用户名: 密码: 验证码:
氩氧精炼铁合金炉温在线检测的方法研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
节能、降耗、减排是目前工业生产中最活跃的三个领域。随着哥本哈根世界气候大会的召开,环境议题再一次聚焦了全世界人的目光,节约能源,保护环境已经刻不容缓。国家科技支撑计划课题“氩氧精炼铁合金节能减排工艺技术应用研究”,就是在上述背景下提出的创新性实践。AOD氩氧精炼技术在不锈钢生产的应用中已经相当成熟,将其应用于铁合金的冶炼是一种新的尝试。本文从生产实际出发,从实时性要求、系统的可实现性以及成本等多方面综合考虑,旨在寻求一种能够准确的对AOD炉温度进行在线检测的方法。
     本文首先阐明在氩氧精炼铁合金的生产中实施温度在线检测的目的、意义以及国内外炉温在线检测方面的发展现状。之后通过对几种常用的测温方法的比较,针对红外测温中发射率修正困难,测量不准确的问题,提出一种经过改进的测温方法—红外底枪测温法,利用AOD炉底枪端口部的铁水腔体的等温性建立了一个在线灰体。实验表明,底枪测温法在避开大量背景辐射干扰的同时,稳定了发射率,可以有效的提高红外测温的精度。
     在室温条件下持续吹入的混合气体对高温铁水腔体具有降温作用,本文利用功能关系原理,建立了温度补偿模型。并综合比色测温原理的温度反演模型和底吹气体的温度补偿模型,完成测温系统的两步内定标。分析和实验均表明,内定标模型的线性度良好,对环境的适应能力强,测量精度优于传统的实验室黑体定标法。
     依据弱信号检测系统的设计原则实现上述功能。在详细分析测温系统的组成原理的基础上,设计并调试了四个主要组成部分,光学系统、光纤传输系统、信号检测单元以及控制运算单元,并对所设计的系统进行误差分析;通过实验测定检测系统的各项性能参数,统计结果表明各项指标均基本满足设计要求。
     本文最后分析总结了温度检测系统中存在的问题以及有待改进的方面,为以后的进一步研究提供了方向。
Energy saving, consumption and emission reduction is the three most active areas of currently industrial production. With the World Climate Conference held in Copenhagen, environmental issues, once again focused the world's attention, energy conservation and environmental protection brook no delay. National Science and Technology Support Planning subjects "Argon-Oxygen refining ferroalloys energy-saving and emission reduction technology application research" is an innovative practice which is presented under the above context. The application of technology AOD Argon-Oxygen refining in stainless steel production is already quite mature, make it applied in the ferroalloy smelting is a new attempt. This article starts from the production reality, taking the real-time requirements, whether the system can be realized and the cost into integrated account, and designs an end-gun infrared colorimetric temperature measurement system.
     In this paper, firstly clarify the purpose and significance of the temperature on-line measurement in an argon-oxygen refining ferroalloys production. After a detailed analysis of the development status of AOD furnace temperature on-line detection at home and abroad, and by comparing the several commonly used temperature measurement methods, such as the model predicting temperature on-line detection, the sapphire fiber sensing temperature on-line detection, the blackbody cavity temperature on-line detection, and the infrared sensing temperature on-line detection, an improved method of temperature measurement—infrared end-lance temperature measurement is proposed based on the problems of the emissivity amendment difficulties and the low accuracy of the traditional temperature measuring methods. This approach used the gray body features of the isothermal hot metal cavity at the outlet of AOD's bottom gun to avoid a large number of background radiated interference and stabilize the emissivity at the same time. This method effectively solved the problem of inaccuracy of an infrared temperature measurement.
     As the injecting gas blows into an AOD furnace at the room temperature, aiming at the cooling effect of the blowing gas to the high temperature hot metal cavity, using principles of functional relationship, a temperature compensation model is established in this paper to realize temperature compensation. Synthesizing the temperature inversion model of infrared colorimetric theory and temperature compensation model of blowing gas, the two-step internal calibration of the measurement system is completed. The internal calibration is of good linearity and adaptability to the environment, and its measurement accuracy is better than a conventional laboratory blackbody calibration method.
     In order to achieve these functions, the four main components, the optical system, the optical fiber transmission system, the signal detection unit and the control and mathematical operation unit are designed and debugged in this paper based on the designing principles of the weak signal detection systems and the analysis of the temperature measurement system's architecture in detail; After the error analysis of the designed systems, some experiments are carried out determine the performance parameters of the temperature measuring system, and the results show that the indicators are to meet the design requirements.
     The infrared end-gun temperature measurement system is simple, reliable, high precision and low cost, and it has good market prospect.
引文
[1]上海又成冶金机械有限公司编制.氩氧精炼炉培训教材.2004.
    [2]张健平.基于ARM7和DS18B20的合成氨塔内温度在线检测系统[J].计算机与应用化学,2009,26(10):55-58.
    [3]曹继庆.氩氧精炼铁合金硅含量在线检测技术的研究与实现.长春工业大学,2009.
    [4]李瑞丽,方爱民.小型氩氧混合脱碳(AOD)炉炼钢工艺[J].江苏冶金,2007,35(6):46-48.
    [5]常文杰,魏季和.不锈钢AOD精炼的几种过程控制[J].上海金属,2008,30(1):31-34.
    [6]刘闯.不锈钢AOD精炼工艺的应用和发展[J].特殊钢,2007,28(1):44-46.
    [7]Juan JIMENEZ, Javier MOCHON, Jesus Sainz de AYALA. Blast furnace hot metal temperature prediction through neural networks-based models. ISIJ International,2004,44(3):573-580.
    [8]W.B.Spillman,Jr.Multimode. fiber-optical pressure sensor based on the photo elastic effect.Opt.Lett.,2002,7(8):388-390.
    [9]姚灵石.蓝宝石光纤高温仪的研究[J].沈阳工业大学学报,2000,22(3):252-254.
    [10]田建国.CAS密封吹氩精炼终点钢水温度的预报模型[J].特殊钢,2005,26(1):19-20.
    [11]陈超,张孝福.VAI-Con(?)Cept-AOD转炉检测系统[J].不锈开发,2004,2(1):20-22.
    [12]上海浦汇光电技术有限公司.Reytek红外测温仪产品样本.2008.
    [13]上海浦汇光电技术有限公司.Optris红外设备产品样本.2008.
    [14]王军.宝钢电炉VD温度预报模型及网络实现[J].宝钢技术,2007,2(6):77-80.
    [15]龚伟,徐建平,江周华等.转炉吹炼温度预报人工神经网络模型的开发[J].材料与冶金学报,2006,5(1):10-13.
    [16]Randall P. Stone.Ray M. Figas Jr, Robert V. Branion,Productivity Improvements in Steelmaking via Sensor-based Steelmaking Process Control,AISTech 2005 Proceedings, Vol.Ⅱ,661-675.
    [17]郝晓剑,孙伟,周汉昌等.蓝宝石光纤黑体腔高温计[J].应用基础与工程科学学报,2004,12(2):28-30.
    [18]沈永行.从室温到1800℃全程测温的蓝宝石单晶光纤温度传感器*[J].光学学报,2000,20(1):83-87.
    [19]张华,谢植.复合温度传感器有效发射率影响因素分析[J].传感器技术,2004,23(3):14-16.
    [20]张华,孟红记,次项等.复合测温传感器的积分发射率研究[J].传感技术学报,2004,3(1):110-113.
    [21]杰创立仪器.红外测温仪原理.2010.
    [22]张忠恒.双波长红外测温仪的研究.天津理工大学.2007.
    [23]孙晓刚,李成伟,戴景民等.多光谱辐射测温理论综述[J].计量学报,2002,23(4):248-250.
    [24]齐文娟.发射率对红外测温精度的影响.长春理工大学.2005.
    [25]P.D.Hubbeling, G.A.Oostermeijer.转炉副枪和动态控制[J].钢铁,2007,42(4):83-86.
    [26]李瑞波,李红安.转炉副枪控制系统[J].安阳工学院学报,2007(6):20-22.
    [27]高魁明,谢植.红外辐射测温理论与技术[M].东北工学院出版社,1989.
    [28]Masato SUGIURA, Tsuyoshi YAMAZAKI, Ryuji NAKAO. Development of New Technique for Continuous Molten Steel Temperature Measurement[J].Nippon steel technical report,2004 (89):23-27.
    [29]赵秀丽.红外光学系统设计[M].机械工业出版社.1986.
    [30]杨宜禾,岳敏.红外系统[M].国防工业出版社,1985.
    [31]沈策,胡杏素.便携式红外辐射温度计光学系统设计[J].自动化仪表,1993,14(6):7-11.
    [32]吴福田,冯书文.红外光纤测温仪光学系统设计原理[J].光子学报,1996,25(7):609-613.
    [33]黄心耕.小视场红外光学系统设计’[J].航天控制,2004,22(5):85-87.
    [34]陈东升.光纤通信工程新技术及标准规范化实用手册[M].中国科技文化出版社.2006.
    [35]范志刚,左保军,张爱红.光电测试技术[M].电子工业出版社.2008.
    [36]殷益群,郭志刚,温向明.光纤通信技术200问[M].北京邮电学院出版社.1992.
    [37]孙圣和,王延云,徐影.光纤测量与传感技术[M].哈尔滨工业大学出版社.2002.
    [38]吴海滨,陈军,张杰等.比色测温双波长的选择及滤波片最小带宽的计算[J].量子电子学报,2006,23(4):569-572.
    [39]江文杰,曾学文,施建华.光电技术[M].科学出版社,2009.
    [40]李远明,陈文涛.微弱光信号前置放大电路设计[J].电子元器件应用,2007,9(8):25-29.
    [41]刘彬,张秋婵.光电检测前置放大电路的设计[J].燕山大学学报,2003,27(3):193-196.
    [42]何希才,车美升.传感器前置放大电路的设计[J].仪表技术,1992(5):14-16.
    [43]张世明.基于DSP的比色光纤高温测量仪的研制.合肥工业大学.2005.
    [44]苏奎峰,吕强,耿庆锋等.TMS320F2812原理与开发[M].电子工业出版社.2005.
    [45]朱苗勇,萧泽强.钢的精炼过程数学物理模拟[M].冶金工业出版社.1998.
    [46]郑小兵,吴浩宇,章骏平等.高精度光辐射定标和标准传递方法[J].科学通报,2000,45(12):1341-1344.
    [47]汪小勇,李铜基.光学仪器实验室绝对辐射定标及现场质量跟踪[J].海洋技 术,2003,22(1):29-33.
    [48]林志强,郑小兵,张磊等.基于低温辐射计的红外辐射定标方法[J].光学标准与测试,2007,44(4):62-67.
    [49]李洪卫,谢忠善,何军.带黑体腔的光纤温度计的校准[J].计量技术,2001,2(10):42-43.
    [50]李宪圣,任建伟,张立国等.大口径红外光电系统现场辐射定标装置的研制[J].光电子激光,2006,17(2):175-178.
    [51]A.J.Rogers.Optical. temperature sensor for high voltage applications. Appl. Opt.,1982, 21(5):882-885.
    [52]Michiharu HATANO, Yoshiyuki MATOBA, Koichi OTSUKA. Automatic control of hot metal temperature of Blast Furnace*.Transactions ISU,1982,22:534-542.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700