用户名: 密码: 验证码:
脉冲方程在微生物培养和种群控制中的应用
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
微分方程数学模型在描述种群动力学行为中起到了非常重要的作用。它从数学的角度解释各种种群动力学行为,使人们科学地认识种群动力学,从而对某些种群相互作用进行有目的地控制。特别是用脉冲微分方程来描述种群动力学模型能够更合理、更精确地反映各种变化规律,因为现实世界中的许多生命现象和人类的开发行为几乎都是脉冲的。本文针对微生物培养和种群控制的几个问题利用脉冲微分方程的相关理论和方法建立并研究了相应的动力学模型,同时借助计算机模拟讨论了所提模型的各种动力学行为,包括平衡点的稳定性、周期解的存在性、系统的持久性与灭绝以及系统动力学的复杂性。本文的主要结果概括如下:
     第二章讨论微生物培养。第一节研究具有变消耗率的比率确定型Chemostat模型的渐近行为。模型假定了消耗率是营养基的线性函数而且增长率是比率确定型函数,推广了经典的Monod模型。利用常微分方程定性理论证明了只要正平衡点存在系统就是持续生存的,同时也给出了极限环存在和正平衡点全局渐近稳定的充分条件。第二节研究脉冲输入营养基的Monod型Chemostat模型的动力学行为。利用Floquet理论和小振幅干扰的方法证明脉冲周期满足一定条件时,微生物灭绝周期解是渐近稳定的。然后用分析的方法讨论了系统的持久性。最后用数值模拟验证了主要结论。第三节利用类似于第二节的方法讨论了具有变消耗率和脉冲干扰营养基的Chemostat模型的复杂动力学。
     第三章讨论了非自治周期系统周期解的存在性。第一节研究一个具有Beddington-DeAngelis功能反应和脉冲干扰的捕食系统。利用拓扑度理论的连续性定理给出系统正周期解存在的充分条件,并给出例子借助计算机模拟说明脉冲对种群动力学的影响。第二节利用k-集压缩理论研究脉冲时滞Logistic模型正周期解的存在性,给出正周期解存在的充分条件。第三节利用拓扑度理论研究一个具有功能反应的捕食系统正周期解的存在性问题。给出系统正周期解存在的充分条件并模拟了主要结论。
     第四章讨论脉冲干扰对捕食模型的影响。第一节针对传染病控制害虫的理论,研究投放染病害虫控制害虫增长的优化控制。我们假定投放染病害虫的方式有连续的和脉冲的两种。因此,相应的模型分别是常微分方程模型和脉冲微分方程模型。利用常微分方程定性理论和脉冲微分方程理论分析了两个模型。从数学的角度给出在综合害虫管理中利用染病害虫控制害虫增长的一个理论依据。第二节研究一个捕食者具有脉冲迁入的Holling型捕食系统的动力学行为。用分析的方法证明了该系统是持续生存的,通过数值模拟显示了捕食者迁入对系统动力学的影响。
Mathematical models of differential equations play an important role in describing popula-tion dynamic behavior. Mathematically, these models explain all kinds of population dynamicbehavior, which allows people to understand population dynamics scientifically so that someinteractions of population can be intend to control. Especially, impulsive differential equationsdescribe population dynamic models, which is more reasonable and precise on reflecting all kindsof change orderliness, since many life phenomena and human exploitation are almost impulsivein the natural world. In this dissertation, population dynamic models are established to con-sider several problems in microorganism cultures and population controls by means of the theoryand method of impulsive differential equations. Numerical simulations are used to investigatedynamic behavior including the stability of equilibrium, the existence of periodic solution, thepermanence and extinction of system and the complexity of system. The main results of thisdissertation mav be summarized as follows:
     In Chapter 2, microorganism cultures are investigated. Asymptotic behavior in the ratio-dependent chemostat model with variable yield is studied in Section 2.1. In the model, weassume that the yield is a linear function of the nutrient concentration and the microbial growthrate is a ratio-dependent type function. Thus, we have developed the classical Monod model. Itis shown that system is permanent if and only if it has a positive equilibrium by the qualitativetheory of ordinary differential equation. The sufficient conditions of existence of limit cyclesand globally asymptotic stability of the positive equilibrium for the model are given. In Section2.2, dynamic behaviors of Monod type chemostat model with impulsive input on the nutrientconcentration. Using Floquet theory and small amplitude perturbation method, we prove thatthe microorganism-eradication periodic solution is asymptotically stable if the impulsive periodsatisfies some conditions. Moreover, the permanence of the system is discussed in analyticalmethod. Finally, we verify the main results by numerical simulation. Using the similar methodof Section 2.2, complex dynamics of a chemostat with variable yield and periodically impulsiveperturbation on the substrate is studied in Section 2.3.
     In Chapter 3, the existence of periodic solutions of nonautonomous periodic systems isconsidered. In Section 3.1, the existence of periodic solutions of a predator-prey system withthe Beddington-DeAngelis functional response and impulsive perturbations is studied. By thecontinuation theorem of the coincidence degree theory, the sufficient conditions of the existenceof positive periodic solution are obtained. Finally, an example is given to illustrate the influence of the impulse on population dynamics by numerical simulation. In Section 3.2, using the con-tinuation theory for k-set contractions, the sufficient conditions of existence of positive periodicsolution of the impulsive delay Logistic model are given. In Section 3.3, the problem of existenceof positive periodic solution of the predator-prey system with functional response is analyzed bythe continuation theorem of the coincidence degree theory, the sufficient conditions of existenceof positive periodic solution are obained and the main result is simulated by computer.
     In Chapter 4, the effect of impulsive perturbation on predator-prey models is investigated.On the theory of controlling pests using epidemic, the problem on optimal controlling pestsby infected pests is studied in Section 4.1. We assume that the releases of infected pests arecontinuous and impulsive. Thus, the corresponding models are the ordinary differential equationsand the impulsive differential equations, which are studied by the qualitative theory of ordinarydifferential equations and the theory of impulsive differential equations. Mathematically, thetheoretical evidence of the controlling pests using epidemic in the integrated pest managementis given. In Section 4.2, the dynamic behaviors of a Holling-type predator-prey system withimpulsive immigration on the predator is considered. It is shown that the system is permanent.By means of numerical simulation, we illustrate that with the increasing of the immigrationnumber, the system exhibits complex dynamics.
引文
[1] Abrams P A, Ginzburg L R. The nature of predation: prey-dependent, ratio-dependent or neither?. Trends Ecol. Evol., 2000, 15: 337-341.
    [2] Agrawal R, Lee C, Lim H C, Ramkrishna D. Thereotical investigations of dynamic behavior of isothermal continuous stirred tank biological reactors. Chem. Eng. Sci., 1982, 37: 453-462.
    [3] Amine Z, Ortega R. A periodic prey-predator system. J. Math. Anal. Appl., 1994, 185: 477-489.
    [4] Anderson R M, May R M. Population biology of infections diseases: Part Ⅰ. Nature, 1979, 280: 361-367.
    [5] Anderson R M, May R M. Infectious diseases of human: dynamics and control. Oxford, Oxford University Press, 1991.
    [6] Bainov D D, Simeonov P S. System with impulsive effect: stability, theory and applications, Ellis Horwood Series in Mathematics and its Applications. Chichester, Ellis Horwood, 1989.
    [7] Bainov D D, Simeonov P S. Impulsive differential equations: periodic solutions and applications. New York, Longman Scientific and Teachnical, 1993.
    [8] Bainov D D, Simeonov P S, Dishlie A B. Oscillatory of the solutions of a class of impulsive differential equations with a deviating argument. J. Appl. Math. Stochastic Anal., 1998, 11:95-102.
    [9] Ballinger G, Liu X. Permanence of population growth models with impulsive effects. Math. Comput. Modelling, 1997, 26: 59-72.
    [10] Ballinger G, Liu X. Existence and uniqueness results for impulsive delay differential equations. Dyn. Continuous Discrete Impulsive System, 1999, 5:267-270.
    [11] Barclay H J. Models for pest control using predator release, habitat management and pesticide release in combination. J. Appl. Ecol. 1982, 19(2): 337-348.
    [12] Beddington J R. Mutual interference between parasites or predators and its effect on searching efficiency. J. Animal Ecol., 1975, 44: 331-340.
    [13] Beretta E, Kuang Y. Global stability in a well known delayed chemostat model. Communications in Applied Analysis, 2000, 4: 147-155.
    [14] Berezansky L, Braverman E. Linearized oscillation theroy for a nonlinear delay impulsive equations. J. Comput. and Appl. Math., 2003, 161: 477-495.
    [15] Bohner M, Fan M, Zhang J M. Existence of periodic solutions in predator-prey and competition dynamic systems. Nonlinear Analysis: Real World Applications, 2006, 7: 1193-1204.
    [16] Brauer F, Castillo-Chavez C. Mathematical models in population biology and epidemiology. Test in Applied Mathematics 40, New York, Springer, 2001.
    [17] Buler G J, Hsu S B, Waltman P. A mathematical model of the chemostat with periodic washout rate. SIAM J. Appl. Math., 1985, 45: 435-449.
    [18] Caltagirone L E, Doutt R L. The history of the vedalia beetle importation to California and its impact on the development of biological control. Ann. Rev. Entomol, 1989, 34: 1-16.
    [19] Cantrell R S, Cosner C. On the dynamics of predator-prey models with Beddington-DeAnglis functional response. J. Math. Anal. Appl., 2001, 257: 206-222.
    [20] Chen F D. Periodic solutions and almost periodic solutions for a delay multispecies Logarithmic population model. Appl. Math. Comput., 2005, 171 : 760-770.
    [21] Chen F D. Almost periodic solution of the non-autonomous two-species competitive model with stage structure. Appl. Math. Comput., 2006, 181: 685-693.
    [22] Chen M P, Yu J S, Shen J H. The persistence of nonoscillatory solutions of delay differential equations under impulsive perturbations. Comput. Math. Appl., 1994, 27: 1-6.
    [23] Cosner C, DeAngelis D L, Ault J S, Olson D B. Effects of spatial grouping on the functional response of predators. Theor. Pop. Biol., 1999, 56: 65-75.
    [24] Crooke P S, Tanner R D. Hopf bifurcations for a variable yield continuous fermentation model. Int. J. Eng. Sci., 1982, 20: 439-443.
    [25] Crooke P S, Wei C J, Tanner R D. The effect of the specific growth rate and yield expressions on the existence of oscillatory behavior of a continuous fermentation model. Chem. Eng. Commun., 1980, 6: 333-347.
    [26] Cushing J M. Periodic time-dependent predator-prey system. SIAM J. Appl. Math. 1977, 32: 82-95.
    [27] Cui J, Chen L S. The effect of diffusion on the time varying Logistic population growth. Comp. Math. Appl., 1998, 36: 1-9.
    [28] David T, Kenneth G C, Pamela A M, Rosamond N, Stephen P. Agricultural sustainability and intensive production practices. nature, 2002, 418: 671-677.
    [29] DeAngelis D L, Goldstein R A, O'Neill R V. A model for tropic interaction. Ecology, 1975, 56: 881-892.
    [30] DeBach P. Biological control of insect pests and weeds. New York, Rheinhold, 1964.
    [31] DeBach P, Rosen D. Biological control by natural enemies, 2nd ed. Cambridge, Cambridge University Press, 1991.
    [32] Dimitrov D T, Kojouharov H V. Complete mathematical analysis of predator-prey models with linear prey growth and Beddington-DeAngelis functional response. Appl. Math. Comput., 2005, 162: 523-538.
    [33] Dorofeev A G, Glagolev M V, Bondarenko T F, Panikov N S. Observation and explanation of the unusual growth kinetics of Arthrobacter globiforms. Microbiology, 1992, 61: 33-42.
    [34] Fang H, Li J B. On the existence of periodic solution of a neutral delay model of single-species population growth. J. Math. Anal. Appl., 2001, 259: 8-17.
    [35] Fan M, Kuang Y. Dynamics of a nonautonomous predator-prey system with the Beddington-DeAngelis functional response. J. Math. Anal. Appl., 2004, 295: 15-39.
    [36] Freedman H J. Graphical stability, enrichment and pest control by a natural enemy. Math. Biosci., 1976, 31: 207-225.
    [37] Fu X L, Qi J G, Liu Y S. The existence of periodic orbits for nonlinear impulsive differential systems. Communications in Nonlinear Science and Numerical Simulation, 1999, 4: 50-53.
    [38] Fu G F, Ma W B. Hopf bifurcations of a variable yield chemostat model with inhibitory exponential substrate uptake. Chaos, Solitons and Fractals, 2006, 30: 845-850.
    [39] Fu G F, Ma W B, Ruan S G. Qualitative analysis of a chemostat model with inhibitory exponential substrate uptake. Chaos, Solitons and Fractals, 2005, 23: 873-886.
    [40] Funasaki E, Kot M. Invasion and chaos in a periodically pulsed mass-action chemostat. Theor. popul. Biol., 1993, 44: 203-224.
    [41] Gaines R E, Mawhin J L. Coincidence degree and nonlinear differential equations. Berlin, Springer-Verlag, 1977.
    [42] Goh B S. Management and analysis of biological populations. New York, Amsterdam Oxford, 1980.
    [43] Grasman J, Van Herwaarden 0 A, Hemerik L, Van Lenteren J C. A two—component model of host-parasitoid interactions: determination of the size of immdative releases of parasitoids in biological pest control, Math. Biosci., 2001, 169(2): 207-216.
    [44] Hale J K, Somolinas A S. Competition for fluctuating nutrient. J. Math. Biol., 1983, 18: 255-280.
    [45] Herbert D, Elsworth R, Telling R C. The continuous culture of bacteria: a theoretical and experimental study. J. Gen. Microbiol., 1956, 14: 601-622.
    [46] Hsu S B, Hubbell S P, Waltman P. A mathematical theory for single nutrient competition in continuous cultures of micro-organisms. SIAM J. Appl. Math., 1977, 32: 366-383.
    [47] Huffaker C B. New technology of pest control. New York, Wiley, 1980.
    [48] Huo H F, Li W T, Liu X Z. Existence and global attrctivity of positive periodic solution of an impulsive delay differential equation. Appl. Anal., 2004, 83: 1279-1290.
    [49] Hwang T W. Global analysis of the predator-prey system with Beddington-DeAnglis functional response. J. Math. Anal. Appl., 2003, 281: 395-401.
    [50] Jannash H W, Mateles R T. Experimental bacterial ecology studied in continuous culture. Advances in Microbial Physiology, 1974, 11: 165-212.
    [51] Jin Z, Ma Z E, Han M A. The existence of periodic solutions of the n-species Lotka-Volterra competition systems with impulsive. Chaos, Solitons and Practals, 2004, 22: 181-188.
    [52] Jin Z, Han M A, Li G H. The persistence in a Lotka-Volterra competition systems with impulsive. Chaos, Solitons and Practals, 2005, 24: 1105-1117.
    [53] Kuang Y, Beretta E. Global qualititive analysis of a ratio-dependent predator-prey system. J.Math.Biol., 1998, 36: 389-406.
    [54] Kuang Yang, Delay differential equations: with applications in population dynamics. Boston, academic press, 1993.
    [55] Kuang Y, Freedman H I. Uniqueness of limit cycles in ganse-type models of predator-prey system. Math. Biosci., 1988, 88: 67-84.
    [56] Kulev G K, Bainov D D. On the asymptotic stablity of systems with impulses by the direct method of Lyapunov. J. Math. Anal. Appl., 1989, 140(2): 324-340.
    [57] Lakmeche A, Arino O. Bifurcation of non-trivial periodic solutions of impulsive differential equations arising chemotherapeutant treatment. Dyn. Cont. Discr. Impulsive Syst., 2000, 7: 265-287.
    [58] Lakshmikantham V, Bainov D D, Simeonov P S. Theory of impulsive differential equations. Singapore, World Scientific, 1989.
    [59] Li J W, Wang Z C. Existence and Global Attractivity of Positive Periodic Solutions of a Survival Model of Red Blood Cells. Computers and Mathematms with Apphcatlons, 2005, 50: 41-47.
    [60] Liu B, Zhang Y J, Chen L S. Dynamic complexities of a Holling I predator-prey model concerning periodic biological and chemical control. Chaos, Solitons and Fractals, 2004, 22: 123-134.
    [61] Liu W M, Hethcote H W, Levin S A. Dynamical behavior of epidemiological models with nonlinear incidence rates. J. Math. Biol., 1987, 25(4): 359-380.
    [62] Liu X N, Chen L S. Complex dynamics of Holling type Ⅱ Lotka-Volterra predator-prey system with impulsive perturbations on the predator. Chaos, Solitons and Fractals, 2003, 16: 311-320.
    [63] Liu X, Ballinger G. Boundedness for impulsive delay differential equations and applications to population growth models. Nonlinear Anal., 2003, 53: 1041-1062.
    [64] Liu X, Ballinger G. Existence and continuability of solutions for differential equations with delays and state dependent impulses. Nonlinear Analysis, 2002, 51: 633-647.
    [65] Liu X, Rohlf K. Impulsive control of a Lotka-Voterra system. IMA J. Math. Control Inform., 1998, 15: 269-284.
    [66] Liu Z D, Mao Y P. Existence theorem for periodic solutions of higher order nonlinear differential equations. J. Math. Anal. Appl., 1997, 216: 481-490.
    [67] Mahbuba R, Chen L. On the nonautonomous Lotka-Volterra competition system with diffusion. Diff. Equs. Dyna. Systems, 1994, 2: 243-253.
    [68] Monod J. Recherches sur la Croissance des Cultures Bacteriennes. Paris, Herman, 1942.
    [69] Monod J. la technique de la culture continuous: theorie et application. Ann Inst, Pasteur, 1950, 79: 390-410.
    [70] Novick A, Szilard L. Description of the chemostat. Science, 1950, 112(2920): 715-716.
    [71] Panikov N S. Microbial growth Kinetics. London, Chapman and Hall, 1995.
    [72] Pavidis T. Stability of systems described by differential equations containing impulses. IEEE, Trans. Automatic Control, 1967, AC-2: 43-45.
    [73] Pedigo L P. Entomology and Pest Management, Second Edition, Prentice-Hall Pub., Englewood Cliffs, N.J. (1996): 679.
    [74] Perko L. Differential equations and dynamical systems, (third edition). New York, Springer-Verlag, 2001.
    [75] Petryshyn W V, Yu Z S. Existence theorems for higher order nonliner periodic boundary value problem. Nonlinear Anal., 1982, 6: 943-969.
    [76] Pilyugin S S, waltman P. Multiple limit cycles in the chemostat with variable yield, mathematical Biosciences, 2003, 182: 151-166.
    [77] Qi J G, Fu X L. Existence of limit cycle of impulsive differential equations with impulses at variable times. Nonlinear Analysis, 2001, 44: 345-353.
    [78] Richter O, Seppelt R. Flow of genetic information through agricultural ecosystems: a generic modelling framework with application to pesticide-resistance weeds and genetically modified crops. Ecological Modelling, 2004, 174: 55-66.
    [79] Roberts M G, Kao R R. The dynamics of an infectious disease in a population with birth pulses. Math. Biosci., 1998, 149: 23-36.
    [80] Simeonov P S, Bainov D D. Stability with respect to part of the variables in system with impulsive effect. J. Math. Anal. Appl., 1986, 117(1): 247-263.
    [81] Smith H L, Waltman P. The Theory of the Chemostat. Cambridge, Cambridge University Press, 1995.
    [82] Smith R J, Wolkowicz G S K. Analysis of a model of the nutrient driven self-cycling fermentation process. Dyn.Contin. Discrete Impul. Syst. Series B, 2004, 11: 239-265.
    [83] Sugie J. Uniqueness of limit cycles in a predator-prey system with Holling-type functional response. Quart. Appl. Math., 2000, 58: 577-590.
    [84] Sugie J, Katayama M. Global asymptoticstability of a predator-prey system of Holling type. Nonlinear Anal., 1999, 38: 105-121.
    [85] Sugie J, Kohno R, Miyazaki R. On a predator-prey system of Holling type. Proc. Amer. Math. Soc. 1997, 125: 2041-2050.
    [86] Sugie J, Miyamoto K, Morino K. Absence of limit cycles of a predator-prey system with a sigmoid functional response. Appl. Math. Lett., 1996, 9: 85-90.
    [87] Sword G A, Lorch P D, Gwynne D T. Migratory bands give crickets protection, nature, 2005, 433: 703.
    [88] Tang S Y, Chen L S. The periodic predator-prey Lotka-Volterra model with impulsive effect. J. Math. Med. Biol., 2002, 2: 267-296.
    [89] Tang S Y, Xiao Y N, Chert L S, Cheke R A. Integrated pest management models and their dynamical behaviour. Bull. Math. Biol., 2005, 67(1): 115-135.
    [90] Tang S Y, Chen L S. Modelling and analysis of integrated pest management strategy. Discrete and Continuous Dynamical Systems, Series B, Mathematical Modeling, Analysis and Computations, 2004, 4(3): 759-768.
    [91] Tang S Y, Chen L S. Multiple attractor in stage-structureed population models with birth pulses. Bull. Math. Biol., 2003, 65: 479-495.
    [92] Van Lenteren J C. Integrated pest management in protected crops, in Integrated Pest Management, D. Dent (Ed.). London, Chapman and Hall, 1995: 311-320.
    [93] Wang L L, Li W T. Existence and global stability of positive periodic solutions of a predator-prey system with delays. Appl. Math. Comput. 2003, 146: 167-185.
    [94] Wang H L, Zhong S M. Asymptotic behavior of solutions in nonautonomous predator-prey patchy system with beddington-type functional response. Appl. Math. Comput., 2006, 172: 122-140.
    [95] Wickwire K. Mathematical models for the control of pests and infections disease: a survey. Theor. Pop. Biol., 1977, 11(2): 182-238.
    [96] Wolkowicz G S K, Zhao X Q. N-spicies competition in a periodic chemostat. Differential and Integral Equations, 1998, 11: 465-491.
    [97] Wu C Q. Qualitative analysis of a predator-prey system with functional respense. J. Sys. Sci. and Math. Scis. 2005, 25: 688-692. (in Chinese)
    [98] Xiao D M, Ruan S G. Global dynamics of a ratio-dependent predator-prey system. J.Math. Biol., 2001, 43: 268-290.
    [99] Xiao Y N, Chen L S. Modeling and analysis of a predator-prey model with disease in the prey. Math. Biosci., 2001, 171: 59-82.
    [100] Xu R, Chen L S. Persistence and stability for a two-species ratio-dependent predator-prey system with time delay in a two-patch environment. Comput. Math. Appl., 2000, 40: 577-588.
    [101] Yah J R, Zhao A M. Oscillation and stability of linear impulsive delay differential equations. J. Math. Anal. Appl., 1998, 227: 187-194.
    [102] Yan J R. Oscillation of nonlinear delay impulsive differential equations and inequalities. J. Math. Anal. Appl., 2002, 265: 332-342.
    [103] Zeng Z J, Bi L, Fan M. Existence of multiple positive periodic solutions for functional differential equations. J. Math. Anal. Appl., 2007, 325: 137-1389.
    [104] Zhang X S, Yan J Y. Global attractivity in impulaive functional differential equation. Indian, J. Pure Appl. Math., 1998, 29: 871-878.
    [105] Zhang X A, Chen L S. The periodic solution of a class of epidemic models. Comput. Math. Appl., 1999, 38(3-4): 61-71.
    [106] Zhang Y J, Liu B, Chert L S. Dynamical behavior of Volterra model with mutual interference concerning IPM. Mathematical Modelling and Numerical Analysis, 2004, 38: 143-156.
    [107] Zhang Y J, Chen L S, Sun L H. Maximum sustainable yield for seasonal harvesting in fishery management: Impulsive dynamical systems and applications. Dyn. Contin. Discrete Impuls. Syst. Ser. A Math. Anal. 2004, Added Volume, 311-316.
    [108] Zhang Z. et al. Qualitative theory of differential equations. Translations of Mathematical Monographs 101. Amer. Math. Soc., Providence, RI. 1992.
    [109] Zhang Z Q, Wang L. Global attractivity of a positive periodic solution for a nonautonomous stage structured population dynamics with time delay and diffusion. J. Math. Anal. Appl., 2006, 319: 17-33.
    [110] Zhu L M, Huang X C. Relative positions of limit cycles in the continuous culture vessel with variable yield. J. Math. Chem., 2005, 38: 119-128.
    [111] 陈福来,文贤章,具有脉冲和无穷时滞的捕食-食饵系统的正周期解.湖南师范大学自然科学学报,2003,26:6-11.
    [112] 陈兰荪,数学生态学模型与研究方法,北京,科学出版社,1988.
    [113] 陈兰荪,陈健,非线性生物动力系统,北京,科学出版社,1993.
    [114] 陈兰荪,井竹君,捕食与被捕食系统极限环的存在唯一性,科学通报,1984,29:521-523.
    [115] 崔景安,时滞Lotka-Voterra系统的持久性和周期解,数学学报,2004,47:511-520.
    [116] 郭大钧,孙经先,刘兆理,非线性常微分方程泛函方法,济南,山东科学技术出版社,1995.
    [117] 李建政等,环境工程微生物学,北京,化学工业出版社,2004.
    [118] 马知恩,种群生态学的数学建模与研究,合肥,安徽教育出版社,1996.
    [119] 马知恩,周义仓,王稳地,靳祯,传染病动力学的数学建模与研究,北京,科学出版社,2004.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700