用户名: 密码: 验证码:
推拉丝短路过渡CO_2焊焊接系统及过程精密控制研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
现代制造业的发展对产品的最终质量和加工过程都提出了更高的要求,当前汽车、摩托车、集装箱、家电等行业轻量化产品的推广应用对高质量薄板焊接技术的需求日渐增加。由于薄板对热量的敏感性强,焊接过程中在降低热量输入的同时还必须保证能量分布均匀一致。针对薄板焊接的这一特点,提出了一种基于推拉送丝方式的低飞溅、低能量、过程精密控制的推拉丝短路过渡CO2焊接法。其基本原理是:通过焊丝回抽时的机械力拉断液桥强制熔滴过渡,精确控制短路后期电流利用电阻热调节能量在焊丝与母材间的分配比例,一方面降低了焊接能量,减小了焊接飞溅;另一方面使熔滴过渡变得均匀而有规律,整个过程中能量分布可通过焊接参数的匹配实现精确控制。
     基于以上思路,设计了以数字化焊接电源为平台、采用高性能交流伺服推拉送丝机构为核心的推拉丝短路过渡CO2焊焊接系统,并通过软件控制的方式实现了上述低飞溅、低能量、过程精密控制的焊接方法。数字化焊接电源以运算速度快、精度高、数据处理能力强的数字信号处理器(TMS320F2812)结合逻辑处理功能强大的CPLD(EPM7128STC100)为控制核心,以软件编程的方式实现了对复杂焊接过程的控制。推拉送丝部分采用高性能的运动控制卡(PMAC2 PC-104)对转动惯量小、响应速度快的交流伺服电机进行控制实现了焊丝高频率送进-回抽运动,同时采用缓冲器为桥梁将推拉丝部分和等速送丝部分有机的结合为一体,减小焊丝运动阻力,增加了送丝距离。通过接口电路实现了焊接电源与送丝系统的连接,保证了两者可靠的协同工作。
     结合推拉丝短路过渡CO2焊的特点设计了焊丝的运动曲线和电流、电压波形控制方案,在短路期间采用电流控制而燃弧期间采用电压控制,有效保证了弧长的自调节能力,提出了运动参数及焊接参数的选取原则,通过电流、电压波形控制方案与焊丝运动相配合实现了稳定可靠的推拉丝短路过渡CO2焊焊接过程。分析了焊接过程中熔滴过渡的具体特点,短路初期焊丝减速送进保证了熔滴与熔池间的充分润湿,避免了瞬时短路飞溅的发生;短路末期熔滴在较小的电流水平靠机械力拉断液桥,消除了因过电流爆断液桥时产生的飞溅。整个过程熔滴在焊丝送进-回抽的强制作用下均匀、柔顺地过渡,实现了焊接过程的精确控制,同时通过电参数的配合可以对焊接过程中的能量分布进行精密控制。
     针对焊接过程中焊丝与母材熔化的不同特点,利用等效短路电流Ies和等效燃弧电流Iea分析了电阻热对焊接能量分配规律的影响,从而揭示了推拉丝短路过渡低热输入的机理:在送丝速度不变时,充分利用电阻热对焊丝熔化的促进作用可以有效降低燃弧期间的电弧热量,从而降低了焊接过程对母材的热输入。传统短路过渡中增加干伸长是通过增加电阻的方式增加电阻热,而推拉丝短路过渡则是通过增加等效短路电流Ies的方式增加电阻热的作用,两者均可在一定程度上降低焊接热输入。经能量对比分析可知由于附加机械力的作用摆脱了熔滴过渡对短路电流的依赖,使得推拉丝短路过渡焊接过程无论总能量还是燃弧期间能量均要低于传统短路过渡方法,并且能量分布均匀性好,为实现高质量的薄板焊接工艺奠定了基础。
     分析了推拉丝短路过渡CO2焊控制参数对能量分配规律的影响,结果表明随着短路末期电流的增加和燃弧峰值电压的减小,在总的焊接能量逐渐减小的同时燃弧期间能量进一步降低,可以实现更低的焊接热输入。随着熔滴过渡频率的增加,等效燃弧电流呈上升趋势,对母材的热输入也有所提高。分析表明采用燃弧期间电压控制的方法,不论焊接过程中控制参数如何变化,对整个焊接能量影响最根本的因素是等效短路电流Ies和等效燃弧电流Iea,其中等效短路电流以电阻热的形式产生热量并全部用于熔化焊丝而等效燃弧电流则决定了对母材热输入的大小。
     利用推拉送丝系统本身的特点,设计了回抽引弧方案,实现了可靠的引弧过程,为实现稳定的焊接过程提供了保障。推拉送丝短路过渡过程熔滴过渡有规律,能量分布均匀一致,不论在小电流还是大电流时焊缝成形均平整美观。由于电阻热的作用焊接热输入较小,焊缝成形更窄更高,可根据实际焊接的需要合理匹配I H和U P以得到理想的焊缝成形。此外推拉丝短路过渡对熔池冲击小,能量分布均匀,可形成均匀的、较浅的熔深,为推拉丝短路过渡CO2焊在堆焊和修复方面的应用提供了广阔的前景。
The development of modern manufacturing put forward higher requirements for final quality and processes of products, with the increasing requirement of high-quality sheet metal welding technology by the car, motorcycle, containers, household appliances and other light industry products Widely used. Because the sheet metal is sensitivity of the heat, and the heat input reducing and uniform energy distribution should be both ensure during welding process. For this feature, a short-circuit CO2 Welding transfer technics has porposed based on low-spatter, low-energy, precision control of the transfer process. The basic principle is: the droplet should be detached by the mechanical force using to pull the wire, according to control the current exactly to regulate the resistance heat between the wire and the base metal. First, this method can reduce the welding energy input and the spatter, second, it can make the transfer process become uniformity and orderliness. The energy distribution in the whole process can be precise control by adjusting welding parameters.
     Based on the above ideas, a digital welding power source has been designed as a platform, high-performance AC servo push-pull wire feeder is the core of the short-circuit transfer CO2 welding system, the low-spatter,low-energe and process precise controlled welding technics is achieved according to the software controlled method. Digital welding power source adopt digital signal processor (TMS320F2812)with high speed, high precision, and the CPLD (EPM7128STC100) with powerful logical-processing capability as the control of the core to reach the complex welding process control level based on software programme. In order to achieve the high frequency push-pull movement, Push-pull wire feeder part adopt the high-performance motion control card (PMAC2 PC-104) to control AC servo motor with low inertia and high response speed, at the same time, the buffer is used to harmonize the push-pull feeder and the steady rate feeder. This plan can reduce wire movement resistance , increase the feeder distance. According to the interface circuit, the welding power source and wire feeder system can be link together and work harmoniously.
     Consider the characteristics of the push-pull short-circuit CO2 welding technics, The feeder speed curve, welding voltage and current waveform Control program is pre-designed. During the short-circuit period, the current control program should be adopt. The voltage control program should be used to make the arc-length self-adjusting ability work. The selection principle of movement and welding parameter has proposed. According to adjust the current, voltage waveform and wire feeder, the push-pull short-circuit CO2 welding technics can work steadily and reliably. The characteristics of the droplet detachment during the welding process has been analysed, it supposed that the low feeder speed in the early of the short-circuit can ensure the wetting enough, and avoid spatter when instant short-circuit occurred; in the final of the short-circuit, the droplet detachment when the liquid bridge pulled break according to mechanical force with low current, so the spatter produced from liqiud bridge blast can be eliminate. The whole process accompany with wire push-pull movement can promote the droplet transfer softness and uniformity, achieve energe distribution precise control in welding process by adjusting the welding parameter.
     For the different characteristics of wire and base metal of welding process, the equivalent short-circuit current Ies and equivalent arc current Iea are defined to analyse the affect of welding energy distribution and reveal the mechanism of the low heat input of the push-pull short-circuit CO2 welding technics. When the wire feed speed is invariablenes, in order to lower the base metal heat input in welding process, the promoted function by the wire resistance heat should be adopt to lower the arc heat in arc period. The traditional short-circuit transfer method increase the resistance heat by increasing the wire extension, But the push-pull short-circuit CO2 welding technics increase the resistance heat by increasing equivalent short-circuit current, they can both achieve reduce the welding heat input in a certain extent. Comparative the energy of the two technics, because the additional mechanical force of the push-pull short-circuit CO2 welding technics get rid of the dependence in short-circuit period, So the energe of the push-pull short-circuit CO2 welding technics is less than the traditional short-circuit methods both in total energy and the arc energy, the energy distribution is good, and lay the foundation for achieving high-quality sheet metal welding technology.
     The effect of energe distribution rule when control parameter changed in push-pull short-ciucuit CO2 welding has been analysed. The result reveals that with the decreasing of final short-circuit current and the peak arc voltage, the energe can both be decreased for total welding energe and arc energe, so lower heat input welding method could be achieved. With the increasing of transfer frequency, the equivalent arc circuit current is incline to rise, and result in the more heat input for base metal. The analysis result shows that under the voltage control method during arc period, the equivalent short-circuit current Ies and the equivalent arc current Iea are the fundamental factors, the former is totally utilized to melt the wire by resistance heat, the latter determine the heat input for base metal.
     For the characteristics of the push-pull short-circuit CO2 welding system, the pull-ignite method is designed. This method can ignite reliably and ensure welding process steadily. The droplet of the push-pull short-circuit CO2 welding transfer in order, the energe distribute conformably, and the weld shape is good whatever welding in small or big current. Because the resistance heat reduce the heat input, weld shape is narrow and over-reinforcement, so the desire weld shape can be got by adjust IH and Up according to the welding requirements. In addition, the push-pull short-circuit CO2 welding can lower the transfer impact for welding pool, distribute energe uniformly, shape shallowly and uniformly, support widely perspective for surfacing process by the push-pull short-circuit CO2 welding technics.
引文
林尚扬,关桥.中国工程院咨询项目《我国制造业焊接生产现状与发展战略研究》总结报告. 北京. 2003.12: 1~4
    何实.探讨09年焊接产业的发展形势. 2009年度焊接行业高峰会议.北京. 2009: 1~3
    唐伯钢.展望21世纪的我国焊接技术和焊接钢结构产业.焊接技术. 2001,16(6): 43~45
    王其隆等.熔化极脉冲焊形态的可控性及其与熔滴过渡的关系.焊接学报. 1984,(4): 103~115
    S.Liu, et al. Metal Transfer in Gas Metal Arc Welding.DropletRate.Welding Journal. 1989,(2): 52~58
    J.A.Johnson, et al. Process Control of GMAW. Sensing of Metal Transfer Mode.Welding Journal.1991,(4): 91~98
    殷树言.气体保护焊工艺.机械工业出版社.北京. 2008,1: 198~199
    薛小怀,陈家本等.薄板小变形MAG焊焊接工艺研究.造船技术. 2005,(4): 27~28,40
    徐志明.钨极氩弧焊在不锈钢薄板焊接中的应用.电焊机. 2005,35(6): 65~66,72
    阎红,孙冬梅,杨立军.薄板熔化焊方法的发展现状.焊接技术. 2000.8,29(4): 10~11
    Liao Gene Y. A genetic algorithm approach to weld pattern optimization in sheet metal assembly. Mechanical Engineering Division Publication (MET). 2003.3: 53~58
    殷树言.气体保护焊技术问答.机械工业出版社.北京. 2004: 52~53
    Hinata.T, Yasuda.K,Igawa.M. Influence of TIG electrode material on AC TIG arc welding. Welding International. 1989,3(1): 26~32
    赖忠民,高飞.几种交流TIG焊电弧稳定性的比较研究.江苏科技大学学报. 2006.10, 20(5): 86~89
    倪艳敏.铝合金交流脉冲TIG焊焊接工艺参数研究.机械制造. 2007. 4,45(512):48~50
    殷树言.波形控制的CO2焊接.焊接. 1987,(8): 1~5
    殷荣幸,于波等.薄板的CO2气体保护焊单面焊双面成形工艺.金属加工. 2008,(18): 71~73
    袁建国,陈愚,吴宪平. CO2气体保护焊短路过渡电弧点焊对接薄板技术.电焊机. 2000, 30(12): 36~37
    殷树言.从不同的控制方式中探索短路过渡CO2焊接的飞溅问题.焊接学报. 1986,7(12): 187~192
    张军红,张晓囡,黄石生等. CO2焊波形控制方法的发展现状.电焊机. 1999,29(1): 5~8
    殷树言. CO2焊接设备原理与调试.机械工业出版社.北京. 2000: 20~27
    仝红军,上山智之.低频调制型脉冲MIG焊接方法的工艺特点.焊接. 2001,11: 33~36
    Pasi Hiltunen,于克勤. KemppiPro增强型双脉冲与铝焊接.熔接新技术及应用研讨会论文集. 2003,11: 159~162
    王伟明.逆变式GMA单脉冲和双脉冲焊机数字控制系统研究.北京工业大学博士学位论文.2004,6: 28~35
    闫涛.铝合金双脉冲工艺及控制方法研究.北京工业大学博士学位论文. 2007,6: 61~96
    杭争翔,殷树言等. AC MIG与DC MIG焊接工艺及控制的分析.电焊机. 2001,31(9): 17~21
    都岛贞雄,滕田治男,岩见博志.大电流AC-MIG溶接法の开发(第一报).溶接学会论文集. 1992,10(1): 83~87
    都岛贞雄,滕田治男,岩见博志.大电流AC-MIG溶接法の开发(第二报).溶接学会论文集. 1992,10(1): 88~94.
    T.Hongjun, T.Ueyama, S.Harada, et al. Quality and productivity improvement in aluminium alloy thin sheet welding using alternating current pulsed metal inert gas welding system. Science and Technology of Welding and Joining. 2001,6(4): 203~208
    T.Ueyama, T.Hongjun, S.Harada. Improve Sheet Metal Welding Quality & Productivity with AC Pulsed MIG Welding System. IIW DOC.Ⅻ-1629-00
    上山智之,原田章二,三田常夫.交流GMA溶接にぉける日本の现状につぃて.轻金属溶接. 2000,38(8): 1~7
    杭争翔. AC PMIG焊接设备及工艺特性的研究.北京工业大学博士学位论文.2003: 30~45
    廖平.薄板铝合金VP PMIG焊接设备及电弧稳定性研究.北京工业大学博士学位论文. 2006: 55~70
    上山智之,周栄慶一,恵良哲生,西坂太志.通过CBT(Controlled Bridge Transfer)方法开发低热输入、低飞溅CO2/MAG交流焊接系统.逆变焊机与数字化论坛.北京.2008.5: 1~11
    Era Tetsuo, Ueyama Tomoyuki, Brooks Matthew. Welding steel sheet with a modified short circuiting process. Welding Journal (Miami, Fla). 2007,87(12): 28~33
    Era T, Ide A, Uezono T, Ueyama T. Spatter reduction of steel sheets welding using controlled bridge transfer (CBT) GMA process. Materials Science Forum . 2008, 580-582: 303~306
    殷树言,刘嘉,闫思博.在展会启发下对数字化焊机的发展提出几点思考.金属加工(热加工). 2009, 02: 16~22
    冯天海.薄板焊接新工艺CLOOS公司新型MIG冷焊技术.现代焊接. 2007,53(5): 27~28
    周大胜,王越,魏占静.超薄板CP冷焊技术. CLOOS公司GLC353QUINTO CP产品资料.2008: 1~3
    殷树言,刘嘉,陈树君.从2005德国埃森焊接展览会看弧焊工艺与设备的发展动态.现代焊接. 2005, 36(6): 1~2
    张洪.有效控制电弧能量的冷弧焊.现代焊接工程. 2006,6: 44~45.
    张洪.现代数字化弧焊逆变电源的发展及应用.航空制造技术. 2007,6: 59~61
    区智明,马健,严小生.减少短路过渡焊接飞溅的方法.电焊机. 2004,增刊: 78~82
    A.G.Potap’evskii. Types of Metal Spatter in CO2 Welding. Automatic Welding. 1974,27(5): 37~40
    藤原纪六等.减少飞溅的有效方法.国外焊接. 1986,11: 38~43
    T. Mita. Spatter Reduction-Power Source Considerations. Journal of Japan Welding Society. 1990,59(8): 12~16
    李景昌等. CO2焊接短路金属液桥失效模型的研究.焊接技术. 1992,4: 9~12
    M.J.M.Hermans, et al. Characteristic Features of the Short Circuiting Aec Welding Process. Welding Review International. 1993,3: 8086
    Jones L A, Eagar T W, Lang J H. Magnetic forces acting on molten drops in gas metal arc welding. Journal of Physics D: Applied Physics. 1998,32(2): 93~105
    王振民,薛家祥等.波形控制参数对CO2焊飞溅的影响.电焊机. 2008.10,38(10): 56~59
    Stava E K. The surface-tension-transfer power source: A newlow-spatter arc welding machine. Welding Journal. 1993,72(1): 25~29
    胡红彦. IGBT逆变弧焊电源对CO2焊接飞溅的控制.河北省科学院学报. 2004.9,21(3): 34~35,41
    田松亚,孙烨等. CO2气体保护焊飞溅控制的研究.电焊机. 2006.8,36(8): 8~11,65
    魏建锁.减少CO2气体保护焊飞溅的方法.水利电力机械. 2006.9,28(9): 38~39,45 张人豪. CO2焊接电弧的控制.焊接. 1992,11: 8~11,29
    Stephen Liu, Siewert T A. Metal Transfer in Gas Metal Arc Welding. Recent Trends in Welding Science and Tecchnology TWR’89. Miami,Fla:American Welding Society. 1989: 475~479
    Smith A A. Features of Short Circuiting CO2 Arc Welding with a Duplex Power Source. British Welding Journal.1966,67(4): 215~223
    王其隆.电流波形和焊丝送进联合控制的短路过渡CO2焊.焊接. 1985,7: 3~7
    郭大勇,李晓坤,区智明. CO2短路过渡过程检测及应用.焊接. 1998,7: 12~15
    区智明,郭大勇等.熔滴短路过渡的检测与控制.焊接技术. 1999.12,增刊: 35~37
    郭大勇. CO2短路过渡焊接电弧的瞬时旁路控制.清华大学博士论文. 2000.6: 61~80
    刘嘉,卢振洋等.电焊机的数字化.焊接学报. 2002.2,23(1): 88~92
    殷树言,刘嘉.数字化弧焊电源与焊接技术的发展.现在制造. 2003,埃森焊接专刊:46~48
    李朋.逆变焊机波形控制技术.电焊机. 2009.2,39(2): 30~34 俞建荣,龚永飞等. CO2焊的波形控制技术的研究进展.北京石油化工学院学报. 2007.9,15(3): 43~46
    华学明,张勇,吴毅雄等.基于数字信号的CO2短路过渡数字信息控制.上海交通大学学报. 2003,37(2): 161~163
    白日辉,孙广,何建萍等.基于DSP的CO2焊接短路过程控制.电焊机. 2004,34(3): 18~19,49
    李兴霞,吴金杰等.短路过渡CO2焊的数字化波形控制研究.热加工工艺. 2007,36(23): 73~75
    冯曰海,刘嘉,殷树言.全数字控制短路过渡CO2焊波形控制研究.焊接技术. 2005.12,34(6): 51~53
    孙广,白日辉等.短路过渡CO2焊的数字化波形控制.电焊机. 2004.增刊: 88~90
    李树槐,赵崇仪等.减少短路过渡CO2焊接飞溅新途径.金属科学工艺. 1985.6,4(2): 115~121
    李树槐等.负脉冲电流诱导短路过渡CO2气体保护焊.哈尔滨工业大学学报. 1986.5,增刊: 129~135
    李树愧,赵崇仪等.负脉冲电流诱导过渡CO2焊接用晶体管电源的研究.焊接学报. 1986.9,7(3): 161~166
    冯曰海.短路过渡CO2气体保护焊数字控制技术研究.北京工业大学博士论文. 2005,10: 27~30
    杨晨晖,王洪铎.焊接中的STT技术.太原科技. 2008,1: 55~57
    Thong Tran Tien. Self-adaptive MAG welding can move into the industrial phase - the first industrial application of MAG STT welding with laser monitoring of the joint. Welding International. 2007.10,21(10): 718~725
    Vincent T.L. Waveform control in welding power supplies. IEEE Control Systems Magazine. 2006.8,26(4): 17~18
    范晓明. STT+ CO2自动焊接技术.焊管. 2005.9,28(5): 43~44
    曾君. STT气体保护焊在全位置半自动焊中的应用.焊管. 2003,33(4): 39-41
    张光先,邹增大等. CO2气体保护焊表面张力的过渡.焊接学报. 2003.2,24(1): 80~84
    C.Hsu, P.Soltis. Heat Input Comparison of STT vs. Short-Circuiting and Pulsed GMAW vs. CV Process. ASM Proceedings of the International Conference :Trends in Welding Research Conference Proceedings. 2002,4: 369~374
    王新之,陈武柱,赵子祥.短路CO2焊电磁力与表面张力自均衡过渡方法.焊接学报. 2000,21(4): 24~28
    John M.Parks, Elliott K.Stava. Apparatus and Method of Short Circuiting Arc Welding. 1989, US4866247
    耿传勇,刘加友,尹海等.微机控制STT逆变焊机的研制.焊接学报. 1998, 4: 64~70
    杨渝钦.控制电机(第2版).机械工业出版社,北京. 2005:220~243
    寇宝泉,程树康.交流伺服电机及其控制.机械工业出版社.北京. 2008: 35~50
    侯存敏,马宪华等.浅析CO2气体保护焊中的脉动送丝.河南机电高等专科学校学报. 2002.12,10(4): 50
    马季等.推拉脉动送丝电流调幅CO_2焊电源研究.电焊机.1982,2: 11~13
    曹道钧等.半周脉动送丝CO_2气体保护焊的特点.焊接学报. 1984,1: 43~51
    许伟铭.推拉脉动送丝机的研究.机械工业委员会郑州机械研究所工学硕士学位论文. 1987,6: 24~43
    刘泽勇. CO2推拉短路过渡电流调幅焊接中电弧过程的研究.机械工业委员会郑州机械研究所工学硕士学位论文. 1984,11: 43~87
    马季.推拉脉动送丝机的研究.电焊机. 1990,4: 14~17
    马季.Φ1.6焊丝PPM-CO2焊接设备及工艺.机械工业委员会郑州机械研究所工学硕士学位论文. 1987,6: 13~28
    里强. CO2气体保护焊实时回抽送丝短路过渡控制研究.哈尔滨工业大学博士论文. 1996,7: 99~119
    杨世彦. MIG/MAG焊附加机械力射滴过渡控制.哈尔滨工业大学博士论文. 1998.1: 71~98
    杨修荣.超薄板的CMT冷金属过渡技术.焊接. 2005,12: 52~54
    李磊. CMT技术使不可能变为可能.现代焊接. 2006.2,38: 25~26
    石常亮.铝和镀锌钢CMT法MIG钎焊工艺研究.哈尔滨工业大学工学硕士学位论文. 2006,6: 13~29
    Furukawa K. New CMT arc welding process - welding of steel to aluminium dissimilar metals and welding of super-thin aluminium sheets. Welding International. 2006,20(6): 440~445
    Pickin C.G. Young K. Evaluation of cold metal transfer (CMT) process for welding aluminium alloy aluminium alloy. Science and Technology of Welding and Joining. 2007,11(5): 583~588
    邹勇,梁亚军等.焊接机器人管道全自动打底焊研究.电焊机. 2008.8,38(8): 48~50
    姜晓飞. CMT法30CrMnSi钢板表面熔覆CuSi3工艺研究.哈尔滨工业大学工学硕士学位论文. 2006,6: 27~44
    珠海科盈公司. Fronius CMT管道外部根焊工艺获管道局认定.现代焊接. 2008,61(1):31
    张撼鹏.新型低能量输入电弧焊接系统及其过程控制研究.北京工业大学博士学位论文. 2007,7: 45~54
    Stephen,珠海科盈公司. CMT工艺与CO2气体的完美组合.现代制造. 2008,2: 1~6
    马永军,刘霞. DSP原理与应用(21世纪高职高专规划教材).北京邮电大学出版社.北京. 2008: 3~10
    孙丽明. TMS320F2812原理及其C语言程序开发.清华大学出版社.北京. 2008: 2~5
    尹勇,欧光军,关荣锋. DSP集成开发环境CCS开发指南.北京.北京航空航天大学出版社. 2003: 10~25
    彭启琮,管庆等. DSP集成开发环境-CCS及DSP/BIOS的原理与应用.电子工业出版社.北京. 2004: 197~191
    陶永华.新型PID控制及其应用.第2版.机械工业出版社.北京. 2003: 30~38
    Hermans M J M, Ouden G D. Process behavior and stability in short-circuit gas metal arc welding. Welding Research. 1999,78(4): 137~141
    曹彪,陈仕卿.短路过渡CO2焊电弧能量的检测与分析.焊接. 2006,2: 31~35
    姜焕中.电弧焊及电渣焊.第2版.机械工业出版社.北京. 1988: 44~46
    殷树言,冯雷.短路过渡CO2焊过程中能量分配的研究.材料科学与工艺. 1999.6,7(2): 11~14
    孙广,张春波等.波控参数对GMAW焊接性能的影响.电焊机. 2005.3,35(3): 43~45
    李亮玉,张广军.焊接电弧引弧机理的探讨.焊接学报. 1997.12,18(4): 238~243
    韩德斌.提高焊机的一次引弧成功率.东北电力技术. 1994,8: 41~43
    中国机械工程学会焊接学会.焊接手册――焊接方法及设备.第2版.机械工业出版社.北京. 2001.8: 767~771

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700