碎及抛撒成气溶胶云团的影响,发现在同一马赫数激波作用下,抛撒形成云团的大小与液膜的厚度密切相关。对水和丙三醇两种液体来说,由于粘性的差异,水膜的抛撒效果要明显好于丙三醇膜。使用多普勒粒子测速仪(PDPA)装置测量了液膜抛撒后形成气溶胶云团中液滴的粒径分布和速度分布,发现在激波作用后,液滴粒子的平均直径随抛撒距离的增大而减小,而纵向和横向运动速度先减小后趋于稳定,在抛撒初期液滴的纵向运动速度要明显高于横向运动速度;对水和丙三醇混合物而言,随着丙三醇浓度的增加,形成的云团中粒子的平均直径先减小后增大,存在最小值,而粒子的纵向速度和横向速度先变小后趋于稳定。最后,结合实验数据建立了相关模型。
     (3)通过压力测试和阴影照相相结合的手段,实验研究了激波与固体颗粒群的相互作用及固体颗粒在激波驱动下的抛撒轨迹。发现在同一激波马赫数作用下,固体颗粒群的抛撒效果与颗粒堆积度及粒径大小相关,通过理论计算建立了相关模型。通过数值仿真技术模拟了特定实验条件下激波驱动下固体颗粒群的抛撒,将模拟所得数据和实际实验结果进行对比,发现两者存在较好的吻合性。
     (4)结合实验室内激波驱动下液体和固体抛撒的结果和规律,开展了外场实验研究,主要研究了爆炸冲击波作用下,环氧丙烷(PO)燃料和固体温压药剂的抛撒及爆燃情况。发现PO由于其自身物理特性的原因,能获得较好的抛撒效果,可以有效地提高燃料抛撒引爆后的杀伤范围;通过对比TNT和固体温压药剂的爆炸效果,发现固体温压药剂由于其抛撒及与周围空气作用效果明显,其高温区范围及高温持续时间有明显增强。
Aerosols are solid or liquid molecule clusters which suspend in gas medium for a long time. They have original chemical and physical characteristics and specific motion patterns. Besides being used in meteorology and fire protection fields, aerosols are also widely used in military field. The formation mechanism of aerosols and the parameters of aerosol cloud are main points in the investigation of aerosols in military field. Based on theoretical studies and experimental investigations, this dissertation studied the dispersal of liquid droplets and solid particles induced by shock wave and the formation processes of aerosol clouds using self-designed shock tubes. The specific contents are as follows:
     (1) On the basis of theoretical and experimental investigation of the interaction processes between shock waves and liquid droplets, the interaction process between shock waves and liquid films are investigated theoretically after analogy analysis and bringing in the non-dimensional parameters, including We and Oh. The filed condition after the interaction between shock waves and solid particles was also analyzed from the energy conversion point. The change of shock wave state and flow field conditions after the interaction between shock waves and objects were also studied theoretically based on the results of several experiments.
     (2) The interaction between shock waves and liquid films were investigated experimentally and the formation, breakup and dispersal of liquid films were studied together. In the experiments, Mach number, kind of liquid and the thickness of liquid film are three importance parameters. The influences of the three parameters on the breakup and formation of aerosol cloud were analyzed systematically. The results indicated that induced by the same shock wave, there existed closely relationship between the size of cloud and the thickness of film. For water and glycerol, the dispersal performance of water was better than glycerol because of the differences of their viscosities. PDPA device was used to measure the diameter distribution and velocity distribution of the aerosol cloud formed. It is found that the average diameters of water particles decreased with the increase of dispersal distance and the vertical and horizontal velocities both decreased and then remained stable. Vertical velocity is bigger than the horizontal one at the original state. For the mixture between water and glycerol, the average diameter of liquid particles decreased and then increased with the increase of glycerol content and the velocities both decreased and then remained stable. Finally, several models were established using data obtained in the experiments.
     (3) Pressure measurement and shadow graphic technology were combined to study the interaction between shock waves and solid particles. The dispersal traces were also investigated. Several models are established and numerical simulation was carried out, which was in good agreement with the experimental results. Based on the investigation between shock waves and particles, the interactions between shock waves and materials with different densities were performed. The results indicated that the material had different variations induced by the same shock wave for the differences of their physical parameters.
     (4) A number of field experiments were carried out using the results obtained in the laboratory. The dispersal and explosion parameters of PO fuel and thermobaric explosives induced by blast shock wave were mainly investigated. Because of the physical features of PO fuel, the dispersal effect is perfect which also leads to the enlargement of damage range of PO fuel. Compared with the blast perfomance of TNT, it is found that the high temperature range and the duration of high temperature of solid thermobaric were enhanced obviously because of its dispersal behaviour and interaction with air.
引文
[1]温景嵩.微大气物理学导论,北京:科学出版社,1989
    [2]温景嵩.概率论与微大气物理学.北京:气象出版社,1995
    [3]Clement C F. Mean field theory for condensation on aerosols and application to multi-component organic vapors. Journal of Aerosol Science,2003,34(1):27~40
    [4]Roth C, Gebhart J, Reiser W. The production of high-concentrated monodisperse aerosols with variable size distributions. Journal of Aerosol Science,1992,23:185~188
    [5]Kim D S, Lim K S, Xiang R B, Lee K W. Design and performance evaluation of an aerosol separator. Journal of Aerosol Science,2002,33(10):1405~1415
    [6]程余.气溶胶动力学与热力学平衡预测的有效算法.山东大学,2010.
    [7]Brooks B J, Smith M H, Hill M K, O'Dowd C D. Size-differentiated volatility analysis of internally mixed laboratory-generated aerosol. Journal of Aerosol Science,2002, 33(4):555~579.
    [8]Jung C H, Park S H, Kim Y P. Size distribution of polydispersed aerosols during condensation in the continuum regime:Analytic approach using the lognormal moment method. Journal of Aerosol Science,2006,37(10):1400~1406.
    [9]林俊,刘卫等.大气气溶胶粒径分布特征与气象条件的相关性分析.气象与环境学报,2009,25(1):1-4
    [10]姚青,孙玫玲,张长春,穆怀斌.天津大气气溶胶化学组分的粒径分布和垂直分布.气象科技,2008,35(6):692-695
    [11]Qiu Jinhuan, Zong Xuemei, Zhang Xiaoye. A study of the scaling height of the tropospheric aerosol and its extinction coefficient profile. Journal of Aerosol Science,2005, 36(3):361~371
    [12]Moskovchenko A V. Dynamics of radioactive content of aerosol system due to coagulation. Journal of Aerosol Science,1992,23:149~152
    [13]Beattie I R, Nichols A L. Analysis of aerosols generated from the interaction of molten fuel with concrete. Journal of Aerosol Science,1992,23:847~852
    [14]Aizenberg V, Choe K, Grinshpun S A, Willeke K, Baron P A. Evaluation of personal aerosol samplers challenged with large particles. Journal of Aerosol Science,2001, 32(6):779~793
    [15]刘科种,徐更光等.含铝炸药与一次引爆FAE威力特性对比研究.含能材料,2009,17(5):554-557
    [16]崔晓荣,罗勇,周听清,沈兆武.固相一次起爆型FAE燃料的优化选择.火炸药学报,2008,31(1):12-15
    [17]许化珍,彭朝辉,李向东.云爆弹杀伤效能研究.弹箭与制导学报,2011,31(3):114-116
    [18]Fuchs N A. Mechanics of aerosols. New York: Pergamon,1964
    [19]Fuchs N A, Sutugin A G. High dispersed aerosols. Topics in the current aerosol research(Part 2),1971:1~200
    [20]Batchelor G K. Sedimentation in a dilute dispersion of spheres. Journal of Fluid Mechanics,1972,52:245~268
    [21]Russel W B, Saville D A, Schowalter W R. Colloidal Dispersions. Cambridge University Press,1989
    [22]Batchelor G K, Wen C S. Sedimentation of a dilute polydisperse system of interacting spheres. Journal of Fluid Mechanics,1982,124:495~582
    [23]温景嵩.气溶胶力学的研究进展.中国粉体技术,1999,5(3):11-16
    [24]Whitby E R, McMurry P H. Modal aerosol dynamic modeling. Aerosol Science Technology,1997,27:673~688
    [25]Liu Y, Cameron I T. A new wavelet-based method for the solution of the population balance equation. Chemical Engineering Science,2001,56:5283~5294
    [26]Sandu A, Borden C. A framework for the numerical treatment of aerosol dynamics. Applied Numerical Mathematics,2003,45:475~497
    [27]Liang Dong, Guo Qiang, Gong Sunling. A new splitting wavelet method for solving the general aerosol dynamics equation. Journal of Aerosol Science,2008,39:467~487
    [28]Debry E, Sportisse B. Reduction of the condensation/evaporation dynamics for atmospheric aerosols:Theoretical and numerical investigation of hybrid methods. Journal of Aerosol Science,2006,37:950~966
    [29]Salma I, Maenhaut W, Zaray G. Comparative study of elemental mass size distributions in urban atmospheric aerosol. Journal of Aerosol Science,2002,33:339~356
    [30]Wittmaack K. Towards a realistic description of the contribution of primary and secondary aerosols to ambient particle number and mass distributions. Journal of Aerosol Science,2004,35:611-620
    [31]Viskari T, Jarvinen H, et al. Duration of tangent-linear regime in sectional multi-component aerosol dynamics. Journal of Aerosol Science,2008,39:723~736
    [32]白志鹏,李伟芳.二次有机气溶胶的特征和形成机制.过程工程学报,2008,8(1):202-208
    [33]章跃,邹道忠等.二硫化碳气溶胶的形成机理.化学学报,1996,54:226-233
    [34]陈波,张磊,卓维海.丝网法测量纳米级气溶胶颗粒粒径分布的方法研究.环境与职业医学,2011,28(5):286-288
    [35]何启梅,王启燕,高鸿恩,黄晟敏.气溶胶在采样管中的沉积特性研究.环境科学与技术,2011,34(6):119-121
    [36]Frank H, Eberhard S. Methods for dustiness estimation of industrial powders. China Particuology,2005,3:90~93
    [37]田永丽,张万诚,陈新梅,和春荣.中国西南地区气溶胶光学厚度的时空特征.气象科学,2010,30(6):785-790
    [38]杜吴鹏,高庆先,孙丹,师华定.中国春季北方大气气溶胶浓度特征.环境科学研究,2011,24(1):11-19
    [39]李建云,屈述军.中国地区春季沙尘气溶胶短波辐射气候效应数值模拟研究.气象与减灾研究,2010,33(4):23-30
    [40]杨杰.气溶胶灭火剂的灭火机理及影响因素.江南大学学报,2003,2(3):303-308
    [41]邢军,杜志明,阿苏娜.气溶胶灭火剂的研究进展.材料导报,2008,22(9):69-71
    [42]王华,张永丰,潘仁明HEAE气溶胶灭火剂的弥漫性与灭火性能研究.消防科学与技术,2006,25(6):747-749
    [43]傅丽碧.煤矿粉尘爆炸原因分析及防治措施.硅谷,134
    [44]杨豪,王培植,万祥云.我国气体与粉尘爆炸事故现状及影响因素分析.安全与环境工程,2008,15(1):97-99
    [45]解立峰,李斌,沈正祥,龙寅.可燃液体爆燃特性及其抑制实验.爆炸与冲击,2009,29(6):659-664
    [46]张增亮.常见工业爆炸灾害及其安全技术若干问题的研究.华北工学院,2004
    [47]白青弈.红外气溶胶烟幕在反导中的作用.系统工程与电子技术,1994,1:14-20
    [48]吴刚,武春风,刘建华,张伟.激光调制气溶胶红外诱饵对成像制导导弹的干扰分析.光学技术,2005,31(6):901-903
    [49]郑波,陈力等.高能、含铝和温压炸药爆炸抛撒实验研究.弹箭与制导学报,2008,28(3):118-120
    [50]郑波,陈力等.温压炸药爆炸抛撒的运动规律.爆炸与冲击,2008,28(5):433-437
    [51]白春华,陈亚红等.爆炸抛撒金属颗粒群的装药方式.爆炸与冲击,2010,30(6):652-657
    [52]陈亚红,白春华等.爆炸抛撒颗粒群动能特性的评价.火炸药学报,2011,34(4):45-48
    [53]薛社生,刘家骢,秦承森,彭金华.燃料爆炸抛撒成雾的实验与数值研究.爆炸与 冲击,2001,21(4):272-276
    [54]Pilch M, Erdman C A. Use of breakup time data and velocity history data to predict the maximum size of stable fragments for acceleration-induced breakup of a liquid drop. International Journal of Multiphase Flow,1987,13(6):741~757
    [55]Faeth G M, Hsiang L P, Wu P K. Structure and breakup properties of sprays. International Journal of Multiphase Flow,1995,21:99-127
    [56]Hsiang L P, Faeth G M. Drop properties after secondary breakup. International Journal of Multiphase Flow,1993,19(5):721~735
    [57]Chou W H, Hsiang L P, Faeth G M. Temporal properties of drop breakup in the shear breakup regime. International Journal of Multiphase Flow,1997,23(4):651~669
    [58]Hsiang L P, Faeth G M. Drop deformation and breakup due to shock wave and steady disturbance. International Journal of Multiphase Flow,1995,21(4):545~560
    [59]Hsiang L P, Faeth G M. Near-limit drop deformation and secondary breakup. International Journal of Multiphase Flow,1992,18(5):635~652
    [60]Wierzba A, Takayama K. Experimental investigation on liquid droplet breakup in a gas stream, Reports of The Institute of High Speed Mechanics, Tohoku University, n53, 1987:1-99
    [61]杨磊,韩肇元.在轴向气流作用下液体轴对称抛撒二次破碎的实验研究.实验力学,2005,20(2):186-191
    [62]杨磊,黄中伟,韩肇元.运动状态下液体轴对称抛撒首次破碎的实验研究.实验力学,2007,22(2):125-130
    [63]杨磊,韩肇元,黄中伟.液体轴对称抛撒破碎和雾化的实验研究.实验流体力学,2007,21(2):50-55
    [64]蔡庆军,韩肇元,万群.液体环轴对称抛撒首次破碎后期的实验研究.流体力学实验与测量,2000,14(1):57-62
    [65]蔡庆军,韩肇元,万群,张寿齐.液体环二次破碎所形成云雾颗粒尺寸测量和测试系统的标定.爆炸与冲击,1999,19(2):151-157
    [66]吴德义,杨基明.强冲击波作用下液体抛撒的实验研究.爆炸与冲击,2003(1):91-95
    [67]吴德义,杨基明.爆炸冲击波作用下液体抛撒初期射流形成的实验研究.流体力学实验与测量,2003,17(3):36-38
    [68]吴德义.爆炸冲击波作用下液体抛撒不同阶段运动规律分析.爆破器材,2005,34(2):4-7
    [69]丁珏,陆中兵,翁培奋.受限空间内新型抑爆装置爆炸抛撒水雾形成过程的研究. 兵工学报,2007,28(11):1335-1339
    [70]丁珏,刘家骢.液体燃料爆炸抛撒和云雾形成全过程的数值模拟.火炸药学报,2001,1:20-23
    [71]丁珏,刘家骢.液体燃料云团形成过程的数值仿真.兵工学报,2001,22(4):481-484
    [72]耿继辉,叶经方,王健,李鸿志.激波诱导液滴变形和破碎现象实验研究.工程热物理学报,2003,24(5):797-800
    [73]Rogue X, Rodriguez G, Haas J F, Saurel R. Experimental and numerical investigation of the shock induced fluidization of a particles bed. Shock waves,1998,8:29~45
    [74]Zhang F, Frost D L, Thibault P A, Murry S B. Explosive dispersal of solid particles. Shock waves,2001,10:431~443
    [75]Boiko V M, Poplavski V. Dynamics of irregularly shaped bodies in a flow behind a shock wave. Comptes Rendus Mecanique,2004,332(3):181~187
    [76]Kiselev V P, Kiselev S P, Vorozhtsov E V. Interaction of a shock wave with a particle cloud of finite size. Shock waves,2006,16:53~64
    [77]耿继辉,许厚谦,陈国旺,栗保明.激波加速条件下颗粒群阻力系数.自然科学进展,2000,10(3):218-223
    [78]张博,李斌,沈正祥,解立峰.激波与固体颗粒群相互作用实验研究.实验流体力学,2009,23(3):16-19
    [79]章利特,施红辉,王超,董若凌,贾会霞.激波与可运动颗粒群相互作用反射与透射机理实验研究.应用力学学报,2010,27(2):280-285
    [80]李金雪,刘盛田,郭建增.一维激波结构的数值分析.舰船防化,2011,2:38-41
    [81]于江飞,晏至辉,刘卫东.强激波与超声速混合层相互作用的大涡模拟.弹箭与制导学报,2010,30(2):158-162
    [82]李维新.一维不定常流与冲击波.国防工业出版社,2003
    [83]Fan Liangshin, Zhu Chao. Principles of Gas-Solid Flows. Cambridge University Press, 1998
    [84]Dai Z, Faeth G M. Temporal properties of secondary drop breakup in the multimode breakup regime. International Journal of Multiphase Flow,2001,27(2):217~236
    [85]Han Luchang, Luo He'an, Liu Yuejin. A theoretical model for droplet breakup in turbulent dispersions. Chemical Engineering Science,2011,66(4):766~776
    [86]Wong D C Y, Simmons M J H, Decent S P, Parau E I, King A C. Break-up dynamics and drop size distributions created from spiraling liquid jets. International Journal of Multiphase Flow,2004,30(5):499~520
    [87]Sallam K A, Dai Z, Faeth G M. Liquid breakup at the surface of turbulent round liquid jets in still gases. International Journal of Multiphase Flow,2002,28(3):427~449
    [88]Liu Z, Reitz R D. An analysis of the distortion and breakup mechanisms of high speed liquid drops. International Journal of Multiphase Flow,1997,23(4):631~650
    [89]Ng C L, Sankarakrishnan R, Sallam K A. Bag breakup of nonturbulent liquid jets in crossflow. International Journal of Multiphase Flow,2008,34(3):241~259
    [90]Fakhari A, Rahimian M H. Investigation of deformation and breakup of a falling droplet using a multiple-relaxation-time lattice Boltzmann method. Computers and Fluids,2011, 40(1):156~171
    [91]张琼哲.高焓激波管喷管粒子加速参数研究.哈尔滨:哈尔滨工程大学工学硕士学位论文,2009
    [92]Saito T. Numerical analysis of dusty-gas flow. J. Comput. Phys,2002,176:129~144
    [93]朱红钧,林元华,谢龙汉FLUENT 12流体分析及工程仿真.北京:清华大学出版社,2011
    [94]Le Jia-ling, Ni Hong-li. Numerical simulation of shock (blast) wave interaction with bodies. Experiments and Measurements in Fluid Mechanics,1999,13(3):1-9
    [95]张陶,於津,惠君明.爆炸抛撒方式对FAE云雾爆轰特性及威力影响的实验研究.弹箭与制导学报,2010,30(1):137-140
    [96]任晓冰,李磊等.液体的爆炸抛撒特征.爆炸与冲击,2010,30(5):487-492
    [97]任晓冰,陆晓霞,李磊等.爆炸驱动液体分散的实验与数值模拟研究.兵工学报,2010,31:93-97
    [98]姚干兵,解立峰,刘家骢.水爆炸抛撒成雾的研究.弹箭与制导学报,2006,26(3):113-116
    [99]桂潜波,王克印,赵瑞成.固体灭火剂爆炸抛撒半径分析.军械工程学院学报,2008,20(2):29-32
    [100]丁珏,翁培奋,刘家骢.液体爆炸抛撒初期液环运动、破碎的数值研究.水动力学研究与进展,2004,19(2):219-224
    [101]丁珏.液体的爆炸抛撒理论模型及全过程数值模拟.南京:南京理工大学,2001

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700