用户名: 密码: 验证码:
新型耐热输送带的研制及核心反应特征的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
近年来,随着国内钢铁、水泥、焦炭等行业的快速发展,对于输送高温物料的耐热输送带的需求日益突出,中国橡胶工业协会管带分会把耐高温输送带的开发列入行业十二五发展规划。本文目的在于研制符合GB/T20021-2005的T4/175℃新型耐热输送带,研究耐热输送带的高温粘合反应特征,包括影响高温粘合的因素、基于覆盖胶导温条件下的覆盖胶厚度设计和模拟现场高温条件的粘合强度试验技术三项内容。
     根据EPDM、SBR和NR橡胶及硫化体系的反应机理,结合基体橡胶种类和分子结构对硫化体系(硫化剂、促进剂和活化剂)用量进行化学衡算和试验验证。研究表明,EPDM4045的最优交联度占到其活化基团的5%左右;SBR1502/NR的最佳交联度占到其活化基团的2%左右,硫磺硫化和含硫化合物硫化的交联剂用量系数完全一致。
     研究了带体结构对175℃层间粘合强度的影响。研究表明,采用EPDM覆盖胶+EPDM/NR芯胶双重结构时,覆盖胶-1st帆布层界面的常温和175℃粘合强度均达到标准规定。采用EPDM覆盖胶+EPDM/SBR粘合胶+NR/SBR芯胶三重结构时,覆盖胶-1st帆布层界面的175℃粘合界面不稳定且粘合强度不能达到标准规定,主要原因是EPDM/SBR粘合胶不能同时和EPDM覆盖胶、NR/SBR芯胶两个界面得到好的平衡。
     研究了强力帆布的175℃热稳定、热老化和热粘合性能。研究表明, EA型帆布(聚对苯二甲酸乙二酯纤维+聚己二酰己二胺纤维)、AA2型帆布(聚己二酰己二胺纤维+聚己二酰己二胺纤维)和AA型帆布(聚己内酰胺纤维+聚己内酰胺纤维)及输送带试样的175℃热稳定性能顺序是AA2=EA>AA;热老化性能顺序是AA2=EA>AA;热粘合性能顺序是AA2=AA>EA。AA2型帆布具有综合最优的耐热性能。
     研究了EPDM覆盖胶和EPDM/NR芯胶弹性体复合材料的物理性能、热老化性能、硫化性能及对常温/175℃层间粘合强度的影响。研究表明,在175℃×96h老化条件下,规格为300mm×300mm×12mm的EPDM覆盖胶试样,其热老化性能变化率能较好地达到标准要求;规格为300mm×300mm×6mm的EPDM覆盖胶试样远不能达到标准要求。说明EPDM覆盖胶本身具有较好的耐热老化性能,其与空气∕氧气接触的深度是影响热老化性能的关键。BET比表面积为160-180m2/g的白炭黑、马来酸酐络合丁二烯、液体三元乙丙橡胶、RA-RF粘合体系都对增进界面常温/高温粘合强度具有积极作用。
     重点研究了耐热输送带175℃粘合强度影响因素。在30℃-175℃范围内研究了实验温度与界面粘合强度的关系,发现随着实验温度的升高粘合强度迅速下降。系统实验了覆盖胶、芯胶、粘合胶及强力帆布对175℃粘合强度的影响,发现影响175℃粘合强度的最关键因素是强力帆布的材料组份,与浸胶EA型帆布相比,AA2型帆布与覆盖胶界面的高温粘合强度提高到了79%。间甲白粘合体系的配合比例对覆盖胶的物理性能具有重要影响,RA-65/RF最佳配合比例为1/1.2-1/1.4。
     通过建立数学模型的方式研究了基于覆盖胶导温条件下覆盖胶厚度、界面温度和界面粘合强度的对应关系。研究表明对于一定厚度的覆盖胶来说,导温速度与导温时间基本呈直线线性关系;对于不同厚度的覆盖胶来说其导温速率截然不同,覆盖胶越厚其导温速率越小,覆盖胶越薄其导温速率越大;与颗粒状物料相比,粉末状物料的导温速率明显偏大。提出了基于导温条件下满足输送带高温运行层间粘合强度的覆盖胶厚度设计方法。
     提出并研究了耐热输送带模拟现场高温条件下粘合强度的试验技术,并与GB/T20021粘合强度的试验技术特征做了实验对比。结果得出,175℃条件下,采用GB/T20021方法测定的粘合强度值远远小于模拟方法的测定值。分析认为模拟现场粘合强度的试验方法更能真实地测定粘合强度,更能准确地判定输送带的现场可用性。
     本文研制的新型T4/175℃耐热输送带,各项性能指标符合GB/T20021-2005标准,耐175℃稳定性能、老化性能和粘合性能突出。该产品取得国家权威部门的检验合格证书,并在高温物料现场得到应用。该产品申请了国家发明专利并取得实用新型专利证书。技术水平属于国际领先。
The paper focus on developing neo-type heat-resistant conveyor belt of T4/175℃whichconforms to GB/T20021-2005, and studying three core characteristics including factorsinfluencing high-temperature-adhesion, temperature-conducting characteristic of the coverrubber and testing-technology characteristic of the adhesion strength simulating on-line hotmaterials.
     The reaction mechanism is studied,which include rubbers as EPDM,SBR and NR, as wellas vulcanization system. The amount of the materials such as curing agent, accelerator andactivator in vulcanization system is calculated on the basis of reaction mechanism, species ofrubber and molecular structure of rubber. Series of experiment have been done to verificate theaccurateness about the method of quantitative calculation.
     Influence of structure design on adhesion strength of the heat resistant conveyor belt at175℃has been studied. Research shows, adhesion strength between cover rubber and1stfabricmeet the standared both at room temperature and at175℃,which conveyor belt is made ofEPDM cover rubber and EPDM/NR core rubber.
     Fabrics used as carcass of heat-resistant conveyor belt are studied on its heat-stablityproperty, heat-aging property and heat-adhesion property for diffrent time at175℃. Researchshows, fabric of AA2-type has the best heat-resistant properties and it’s suited to be as carcass ofneo-type heat-resistant conveyor belt.
     Comprehesive properties of EPDM cover rubber and EPDM/NR core rubber elastomermaterials are studied,such as physical property, heat-aging property, curing property andadhesion strength between layers of the heat-resistant conveyor belt both at room temperatureand at175℃. Research shows that depth of EPDM cover rubber contact with the air/oxygen isthe key factor to the aging-resistant property at175℃.
     Focused on the characteristics and mechanism of adhesive reaction as well as influencingfactors to interfaces of heat-resistant conveyor belt at175℃. Results shows elementalcomposition of fabric is the most critical factor to adhesion strength at175℃. Compared withthe dipped EA-type fabric, adhesion strength at175℃between AA2-type fabric and EPDMcover rubber has been increased to179%.
     Corresponding relation among thickness of the cover rubber, interface temperature andadhesion strength has been studied through building mathematical model and testingtemperature-conducting characteristics of EPDM cover rubber for heat-resistant conveyorbelt.Research showed that the relationship about temperature-conducting-rate andtemperature-conducting-time is assume like a straight line to cover rubber with certain thickness.
     A new experimental technology of testing adhesion strength is studied which imitateson-line conditions with hot materials on heat-resistant conveyor belt. Experimental dates throughthe two different methods has been analysised. Results shows that the experimental technologyimitating on-line could test adhesion strength of belt with hot materials more authentically.
     The neo-type heat-resistant conveyor belt of T4/175℃developed in this paper has met thestandard of GB/T20021-2005. The new production has excellent quality in stabilityperformance, adhesion performance and aging performance at175℃. Both certificate ofinspection and certificate of patent by authorities have been obtained.
引文
[1]周世元.输送带的地位与发展展望[J].胶带工业,2004,(5):1-4
    [2]肖栋才.我国胶带工业现状及产品开发方向[J].胶带工业,2000,(5):4
    [3]国家统计局.中国统计年鉴[M].北京:中国统计出版社,2011.
    [4]陶大君.我国胶带工业十二五发展规划[J].胶管胶带,2010,(11):12-17.
    [5]翁国文. EP分层式耐热输送带生产概述[J].橡塑资源利用,2006,(4):37-43.
    [6]方海珍.耐150oC-300oC高温输送带研制[D].南京:南京理工大学,2007.
    [7]姜必多,陈银娟. EPDM耐高温输送带的研制[J].橡胶工业,2004,51(11):676-678.
    [8]姜必多,陈银娟.耐高温输送带的研制[J].胶带工业,2003,(10):2-4.
    [9]项早辉. EPDM聚酯帆布芯耐高温输送带的研制[J].橡胶工业,2004,45(3):164-165.
    [10]上海富大胶带制品有限公司.抗灼热输送带:中国,200920076453.7[P].2009-06-17.
    [11]汪笑宇. IW钢帘网的结构和性能特点及其在输送带中的应用[J].橡胶工业,2008,55(12):743-745.
    [12]赵换银,滑路栓.一种输送带:中国,99208792.9[P].2000-08-02.
    [13]无锡市宝通带业有限公司.一种耐高温输送带:中国,200710020741.6[P].2007-09-05.
    [14]赵建军.金属网耐灼烧输送带及其生产方法:中国,200810147350.5[P].2010-02-17.
    [15]山东安能输送带橡胶有限公司.一种高耐热耐磨输送带:中国,200910015130.1[P].2009-10-21.
    [16]孙连生.无碱玻璃纤维带芯输送带:中国,99221953.1[P].2000-06-28.
    [17]阜新橡胶(集团)有限公司.耐热输送带:中国,200520091020.0[P].2006-06-28.
    [18]葛军舰.耐高温耐烧灼金属骨架复合型输送带:中国,200620079769.8[P].2006-09-12.
    [19]李战杰.耐热抗烧输送带:中国,200720139493.2[P].2008-01-23.
    [20]陶小明.一种耐烧灼、耐高温橡胶输送带:中国,200720035664.7[P].2007-03-23.
    [21]浙江东南橡胶机带有限公司.防撕裂耐高温输送带:中国,200820097462.X[P].2008-01-11.
    [22]浙江天际橡胶有限公司.耐灼烧、防撕裂、耐高温输送带:中国,200920241740.9[P].2009-12-12.
    [23]北京化工大学.一种高耐热输送带覆盖层丁苯橡胶复合材料:中国,,200810114669.8[P].2008-11-19.
    [24]北京化工大学.一种高耐热输送带覆盖层用橡胶复合材料:中国,200810103497.4[P].2008-08-27.
    [25]浙江东南橡胶机带有限公司.一种相变耐高温输送带:中国,200810136563.8[P].2009-05-13.
    [26]无锡宝通带业股份有限公司.一种耐高温阻燃输送带表面覆盖胶及其制备方法:中国,201010286429.3[P].2010-12-22.
    [27]无锡宝通带业股份有限公司.一种用于耐高温钢网输送带芯胶的制备方法:中国,201010286415.1[P].,2010-12-22.
    [28]北京橡胶二厂.耐热输送带:中国,94212842.7[P].1995-08-02.
    [29]阜新橡胶有限责任公司.玻璃丝布织物芯输送带:中国,02247666.0[P].2003-11-19.
    [30]朱惠芬,刘正伦.一种耐热耐磨输送带:中国,91211480.0[P].1992-02-05.
    [31]张秋成. T3型耐热输送带的研制[J].橡胶工业,1998,45(1):40-43.
    [32]袁陆海.玻璃纤维芯耐高温输送带的研制[J].橡胶工业,2002,49(1):33-35.
    [33]张绍芬等. EPDM/CM耐高热输送带覆盖胶配方探讨[J].弹性体,2008,16(4):46-52.
    [34]彭立新. EPDM耐高热输送带的研究[J].化学工程师,2008,22(3):51-52.
    [35]宋静芳,褚静,徐玉海.耐热帆布芯输送带覆盖胶的研制[J].橡胶工业,2009,56(5):296-299.
    [36]宫立贵,温林,王宾广.一种输送带:中国,94211291.1[P].1994-05-21.
    [37]张家港市华申工业橡塑制品有限公司.耐烧灼胶料的配方、耐烧灼耐高温输送带的制造方法:中国,200810098521.X[P].2008-05-12.
    [38]张秀菊.圆管胶带输送机用耐热高温带:中国,200410039543.0[P].2004-12-29.
    [39]安徽淮北天力橡胶有限责任公司.玻璃纤维芯耐高温输送带:中国,00202238.9[P].2000-11-15.
    [40]邱荣华.一种玻璃纤维输送带:中国,00221277.3[P].2001-10-17.
    [41]段兴华.输送带骨架结构:中国,200620136394.4[P].2007-12-05.
    [42]朴成根,朴明龙.输送带用金属芯布:中国,200720013319.3[P].2008-05-14.
    [43]张春蕾,陆蔚.高温耐热运输带的开发[J].橡胶科技市场,2005,3:22-24.
    [44]屈柏峰,韩慧平.尼龙输送带贴胶粘合性能的研究[J].胶带工业,2005,(8):2-3.
    [45]许其军,毛志清,程辉等.耐热输送带用EP浸胶帆布的开发[J].橡胶工业,2000,47(5):312-313.
    [46]王文铢,张勤丽,张恒等.粘合剂RP对一浴法聚酯浸胶帘布性能的影响[C].第二届全国橡胶工业用织物和强力帆布技术研讨会论文集.青岛:2005.
    [47]褚静,徐玉海,宋静芳.耐高温钢丝绳芯输送带粘合胶配方的研究[J].橡胶工业,2007,54(11):791-794
    [48]谢艳霞. Veyance公司输送带产品及技术介绍[C].中国橡胶工业协会胶管胶带分会会议论文集.青岛:2009.
    [49] BELTING PRODUCTS, Heat-resistant[EB/OL]. www.dunlopconveyorbelting.com,2010.
    [50] CONTIFLEX VULKAN Textile Conveyor Belts for Hot Goods[G]. Contitech Transportbandsysteme,2004.
    [51] PRODUCTS, Special Conveyor Belts, MAGMA[EB/OL]. www.phoenix-cbs.com,2010.
    [52] YOKOHAMA. Heat-resistant Conveyor Belts[G]. SHANDONG YOKOHAMA RUBBERINDUSTRIAL PRODUCTS CO. LTD,2008.
    [53] Susumu T. Conveyor Belt Made of Carbon or Ceramic Fibers: USA,306114[P].1990-03-24.
    [54] Heinrich K. Heat-resistant Conveyor Belt:US,749342[P].1971-08-03.
    [55] Azuma A. Adhesion of EPDM Rubber Compositions to Fibrous Materials and Heat-resistant ConveyorBelts:JPN,09216954[P].1997-08-19.
    [56] Hamano N. Heat resistant Conveyor Belts:JPN,0930624[P].1997-02-04.
    [57] Okamoto H, Hirase k. Heat-resistant Conveyor Belts: JPN,60137645[P].1985-07-22.
    [58] Bando Chemical Industries Ltd. Heat-resistant Conveyor Belts: JPN,5889506[P].1983-05-27.
    [59] Schwann A, Baumgart T, Olak W. Heat-resistant Rubber Textile Conveyor Belt: POL,151922[P].1990-10-31.
    [60] Azuma A. Adhesive Rubber Compositions and Conveyor Belts with Good Heat-resistance and Adhesionwith Steel Cords: JPN,200001570[P].2000-01-07.
    [61]张虹,张春蕾,刘立山.耐热输送带的部分国际部分专利介绍[J].橡胶工业,2001,48(10):632-635.
    [62] Datta R, Talma A, Steenbergen A, et al. Sulfur Vulcanized Rubber Compositions Using SubstitutedSuccinimide Antireversion Compounds: PT,9620246[P].1996-04-04.
    [63] Kitagawa S, Ishibashi M, Haraguchi T, et al. Heat-resistant Laminated Conveyor Belt: CAN,2124659[P].1995-12-11.
    [64] Siyanda T. Neoprene Adhesives for Canvas in Conveyor Belts: JPN,02286228[P].1990-11-26.
    [65] Okamoto H, Hirase K. Heat-resistant Conveyor Belts: JPN,60137645[P].1985-07-22.
    [66] Rennebeck K. Process for Manufacturing Ceramic Fibers from the Melt and the Ceramic Fibers Obtainedand Their Uses: GE,19730996[P].1999-01-21.
    [67] Oyama M, Kubo Y, Honda T. Fiber Reinforced Rubber Belts: FR,2532245.[P]1984-03-21.
    [68] Hoover J W, Wheeler M E, Fusco J V, et al. Composition of Fatty Acid and Starch for ImprovedTear-resistance of Rubbers: USA,5650454[P].1997-07-22.
    [69] Partha P,Sarkar S K. Ghosh B R, et al. Studies on Adhesion between Rubber and Fabric and Rubber andRubber in Heat-resistant Conveyor Belt[J]. International Journal of Adhesion and Adhesives,1989,9(1):26-32.
    [70] Tapan K,Bhaumik C,Neogi B R, et al. Abrasion of High Temperature Conveyor Belt Compounds Basedon Ethylene Propylene Diene and Bromobutyl Rubber Blends[J]. Wear,1988,128(2):167-178.
    [71] Singh M P. The Role of Drive System Technology in Maximizing the Performance and Econonics ofLong Belt Converyors[R]. Bult Solids Handling,1994,14(4):695-670.
    [72] Phadungsak R, Nattawut S, Burachat Chatveera, et al. Development of Compressive Strength ofCement Paste under Accelerated Curing by Using a Continuous Microwave Thermal Processor[J].Materials Science and Engineering A,2008,472:299–307.
    [73] Vries L F. Developing heat-resistant Conveyor Belts [J]. Rubber World,1995,213(3):39242.
    [74] Botros S H. Thermal Stability of Butyl/EPDM Rubber Blend Vulcanizates [J]. Polymer Degradation andStability,1998,62(6):471-477.
    [75] Roselena F, Marco A, Paoli D. A Conductive Rubber Based on EPDM and Polyaniline I. Doping MethodEffect[J]. European Polymer,2001,37(1):1139-1143.
    [76] Porter M R. Handbook of Surfactants[R]. Chapman&Hall.1991.
    [77] Anon F. A New Polymeric Composition for Heat-resistant Conveyor Belt [J]. Research Discl,1998,415(5):1492-1494.
    [78] Bhaumik T K, Bhowmick A K, Gupta B R, et al. Development of Cover Compound and Determination ofGrade of a Heat-resistant Conveyor Belt [J]. Research Industry,1989,34(3):116-119.
    [79] Dushi A. Chlorobutyl Rubber for the Production of Heat-resistant Conveyor Belts [J]. Hem. Industry,1980,34(5):230-233.
    [80] Lowndes I S, Silvestera S A., Giddings D, et al. The Computational Modeling of Flame Spread along aConveyor Belt[J]. Fire Safety,2007,42(1):51–67.
    [81] Dariusz M. Analysis of the Ageing Impact on the Strength of the Adhesive Sealed Joints of ConveyorBelts[J]. Journal of Materials Processing Technology,2008,(208):477-485.
    [82] Kamdar A R. Effect of Tie-layer Thickness on the Adhesion of Ethylene–octene copolymers toPolypropylene[J]. Polymer,2009,(50):3319–3328.
    [83] Traian Z, Silviu J, Maria G, et al. Evaluation of Compatibility of EPDM and Butyl Rubber-II. Thermaland Radiation Stability[J]. Polymer Degradation and Stability,1998,62(7):569-574
    [84] Ananev N V, Golovin P D, Svetlichny I F. Tests of Heat-resistant Conveyor Belts for Conveying of HotCoke [J]. Koks. Khimicheskie,1985(1):36-37.
    [85] Wiche S J, Keys S, Roberts A W. Abrasion Wear Tester for Bulk Solids Handling Applications[J]. Wear,2005,258,251–257.
    [86]张虹.橡胶和纤维的粘合[J].世界橡胶工业,2002,29(3):30-34.
    [87]北京橡胶二厂.输送带:中国,96200176.7[P].1997-10-29.
    [88]谢艳霞.煤矿用整芯阻燃输送带动态粘合性能的测定[J].橡胶工业,2009,56(6):371-373.
    [89]王梦蛟,龚怀耀,薛广智.,橡胶工业手册(第二分册)[M].北京:化学工业出版社,1989.
    [90]李延林,吴宇芳,翟祥国.橡胶工业手册(第五分册)[M].北京:化学工业出版社,1990.
    [91]陈土朝,王仰东.橡胶技术与制造概论[M].北京:中国石化出版社,2003.
    [92]张殿荣,马占兴,杨清芝.现代橡胶配方设计[M].北京:化学工业出版社,1996.
    [93] William.M S, Cooper W, Dawans F,et al.王梦蛟,张中岳,林燕芳等译.立构橡胶[M].北京:石油化学工业出版社,1984.
    [94]徐寿昌.有机化学[M].北京:高等教育出版社,2006.
    [95]张海,赵素合.橡胶及塑料加工工艺[M].北京:化学工业出版社,1997.
    [96]孙玉海.橡胶的热裂解机理及动力学研究[M].青岛:广西大学化工学院,2004.
    [97]谢遂志,刘登祥,周鸣峦等.橡胶工业手册(第一分册)生胶与强力帆布[M].北京:化学工业出版社,1989.
    [98]江伟,纪奎江.特种合成橡胶[M].北京:石油化学工业出版社,1977.
    [99]唐斌,李晓强,王进文.乙丙橡胶应用技术[M].北京:化学工业出版社,2005.
    [100]娄诚玉.乙丙橡胶的合成与加工工艺[M].北京:化学工业出版社,1982.
    [101]吕百龄,余传文,蒲启君等.橡胶助剂手册[M].北京:化学工业出版社,2000.
    [102]杨清芝.现代橡胶工艺学[M].北京::中国石化出版社,1997.
    [103] W.霍夫曼著.王梦蛟译.橡胶硫化与硫化配合剂[M].北京:石油化学工业出版社,1975.
    [104]丁阿平,蒋军成,陈发明.过氧化二异丙苯的热稳定性研究[J].工业安全与环保,2009,35(11):1-2.
    [105] Wu K W, Hou H Y, Shu C M. Thermal Phenomena Studies for Dicumyl at Various Concentrations byDSC. Journal of Thermal Analysis and Calorimetry,2006,83(1):41-44.
    [106]蒲侠,陈灿成. EPDM/NR共混橡胶的性能研究[J].广东化工,2010,37(8):257-258.
    [107]Mathew G, Singh R P, Nair N R, et al. Development and Characterization of Novel EPDM/NRProphylacticwaste Composites[J]. Mater Sci,2003,38(11):2469-2481.
    [108]宋静芳. NR/EPDM并用橡胶共硫化的研究[J].科技资讯,2007,23(20):31-38.
    [109]齐兴国. NR/EPDM并用橡胶的共硫化性能研究[M].青岛:青岛科技大学化工学院,2007.
    [110]杨坤民,陈福林,岑兰. EPDM硫磺硫化体系的设计[J].橡胶工业,2005,52(1):12-14.
    [111] Dikland H G著,刘秋莲译. EPDM的化学组成及分子结构对过氧化物交联效果的影响[J].橡胶参考资料,1997,27(4):34-38.
    [112]苏志忠,陈朝晖,王迪珍.助交联剂TAC和TAIC对EPDM过氧化物硫化的影响[J].橡胶工业,2000,47(10):594-596.
    [113]李艳云.共交联剂TAC和TA IC对EPDM耐高温性能的影响[J].现代橡胶技术,2009,35(5):23-25.
    [114] Oikland H G. FI-IR Spectroscopy, a Major Tool for the Analysis of Peroxide Vulcanization Process inthe Presence of Coagents I Mechanism of EPM Peroxide Vulcanization with Aromatic Bis (allyl) Estersas Coagents[J]. Rubber Chemistry and Technology,1993,66(2):196-212.
    [115] Oikland H G, Hulskotte R J M. The mechanism of EPDM Peroxide Vulcanization in the Presence ofThriallylcyanurate as a Coagent [J] Kaulschuk Gumml Kumtstolfe.1993,46(8):608—673.
    [116]张洪珍摘译.用三烯丙基氰尿酸醋作为活性助剂时三元乙丙橡胶的过氧化物硫化机理[J].橡胶译丛,1994,6:5-11.
    [117]邓本诚,纪奎江.橡胶工艺原理[M].北京:化学工业出版社,1984.
    [118]易玉华,张海.红外光谱在橡胶硫化体系中的应用[J].特种橡胶制品,1998,19(5):39-42.
    [119] Hann C J,Kuhls G H, Hann C J. Far-infrared Studies of Polyisoprene Vulcanization[J]. Rubber Chem,1996,69:173.
    [120]江畹兰.橡胶硫化体系[J].世界橡胶公业,2006,33(5):16-21.
    [121] Mansour S H, Tawfik SY, Youssef MH. Unsaturated Polyester as Compatibilizer forStyrene-butadielle(SBR)/Aerylonitrile-butadiene(NBR) Rubber Blends [J]. J Appl Polym Sci,2002,83(11):2314-2321.
    [122]蒲启君,张建国,顾铭育.硫化剂DTDM的耐热性能分析[J].精细与专用化学品,2007,15(10):22-23.
    [123]何顺雄,罗权焜.硫化剂DTDM对EPDM硫化胶性能的影响[J].特种橡胶制品,2001,22(1):1-4.
    [124]孙立军.硫化体系对EPDM耐热老化性能的影响[J].橡胶工业,2002,49(4):197-200.
    [125] Barry W. A Review of Accelerator Systems for EPDM[J]. Rubber World,1981,186(6):
    [126]翟俊学,肖建斌,周坤.硫化体系对EPDM硫化胶力学性能的影响[J].特种橡胶制品,2011,32(3):19-21.
    [127]中国化工学会橡胶专业委员会.橡胶助剂手册[M].北京:化学工业出版社,2000.
    [128]朱敏,杨洪业,王迪珍.橡胶化学与物理[M].北京:化学工业出版社,1984.
    [129]屠传经,沈珞婵,吴子静.橡胶塑料的力化学反应[M].青岛:青岛出版社,1991.
    [130]孙立军.关于橡胶混炼的研究-氧化锌的作用[J].橡胶译丛,1996,6:349-353.
    [131]朱永康编译.活化剂在用次磺酰胺类促进剂硫化天然橡胶过程中的作用[J].世界橡胶工业,2004,31(11):3-5.
    [132]袁亚莉,周德凤.无机化学[M].武汉:华中科技大学出版社,2007.
    [133] Scott G. Atmospheric Oxidation and Antioxidants[M]. Amsterdam: Elsevier,1965.
    [134]潘祖仁.高分子化学[M].北京:化学工业出版社,2007.
    [135] Loyd D G. Polymer Fatigue Failure and Its Reduction in Natural Rubber[M]. New York: Monsanto Ltd,1966.
    [136] Hawkins W L. Polymer Stabilization [M]. New York: Wiley-Interscience,1972.
    [137] Neiman M B. Aging and Stabilization of Polymers[M]. New York: Consultants Bureau,1965.
    [138]肖建斌.填充硫化胶动态疲劳过程及疲劳寿命预测.2004年强力帆布橡胶会议论文集(Z1,Z2),2004:131-135.
    [139]徐一兵,唐正伟,陈建军.乙丙橡胶的生产技术进展及市场分析[J].合成橡胶工业,2011,34(4):324-327.
    [140]肖琰,魏伯荣.天然橡胶硫化胶的热氧老化性能研究[J].合成材料老化与应用,2006,35(2):21-23.
    [141]缪桂韶.橡胶配方设计[M].华南:华南理工大学出版社,2000.
    [142]聂军,张振秀,田萌.均匀设计法在CM过氧化物硫化体系中的应用[J].特种橡胶制品,2004,25(6):1-3.
    [143]王庆林,周宏斌,张士齐.采用回归法分析硫黄/DTDM并用比对硫化胶性能的影响[J].橡胶工业,1999,46(5):277-280.
    [144]李仁夫.耐热橡胶制品的配方设计[J].制品,1998,(1):31-39.
    [145]于富成.橡胶生产物理化学试验分析检测技术、操作技术与标准规范全书[M/CD].北京:当代中国音像出版社,2004.
    [146]陈国栋,满敬国,刘生兰等.EPDM抗撕裂工艺条件研究[J].化学推进剂与高分子材料,2009,7(6):54-55.
    [147]高称意.纤维骨架材料的现状和新材料开发动向[J].橡胶工业,2006,53(6):387-391.
    [148]王维相,翁亚栋.芳纶纤维在橡胶制品中的应用概况[J].橡胶工业,2004,51(4):242-245.
    [149] Wake W C, Wootton D B.Textile Reinforcement of Elastomers [M]. London: Applied Scie5ncePublishers Ltd,1982.
    [150] Wolpert A M. Effects of Disturbing Parameters on the Stability of Latex and Resorcinol FormaldehydeLatex Based Adhesives [J]. The Journal of Adhesion,2010,86:430–446.
    [151]谢艳霞,宗志敏,齐永波等.增粘剂CK-90在整芯阻燃输送带覆盖胶中的应用[J].橡胶工业,2010,57(01):27-31.
    [152]蒲启君.骨架材料与橡胶的粘合技术及其新进展[J].橡胶工业,2003,50(3):175-179.
    [153]谢艳霞,宗志敏,孙桂美等.帆布芯耐热输送带高温粘合性能的研究[J].橡胶工业,2011,58(12):747-751.
    [154]文小波,臧才娣.导热系数[J].橡胶译丛,1993,(2):1-6.
    [155]陈耀庭.橡胶的热物理性质[J].特种橡胶制品,1980,2:67-80.
    [156]贺海留.用红外热像仪测量轮胎的表面温度初探.2004年强力帆布橡胶会议论文集(Z1,Z2),2004:164-171.
    [157] Giorgos K, Kovan W. Critical Flow of Granular Matter on a Conveyor Belt.7thInternational SummerSchool and Conference,2008:112-121.
    [158] Kudro A, Wolpert M, Gouub J P. Cluster Formation due to Collisions in Granular Material[J].Phys RevLett,1997,78,1383-1386.
    [159]宋君萍.激光导热仪在橡胶导热性能研究中的应用[J].试验室研究与探索,2010,57(1):11-13.
    [160]王雪珍,马春光,谭伟石等.样品厚度对稳态法测定不良导体导热系数试验的影响[J].物理实验,2011,31(4):24-27.
    [161]胡少枝,庄素芬.橡胶热导率试验方法[J].特种橡胶制品,1989,(1):52-56.
    [162]邓涛,王伟,赵树高.耐高温输送带运行过程温度场的模拟[J].橡胶工业,2005,52(10):622-625.
    [163]王琳琳,董林福,康智略.橡胶平带硫化机热板温度场有限元分析与数据拟合[J].橡胶工业,2009,56(5):306-307.
    [164]何燕,李海涛,马连湘.炭黑填充橡胶的热传导理论模型及应用研究[J].橡胶工业,2010,57(1):22-25.
    [165]诸林,刘瑾,王兵等.化工原理[M].北京:石油工业出版社,2007.
    [166]屠传经,沈珞婵,吴子静.热传导[M].北京:高等教育出版社,1992.
    [167]宋伟刚.通用带式输送机设计[M].北京:机械工业出版社,2006.
    [168]兖矿大陆机械信息港.产品介绍[EB/OL]. http://www.ygdm.com,2008-08-16/1998-12-8.
    [169] Chambon G, Ghemmour A, Laigle D. A Conveyor Belt Setup for Studying Gravitary Free-SurfaceFlows of Complex Fluids. The Society of Rheology80th Annual Meeting,2008,86:1132–1134.
    [170]谢艳霞.增效剂FPC-X对矿用整芯输送带用PVC耐老化性能的影响[J].橡胶工业,2011,58(5):273-276.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700