用户名: 密码: 验证码:
低含量、微量元素的电子探针分析方法研究与应用
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本文针对电子探针微量元素分析的关键技术与方法,进行了深入研究。为方便样品中微量元素的分析方法研究,开发出灵活的电子探针测量与控制软件;对样品元素分析,提出采用不同的测量条件和多次累积微量元素X射线计数强度的方法,减少了强电子束流对样品成分测量的影响,提高了微量元素的统计精度;对微量元素的非线性和有干扰的背景,提出精细测量及最小二乘法曲线拟合的背景测量和扣除方法,提高了背景测量的合理性;对微量元素测量谱线中无法避免的干扰,提出由多个干扰标样建立“干扰系数拟合曲线”修正方法,精确了不同含量的干扰元素对待测元素的干扰修正系数;通过应用本文的测量方法,对独居石矿物进行了电子探针定年分析,提高了独居石U-Th-Pb定年的分析数据准确性,缩小了定年误差约5%-10%。
Electron probe microanalyzer (EPMA) is a non-destructive, in situ and high spatial resolution analytical tool applied for determining the chemical compositions of samples. It is utilized in many fields. Especially, with the more and more applications of minor and trace elements in recent years, it is need to obtain more accurate and precious analytical results and decrease the limit of detection. Compared with major elements analysis, minor and trace elements analysis is more complicated. The intensity of X-ray peak on trace element is close to the background's when trace element analyzed. The analytical results will be affected obviously by the little interference or the positional errors on measurement. The measurement conditions and analytical method are different between the major elements and trace elements. Therefore, accurate measurement and control software was designed in this work. The key methods and technique which affect the anlaytical precision and accuracy of trace elements were studied deeply, such as background measurement and subtraction, interference correction and analytical conditions. Moreover, these methods were uitilized to analyze the chemical concentrations of U, Th and Pb on monazites in this work.The results indicated that it improved the accuracy of data and decreased the error of Chemical Th-U-Total Pb Isochron Method (CHIME). The following contents of research were involved in this work:
     1. Design of a measurement and control software on electron probe. In order to measure the characteristic X-ray intensity accurately and get more information, a measurement and control software was developed based on Windows2000 operating system by Visual C++ 6.0 language on EMX-SM7 electron probe. The software was developed with the open mechanism of serial port communication and the control mechanism in real-time database system. Not only the main functions in previous software but also the flexible functions of measurement and control were implemented. These functions included that analytical positions could be set at random and the different conditions of measurement could be selected for major and minor elements in a single measurement according to analysts' needs. Meanwhile, the acquiring data could be handled with various correct methods. The database was visited at any time, so as to modify the software and add functions without developing the software system once more.
     2. The research of measurement conditions about elements in electron probe microanalysis. The different measurement conditions of major and minor elements were proposed to improve analytical accuracy in a set of elements. In addition, the measurement time and current should be increased according to the detection limit. The X-ray spectrum intensity of trace elements should be accumulated by several times. The method improved the statistical precision and decreased the effect of strong electron beam for the analyticl compositions of the sample.
     3. Research of background analytical method about trace elements on electron probe. The imprecise background measurement can bring the error of quantitative analysis. It becomes more and more evidence with the lower compositions of elements, because of the interference and non-linear of background. The background positions were set on the both side of the selected peaks and the intensity of background were calculated by average in the traditional software system. The method isn't suit for non-linear background of trace elements. So the method of adding measurement points and least-squares fitting of background was adopted to reduce the interference of background measurement and improve the reasonable of background intensity.
     4. Research of interference correction method about trace elements. The traditional method of interference correction which is obtained by a single standard sample was instead of the method of "interference coefficient curve fitting" correction, which was measured by several interference standards. The accurate interference coefficient was obtained by this method and the accuracy of quantitative analysis was improved.
     5. The measurement method of area integral spectrum was studied for trace elements analysis. The method of area integral spectrum was proposed to analyze trace elements. The vary-step area integral spectrum was proposed to resolve the shift, the curve and the interference of the measurement spectrum. The method was proved that was fit for the samples which had a little interference and wasn't sensitive for strong electron beam.
     6. Research of CHIME on electron probe. EPMA dating of monazites is limited by the precision and accuracy of U, Th and Pb chemical compositions. The chemical compositions of U, Th and Pb are close to the detection limit of EPMA in monazite. Moreover, there are some rare earth elements in monazite. The interference of X-ray spectrum has become an unavoidable problem. So it is the key of CHIME how to reduce the interference of spectrum and how to lower the detection limit of trace elements in monazite.
     There are many factors which influence the accuracy of CHIME, such as, sample preparation and coating, the selection of standard samples, the measurement conditions of trace elements, the selection of diffraction crystal, etc. These factors were discussed here. The analytical control methods were proposed to improve the analytical accuracy and reduce the error of CHIME.
     In order to decrease the damage of strong electron beam for the sample surface and the influence of sample compositions in trace elements analysis, the method of accumulating X-ray intensities of trace elements several times and different measurement conditions of major and minor elements were proposed.
     The detailed spectrum interference of monazite analysis was listed. It is useful to select the positions of background and the measurement X-ray line of elements. The unavoidable interference of PbMa and UM|3 were corrected by the application of "interference coefficient fitting curve", which was measured by several standard samples of different content of Th. The more accurate interference correction coefficient was obtained.
     The accurate measurement which acquired the background intensities of different background positions and fitting curve of background correction were proposed to reduce the interference of spectrum and background non-linear for the measurement of UMP and PbMa. The method improved the rationality of intensity measurement on X-ray spectrum and the correctness of analytical results.
     The monazite samples which had been analyzed on Isotope mass spectrometer were analyzed on electron probe. Compared with previous methods, the methods in this work decreased the analytical errors about 5% to 10%, which included in the interference correction, the measurement and correction of background, the selection of measurement conditions, etc.
引文
[1]周剑雄,毛水和,王树根,等编著.电子探针分析[M],北京:地质出版社,1988:105-120.
    [2]徐萃章编著.电子探针分析原理[M].北京:科学出版社,1990:241-264.
    [3]Reed S J B.Electron Microprobe analysis[M].Cambridge:Cambridge University Press,1993:128-137.
    [4]Reed S J B.Electron Microprobe analysis and scanning microscopy in geology[M].Cambridge:Cambridge University Press,1996:165-197.
    [5]Petrik I,Konecny P,Kovacik M,et al.Electron Microprobe Dating of Monazite from the Nizke Tatry Mountains Orthogneisses(Western Carpathians,Slovakia)[J.].Gelologica Carpathica,2006,57(4):227-242.
    [6]Love G.EPMA Present and Future[J].Mikrochimica Acta,2002,138(3-4):223-235.
    [7]Cocherie A,Legendre O.Potential Minerals for Determining U-Th-Pb Chemical Age Using Electron Microprobe[J].Lithos,2007,93(3-4):288-309.
    [8]Mónaco S L,López L,Rojas H,et al.Applications of Electron Microprobe Analysis (EPMA) in the Study of Venezuelan Source Rocks:La Luna and Querecual Formations[J].Fuel,2007,86(5-6):641-648.
    [9]郭国林,潘家永,刘成东,等.电子探针化学测年技术及其在地学中的应用[J].华东理工学院学报,2005,28(1):39-42.
    [10]周剑雄,陈振宇,芮宗瑶.独居石的电子探针钍-铀-铅化学测年[J].岩矿测试,2002,21(4):241-246.
    [11]Fialin M,Remy H,Richard C,et al.Trace element analysis with the electron microprobe:new data and perspectives[J].American Mineralogist,1999,84:70-77.
    [12]Lisowiec N.Precision Estimation in Electron Microprobe Monazite Dating:Repeated Measurements Versus Statistical(Poisson) based Calculations[J].Chemical Geology,2006,234(3-4):223-235.
    [13]Geller D J,Herrinqton C.High count rate electron probe microanalysis[J].Journal of Research of the.National Institute of Standards and Technology,2002,107(6):503-508.
    [14]Kim,Hye k H,Hee J,et al.Single-particle characterization of soil samples collected at various arid areas of China,using low-Z particle electron probe X-ray microanalysis[J].Spectrochimica Acta - Part B Atomic Spectroscopy,2006,61(4):393-399.
    [15]Rémond G,Myklebust R,Fialin M,et al.Decomposition of wavelength dispersive X-ray spectra[J].Journal of Research of the National Institute of Standards and Technology,2002,107(6):509-529.
    [16]徐乐英,尚玉华,郭延风,等.用电子探针定量分析超轻元素中的几个问题[J]。分析测 试学报,1994,13(5):37-41.
    [17]Burilla C T.Quantitative electron probe microanalysis of Be in Nb-Be alloys using an α-factor correction technique[C].Proceedings,Annual Conference - Microbeam Analysis Society,Microbeam Analysis 1990,1990:169-173.
    [18]Anwar U H,Tawancy H M,Mohammed A R I,et al.Quantitative WDS analysis using electron probe microanalyzer[J].Materials Characterzation,2006,56:192-199.
    [19]Ohmori T.Electron probe microanalysis,EPMA[J].Journal Japanese Society of Tribologists,Recent Topics on Contact Problems,2005,5(7):523-527.
    [20]毛水和.电子探针分析(EPMA)在矿物学研究中的应用[J].地质实验室,1991,7(2):118-128.
    [21]彭松柏,朱家平,李志昌,等.国外电子探针铀-钍-铅定年方法及其在构造分析中的应用前景[J].岩矿测试,2004,23(1):44-51.
    [22]张文兰,王汝成,华仁民,等.副矿物的电子探针化学定年方法原理及应用[J].地质评论,2003,49(3):253-260.
    [23]Amli R,Griffen W.Microprobe analysis of REE minerals using empirical correction factors[J].American Mineralogist,1975,60:599-606.
    [24]Roeder P L.Electron-microprobe analysis of minerals for rare-earth elements:use of calculated peak-overlap corrections[J].Canadian Mineralogist,1985,23:263-271.
    [25]Pyle J M,Spear F S,Wark D A.Electron microprobe analysis of REE in apatite,minazite and xenotime:pitfalls and protocols[J].Reviews in Mineralogy and Geochemistry,2002,48:337-362.
    [26]Griffin W L.Cr-pyrope garnets in the Lithospheric mantle 2.Compositional populations and their distribution in time and space[J].Geochemistry Geophysics Geosystems,2002,3(12):1073
    [27]姚立,田地,王微.电子探针特征X射线谱线识别的方法研究[J].电子显微学报,2004,23(4):425-426.
    [28]Reed S J B.Optimization of wavelength dispersive X-ray spectrometry analysis conditions[J].Journal of Research of the National Institute of Standards and Technology,2002,107:497-502.
    [29]Donvan J J,Snyder D A,Rivers M L.An improved interference correction for trace element analysis[J].Microbeam Analysis,1993,2:23-28.
    [30]Pyle J M,Spear F S,Wark D A,et al.Contribution to precision and accuracy of chemical ages of monazite[J].American Mineralogist,2005,90:547-577.
    [31]Heluani S P.Invariant Embedding Approach for electron probe microanalysis.Tilt factor,atomic number and energy of the incident electrons[J].X-Ray Spectrom,2005, 34(3):230-23.
    [32]Takahashi H,Harrowfield I,MacRae C,et al.Extended X-ray emission fine structure and high energy satellite lines state measured by electron probe microanalysis[J].Surface and Interface Analysis,2001,31:118-125.
    [33]Jercinovic M J,Williams M L.Analytical perils(and progress) in electron microprobe trace element analysis applied to geochronology:background acquisition,interferences,and beam irradiation effects[J].American Mineralogist,2005,90:526-546.
    [34]张秀琦,刘辉,郑建斌,等.信号处理技术在重叠化学信号解析中的应用[J].化学进展,2002,14(3):174-181.
    [35]Armstrong B H.Spectrum line profiles:The Voigt function[J].Journal of Quantitative Spectroscopy Radiation Transfer,1967,7:61-88.
    [36]Ida T,Ando M,Toraya H.Extended pseudo-Voigt function for approximating the Voigt proP le[J].Journal of Applied Crystallography,2000,33:1311-1316.
    [37]Alexandrov P.Synneusis of zircon:Why not?[J].Mineralogical Magazine,2001,65(1):71-79.
    [38]Rémond G,Campbell J L,Packwood R H,et al.Spectral decomposition of wavelength dispersive X-ray dpectra:implications for quantitative analysis in the electron probe microanalyzer[J].Scanning Micros,1993,7(Suppl.):89-132.
    [39]陈光,任志良,孙海柱.最小二乘曲线拟合及Matlab实现[J].软件技术,2005,24(3):107-108.
    [40]Reed S J B,Buckley A.Rare-earth element determination in minerals by electron-probe microanalysis:application of spectrum synthesis[J].Mineralogical Magazine,1998,62(1):1-8.
    [41]Kramers H A.On the Theory of X-ray Absorption and of the continuous X-ray spectrum[J].Philosophical Magazine,1923,46:836-871.
    [42]Ware,N.G.and Reed,S.J.B.Background corrections for quantitative electron microprobe analysis using a lithium drifted silicon X-ray detector[J].Journal of Physics E:Scientific Instruments,1973,6:286-288.
    [43]Small D G W,Leigh S D,et al.Modeling of the bremsstrahlung radiation produced in pure-element targets by 10.40keV electrons[J].Journal of Applied Physics,1987,61:459-469.
    [44]Geisler T,Schleicher H.Improved U-Th-total Pb dating of zircons by electron microprobe using a simple new background modeling procedure and Ca as a chemical criterion of fluid-induced U-Th-Pb discordance in zircon[J].Chemistyr Geology,2000,163:269-285.
    [45]李德忍.电子探针分析微量元素的背景测定[J].分析测试通报,1987,6(3):46-48.
    [46]张文兰,王汝成,蔡淑月.超轻元素Be元素的电子探针定量分析-以绿柱石为例[J].电子显微学报,2006,25(增刊):293-294.
    [47]赵文俞,牟善彬,孙振亚,等.硅酸盐矿物中低含量元素的电子探针异点分步定量法[J],分析测试学报,2002,21(6):12-15.
    [48]Reed S J B,Buckley A.Virtual WDS[J].Mikrochim.Acta,1996,13(suppl.):479-483.
    [49]Fournier C,Merlet C,Staub P F,et al.An expert system for EPMA[J].Mikrochim Acta,2000,132:531-539.
    [50]Shimadzu Corp.EPMA-1610 Electron Probe Microanalyzers[EB/OL].http://www.shimadzu.com/products/lab/surface/epma.html.
    [51]Cameca.SX100 universal EPMA[EB/OL].http://www.cameca.fr/html/product_sx 100.html.
    [52]JEOL LTD.JXA-8200 X-ray Mircoanalyzers[EB/OL].http://www.jeol.com/sa/saprods/jxa8200.html.
    [53]Newbury D E,Myklebust R L.Simulation of electron-excited X-ray spectra with NIST-NIH Desktop Spectrum Analyzer(DTSA)[J].Surface and Interface Analysis,2005,37(11):1045-1053.
    [54]田地,范国传,陈挺,姚立.EMX-SM7型电子探针的计算机系统更新设计[J].电子显微学报,1995,14(3):220-223.
    [55]李志刚,王微,田地.Windows下电子探针软件系统的设计[J].分析仪器,2000,4:14-16.
    [56]杨勇,肖少泉.电子探针GZAF软件Windows版功能简介[J],中国地质大学学报,2003,28(4):467-469.
    [57]扬勇,陆琦,金星等.JCXA-733电子探针自动控制系统GZAF软件新设计[J].电子显微学报,1998,17(2):198-202.
    [58]戈尔茨坦J L.扫描电子显微技术与X射线显微分析[M].北京:科学出版社,1988.
    [59]Trincavelli J,Castellano G,Riveros J A.Model for the bremsstrahlung spectrum in EPMA application to standardless quantification[J].X-Ray Spectrometry,1998,27:81-86.
    [60]Donovan J J,Tingle T N.An improved mean atomic number correction for quantitative microanalysis[J].Journal of Microscopy,1996,21:1-7.
    [61]Lloyd F E,Edgar A D,Ragnarsdottir KV.LREE distribution in perovskite,apatite and titanite from South West Ugandan xenoliths and kamafugite lavas[J].Contributions to Mineralogy and Petrology,1996,57:205-228.
    [62]Laputina I P,Batyrevb V A,Yakushev A I.A new EPMA technique for determination of dare earth elements with the use of automated peak-overlap and modeled background corrections[J].Journal of Analysis Atomic Spectrometry,1999,14:465-469.
    [63]Suzuki K,Adachi M.The Chemical Th-U-Total Pb Isochron ages of zircon and monazite from the gray granite of the Hida Terrene,Japan[J].Journal Earth Science Nagoya University,1991,38:11-37.
    [64]Williams M L,Karlstrom K E,Lanzirotti A,et al.New Mexico middle crustal cross-sections:1.65Ga macroscopic geometry,1.4Ga Thermal structure and continued problems in understanding crustal evolution[J].Rocky Mountain Geology,1999,34:53-66.
    [65]Bastin G F,Heijligers H J M.Quantitative electron probe microanalysis of carbon in binary carbides.I-principles and procedures[J].X-Ray Spectrometry,1986,15(2):135-141.
    [66]Bastin G F,Heijligers H J M.Quantitative electron probe microanalysis of carbon in binary carbides.Ⅱ - data reduction and comparison of programs[J].X-Ray Spectrometry,1986,15(2):143-150.
    [67]毛允静.钢中低碳的电子探针定量分析[J].冶金分析.2003,23(1):59-62.
    [68]许德美,李峰,付晓旭.ITO靶材中含氧量EPMA定量分析方法研究[J].电子显微学报,2003,22(1):60-63.
    [69]马建秦,李朝阳,温汉捷.不可见金赋存状态研究现状[J].矿物学报,1999,19(3):335-342.
    [70]张文兰,胡文宣,胡受奚,等.利用HRTEM和EPMA观察分析毒砂中的晶格金[J].电子显微学报,2000,19(4):417-418.
    [71]张明涛.现代化学仪器通用软件平台的开发与技术研究[D].南开大学博士论文.2004.
    [72]张天佑,曾家松,邱长青.依靠技术改造实现科学仪器技术进步--仪器技术改造工作的回顾[J],现代科学仪器,2001,1:5-10.
    [73]Tian Di,Fan Guochuan.A New Software System on EPMA[A].14th International Conference of X-ray and Optics Microanalysis[C],1995,Guang-zhou,China.
    [74]田地.电子探针图象的计算机处理与应用[D].中国科学院长春光学机械研究所博士论文,1999.
    [75]田地.电子探针自动控制系统[J].长春地质学院学报,1997,27(4):460-463.
    [76]田地,李艳平,范国传,等.电子探针的样品台扫描成象技术[J].电子显微学报,2000,19(5).
    [77]田地,王微,李艳平.电子探针图象的实用处理软件[J].分析测试技术与仪 器.2000,6(3):135-138.
    [78]姚立,田地.电子探针定性分析方法研究[J].电子显微学报,2003,22(1):71-73.
    [79]Kanakin S V,Karmanov N S.The software for electron probe microanalyzers MAR-3and MAR-4 for IBM PC[A],Ⅲ Russian and Ⅵ Siberian on X-Ray Spectrum Analysis Conference Proceedings[C],Irkutsk,1998,67.
    [80]姚立,隋欣,田地.电子探针测量与控制软件的设计[J].计算机工程,2008,34(2),240-241.361.
    [81]万涛,廖维川,马建峰.Microsoft Win32消息处理机制及应用[J].计算机工程,2003,29(13):189-191.
    [82]龚力柱,蒋泽军,王丽芳.基于Windows消息机制的软件本地化[J].计算机工程,2005,31(21):87-89.
    [83]孟进,刘立柱,金俊利.在Win32环境下实现高效的串行通信[J].计算机应用研究,2003,20(11):146-148.
    [84]梁兰华,李兴德,江兵.WINDOWS平台中多线程串口通讯类的设计及实现[J].重庆通信学院报,2003,22(4):81-87.
    [85]张雄飞,方方.Windows平台下数据采集串口通讯的实现[J].计算机自动测量与控制,2001,9(3):66-68.
    [86]Jindal.Varun PC-to-PC communication via RS-232 serial port using C[J].Electronics World,2006,112(1837):25-29.
    [87]Xia,Yongping.Serial port controls 16 independent output lines[J].Electronics World,2004,110(41):18-19.
    [88]李现勇.Visual C++串口通信技术与工程实践[M].北京:人民邮电出版社,2002.
    [89]姚颖熹,胡永培,卢显良.用VC 6.0开发通信软件[J].计算机应用,2000,20(7):67-69.
    [90]岳卫华,丁卫群,编著.数据库系统概论[M].北京:科技出版社,2000.
    [91]Rew R,Davis G.NetCDF:An Interface for Scientific Data Access[J].IEEE Computer Graphics and Applications.1990,10(4):76-82.
    [92]Xiao Yang.Hierarchical mobility database overflow control[J].Wireless Communications and Mobile Computing,2003,3(3):329-343.
    [93]Tang Jianjing,Beyette J F R.Design and performance analysis of a smart optoelectronic database filter for relational database applications[C].Proceedings of SPIE - The International Society for Optical Engineering,2001,4534:114-121.
    [94]杨浩广编著.Visual C++6.0数据厍开发学习教程[M].北京:北京大学出版社,2000.
    [95]Zielesny A.Chemistry software package chemical office ultra 2005[J].Journal of Chemical Information and Modeling.2005,45(5):1474-1477.
    [96]Grimes Richard.Windows Forms and Win32[J].Dr.Dobb's Journal,2005,30(5):74-76.
    [97]中华人民共和国国家标准:硅酸盐矿物电子探针定量分析方法[S].GB/T15617-2002.
    [98]Armstrong J T.Quantitative analysis of silicate and oxide minerals:a revaluation of ZAF corrections and proposal for mew Bence-Albee coefficients[J].Microbeam Analysis,1984,19:208-212.
    [99]徐乐英,尚玉华,郭延风,等.硼的电子探针定量分析与质量吸收系数[J].电子显微学报,1998,17(1):78-82.
    [100]汪贤才.非线性实验数据曲线拟合的实践[J].安徽技术师范学院学报,2005,19(2):22-24.
    [101]Duncumb P.Ouantitative analysis with the electron microprobe.The first 50 years and beyond[J].Journal of Analytical Atomic Spectrometry.1999,14:357-366.
    [102]Heinrich K F J.Uncertainty in quantitative electron probe microanlaysis[J].Journal of Research of the National Institute of Standards and Technology,2002,107(6):483-485.
    [103]中华人民共和国地质矿产行业标准:地质矿产实验室测试质量管理规范[S].DZ0130.1-130.13-94.
    [104]Reed S J B.Electron Microprobe Analysis[M].Second Edition.Cambridge:Cambridge University Press,1997.
    [105]Leibhafsky H A,Pfeiffer H G,Zemany P D.X-ray microscopy and X-ray microsanalysis[M].North-Holland press,1960.
    [106]许书道.定量分析方法评价[J].化学分析计量,2002,11(11):30-31.
    [107]Ziebold T O,Ogilvie R E.An Empirical Method for Electron Microanalysis[J].Analytical chemistry,1967,36:322-327.
    [108]李德忍.电子探针分析检测限计算方法研究[J].分析仪器.1989,2:58-61.
    [109]周剑雄,杨明明.微区痕量分析及其应用[J].国外矿床地质.1996a,2:77-107.
    [110]Merlet C,Bodinier J L.Electron microprobe determination of minor and trace transition elements in silicate minerals:A method and its application to mineral zoning in the peridotite nodule PHN 1611[J].Chemical Geology,1990,83:55-69.
    [111]Heinrich K F J.A simple accurate absorption model[J].Microbeam Analysis,1985,20:79-81.
    [112]Ammann N,Karduck P.Further developed Monte Carlo model for the quantitative EPMA of complex samples[C].Proceedings,Annual Conference - Microbeam Analysis Society,Microbeam Analysis 1990:150-154.
    [113]Fiori C E,Myklebust R L,Heinrich K F J,et al.Prediction of continuum intensity in energy-dispersive X-ray mipucroanalysis[J].Analytical Chemistry,1976,48:172-176.
    [114]Kyser D F.Experimental determination of mass absorption coefficients for soft X-rays[C].In G.Shinoda,K.Kohra,and T.Ichinokawa,Eds.,Proceedings of the Sixth International Conference on X-ray Optics and Microanalysis,1971:147-156.
    [115]Pouchou J L,Pichoir F.A new model for quantitative X-ray microanalysis:Part Ⅰ.Application to the analysis of homogeneous samples[J].Recherche Aerospatiale,1984,3:13-38.
    [116]Pavlova L A,Suvorova L F,Belozeroca O Y,et al.Quality of determinations obtained from laboratory reference samples used in the calibration of X-ray electron probe microanalysis of silicate minerals[J].Spectrochimica Acta,2003,58:289-296.
    [117]王微,姚立.电子探针微量元素精确测试方法初探[J].电子显微学报,2004,23(4):426.
    [118]陈振宇,余金杰,徐珏,等.榴辉岩中金红石的微量元素电子探针分析[J],电子显微学报,2006,6:295-296.
    [119]Goldstein J I,Williams D B,Cliff G.Quantitative X-ray analysis[M].In Joy D C,Romig A D,Goldstein J I,Eds,Plenum Press,New York.Principles of analytical electron microscopy,1986.
    [120]姚立,田地,梁细荣.电子探针背景扣除和谱线干扰修正方法的进展[J].岩矿测试,2008,27(1):49-54.
    [121]Reed S J B.Wavelength dispersive spectrometry-A review[M].In Williams D B,Goldstein J I,Newbury D E,Eds,X-Ray spectrometry in electron beam instruments,Plenum Press,New York,1995.
    [122]Reed S J B.Quantitative trace analysis by wavelength-dispersive EPMA[J],Mikrochim.Acta,2002,132:145-151.
    [123]Heinrich K F J(NBS).Accuracy in quantitative electron probe microanalysis[J].Journal of Research of the National Bureau of Standards(United States),1988,93(3):509-510.
    [124]Bodinier J L,Dupuy C,Dostal J,et al.Distribution of trace transition elements in olivine and pyroxenes from ultramafic xenoliths:Application of microprobe analysis.American Mineralogist,1987,72:902-913.
    [125]Spray J G,Rae D A.Quantitative electron-microprobe analysis of alkali silicate glasses:A review and user guide[J].Canadian Mineralogist,1995,33:323-332.
    [126]Fialin M,Remond G.Electron probe microanalysis of oxygen in strongly insulating oxides[J].Micobeam Analysis,1993,2:179-189.
    [127]Fournier C,Merlet C,Duqne O,et al.Standardless semi-quantitative analysis with WDS-EPMA[J].Journal of Analytical Atomic Spectrometry,1999,14(3):381-386.
    [128]Newbury D E.Quantitative electron probe microanalysis of rough targets:testing the peak-to-local background method[J].Scanning,2004,26(3):103-114.
    [129]Lifshin E,Ciccarelli M F,Bolon R B.X-Ray spectral measurement and interpretation.In Goldstein J I and Yakowitz H,Eds.Practical Scanning Electron Microscopy[M],New York:Plenum Press,1975.
    [130]Goldstein J,Newbury D E,Joy D,et al.Scanning Electron Microscopy and X-Ray Microanalysis[M],Kluwer Academic/Plenum,New York,3rd ed,2003.
    [131]毛水和.电子探针分析技术的新进展及其应用[J].岩矿测试,1992,11(1-2):101-108.
    [132]李德忍.矿物物理化学性质对电子探针定量分析精度的影响[J].分析仪器,1995,2:49-51.
    [133]Philip J P,Andrew G T,Michael C.On the precision of electron microprobe data:a new test for the homogeneity of mineral standards[J].American Mineralogist,1983,68:1237-1242.
    [134]Taylor P,Schutyser P.Description of a computer program for quantitative spectral analysis of ICP-AES spectra generated with a high resolution computer-controlled[J].Monochromator Spectrochimica Acta Part B:Atomic Spectroscopy,1986,41(1-2):81-103.
    [135]汪贤才.非线性实验数据曲线拟合的实践[J].安徽技术师范学院学报,2005,19(2):22-24.
    [136]王磊.浅谈曲线拟合在测试中的应用[J].计量与测试技术.2005,32(7):6-7.
    [137]陈光,任志良,孙海柱.最小二乘曲线拟合及Matlab实现[J].软件技术,2005,24(3):107-108.
    [138]York D.Least-squares Fitting of a Straight Line[J].Canda Journal Physis.1966,44:1079-1086.
    [139]陈刚,温志渝,吴英,等.采用多项式拟合进行谱峰定位的误差分析[J].半导体光电,2002,23(2):132-135.
    [140]李玉江.分析仪器数据处理系统软件的开发[J].分析仪器.2002,1:38-40.
    [141]张明涛.现代化学仪器通用软件平台的开发与技术研究[D].南开大学博士论文.2004.
    [142]Statham P J.Recent developments in instrumentation for X-ray microanalysis[J]. Mikrochimica Acta,1998,[Suppl.]15:1-9.
    [143]Jarosewich E,Nelen J A,Norberg J A.Reference samples for electron microprobe analysis[J].Geostandards Mewsletter,1980,4:43-47.
    [144]Goldstein J,Newbury D,Echlin P,et al.Practical techniques of X-ray analysis[M].Plenum,New York:Scanning Electron Microscopy and X-ray Microanalysis,1981.
    [145]Williams M L,Jercinovic M J.Microprobe monazite geochronology:putting absolute time into microstructural analysis[J].Journal of Structural Geology.2002,24:1013-1028.
    [146]Suzuki K,Adachi M.Precambrian Provenance and Silurian Metamorphism of the Tsubonosawa Paragneiss in the South Kitakami Terrene,Northeast Japan[J].Geochemical Journal,1991,25:357-376.
    [147]Dahl P S,Hamilton M A,Jercinovic M J,et al.Comparative isotopic and chemical geochronometry of monazite with implications for U-Th-Pb dating by electron microprobe:an example from metamorphic rocks of the eastern Wyoming Craton (U.S.A.)[J].American Mineralogist,2005,90:619-638.
    [148]Montel J M,Kornprobst J,Vielzeuf D.Preservation of old U-Th-Pb ages in shielded monazite:example from the Beni Bousera Hercynian kinzigites(Morocco)[J].J Metamorphic Geology,2000,18(3):335-342.
    [149]党青宁,刘树文,舒桂明,等.独居石电子探针定年及其在新疆东天山变质作用研究中的应用[J].高校地质学报,2004,10(4):578-585.
    [150]刘树文,舒桂明,潘元明,等.电子探针独居石定年法及五台群的变质时代[J].高校地质学报,2004,10(3):356-363.
    [151]刘树文,张臣,刘超辉,等.中条山-吕梁山前寒武纪变质杂岩的独居石电子探针定年研究[J].地学前缘,2007.14(1):64-74.
    [152]Liu Suwen,Zhaoguochun,Simon A W,et al.Th-U-Pb monazite geochronology of the L(u|¨)liang and Wutai Complexes:Constraints on the tectonothermal evolution of the Trans-North China Orogen[J].Precambrian Research,2006,148:205-224.
    [153]周剑雄,陈振宇,芮宗瑶.独居石的电子探针Th-U-Pb化学测年[J].岩矿测试,2002,21(4):241-246.
    [154]陈能松,孙敏,王勤燕.原地原位定年技术工作思路探讨-中深变质岩区精细变质年代学格架的建立[J].地质科技情报,2003,22(2):1-5.
    [155]Romanenko I M,Petroy D B,Potentials of electron probe microanalysis in studying zircons[J].J Analytical Chemistry,2005,60(10):942-945.
    [156]赵玉灵,杨金中,沈远超.同位素地质学定年方法评述[J].地质与勘探,2002,38(2):62-67.
    [157]安伟,曹志敏,郑建斌.成矿年龄的测定方法及其新进展[J].地质找矿论丛,2004,19(3):196-203.
    [158]万渝生,刘敦一,简平.独居石和锆石SHRIMP U-Pb定年对比[J].科学通报,2004,49(12):1185-1190.
    [159]Wan Yusheng,Li R W,Simon A.W,et al.UHP metamorphism and exhumation of the Dabie Orogen,China:Evidence from SHRIMP dating of zircon and monazite from a UHP granitic gneiss cobble from the Hefei Basin[J].Geochimica et Cosmochimica Acta,2005,69:4333-4348.
    [160]谭俊,魏俊浩,杨春福,等.矿床同位素定年方法的应用现状评析[J]地质与勘探,20062,42(3):61-66
    [161]Parrish R.U-Pb dating of monazite and its application to geological problems[J].Can J Earth Sciencie,1990,27:1431-1450.
    [162]Suzuki K,Adachi M,Kajizuka I.Electron microprobe observations of diffusion in metamorphosed detrital monazites[J].Earth and Planetary Science Letters,1994,128:391-405.
    [163]周剑雄,陈克樵.锆石Th-U-Pb等时年龄的电子探针测定方法的研究简介[J].国外矿床地质.1996b,2:120-122.
    [164]李学军,郭涛,王庆飞.电子探针化学测年方法[J].地学前缘,2003,10(2):411-414.
    [165]张照志,赵磊,孟庆祝,等.电子探针化学测年技术及其在地学中的应用[J].现代地质.2001,15(1):69-73.
    [166]Grew E S,Suzuki K,Asami M.CHIME ages of xenotime,monazite,and zircon from beryillum pegmatites in the Napier complex,Khmara Bay,Enderby Land,East Antarctica[J].Polar Geoscience,2001,14:99-118.
    [167]Williams M L,Jercinovic M J,Terry M P.Age Mapping and dating of monazite on the electron microprobe:deconvoluting Multi-stage histories[J].Geology,1999,27:1023-1026.
    [168]Montel J M,Foret S,Veschambre M,et al.Electron microprobe dating of monazite [J].Chemical Geology,1996,131:37-53.
    [169]Steiger R H,Jager E.Subcommission on geochronology:Convention on the Use of Decay Constants in Geo and Gognochronology[J].Earth Planet Science Lett.1977,36:359-362.
    [170]Cocherie A,Albarede F.An improved U-Th-Pb age calculation for electron microprobe dating of monazite[J].Geochimica et Cosmochimica Acta,2001,65:4509-4522.
    [171]陈能松,孙敏,王勤燕.原地原位定年技术工作思路探讨-中深变质岩区精细变 质年代学格架的建立[J].地质科技情报,2003,22(2):1-5.
    [172]党青宁,刘树文,舒桂明,等.独居石电子探针定年及其在新疆东天山变质作用研究中的应用[J].高校地质学报,2004,10(4):578-585.
    [173]刘树文,张臣,刘超辉,等.中条山-吕梁山前寒武纪变质杂岩的独居石电子探针定年研究[J].地学前缘,2007.14(1):64-74.
    [174]Williams M L,Jercinovic M J.Application of electron microprobe age mapping and dating of monazite[J].Microscopy and Microanalysis,2000,6(Supplement2):406-407.
    [175]Williams M L,Jercinovic M J,Terry M P.Age Mapping and dating of monazite on the electron microprobe:deconvoluting Multi-stage histories[J].Geology,1999,27(11):1023-1026.
    [176]赵兰,张进江,刘树文.龙泉关韧性剪切带同变形花岗岩的构造特征及其独居石定年[J].岩石矿物学杂志,2006,25(3):210-219.
    [177]Rhede D,Wendt I,Forster H J.A Three-Dimension-al method for calculating independent chemical U/Pb and Th/Pb-Ages of accessory minerals[J].Chemical Geology,1996,130:247-253.
    [178]Cocherie A,Legendre O,Peucat J J,et al.Insitu Th-U-Pb dating using an electron microprobe:a powerful tool for complex polygenic monazites[J].Terra Nova 1997,9:441.
    [179]Crowley J L,Ghent E D.An electron microprobe study of the U-Th-Pb systematics of metamorphosed monazite:The role of Pb diffusion:versus overgrowth and recry stallization[J].Chemical Geology,1999,157:285-302.
    [180]Cocherie A,Legendre O,Peucat J J,et al.Geochronology of polygenetic monazites constrainedby in situ electron microprobe Th-U-Total lead determination:implications for lead behavior in monazite[J].Geochim Cosmochim Acta,1998,62:2475-2497.
    [181]Jarosewich E,Boatner L A.Rare-earth element reference samples for electron microprobe analysis[J].Geostandards Newsletter,1991,15:397-399.
    [182]BraunI,Montel JM,Nicollet C.Electron microprobe dating of monazites from high grade gneisses and pegmatites of the Kerala Khondalite Belt,Southern India[J].Chemical Goelogy,1998,146:65-85.
    [183]Scherrer N C,Engi M,Gnos E,et al.Monazite analysis:from sample preparation to microprobe age dating and REE quantification[J].Schweiz Mineral Petroge.2000,80:93-105.
    [184]Forster H J.The chemical composition of REE-Y-Th-U rich accessory minerals in peraluminous granites of the Erzgebirge-Fichtelgebirge region, Germany, Part I :The monazite-(Ce)-brabantite solid solution series [J]. American Mineral, 1998, 83:259-272.
    [185] Drake M J ,Weill D F. New rare earth element standards for electron microprobe analysis [J]. Chemical Geology, 1972, 10: 179-181.
    
    [186]毛允静.在EPMA中有关标样问题[J].电子显微学报, 1995, 5: 385-388.
    [187]Zhu X K, Nions O R K. Monazite Chemical Composition: Some implications for monazite geochronology [J]. Contributions to Mineralogy and Petrology, 1999,137(4):351 -363.
    [188]Janssens K, Van Borm W, Van Espen P. Increased accuracy in the automated interpretation of large EPMA data sets by the use of an expert systems[J]. Journal of Research of the National Bureau of Standards (United States), 1988, 93(3): 260-264.
    [189] Asmi M, Suzuki K, Grew E S. Chemical Th-U-total Ob dating by electron microprobe analysis of minazite, xenotime and zircon from the Archeam Napier Complex, east Sntarctica: evidence for ultra-high-temperature metamorphism at 2400 Ma [J]. Precambrian Research, 2002, 114: 249-275.
    [190]Parrish R. U-Pb dating of monazite and its applicationg to geological problems [J].Can J Earth Sciencie, 1990, 27:1431-1450.
    [191] Suzuki K, Adachi M. Precambrian provenance and Silurian metamor phism of the Tsbonosawa paragneiss in the South Kitakami terrane, northeast Japan, as revealed by the chemical Th-U-total Pb isochron ages of monazite, zircon, and xenotime [J].Geochemical Journal, 1991, 25: 357-376.
    [192] Live K J T, Olsen S N, Alcock J, et al. Some successes and failure application of EMPA to accessory monazite and zircon [J]. EOS Supplement, 2000, 81:27.
    [193]Ancey M, Bastenaire F, Tixier R. Application of statistical methods in microanalysis [M]. In Maurice F L M, Tixier R, Eds., Microanalysis and scanning electron microscopy, Les Editions de Physique, Orsay, France, 1979.
    [194]Rhede D, Wendt I, F orster H J. A Three-Dimension-al method for calculating independent chemical U/Pb and Th/Pb-Ages of accessory minerals [J]. Chemical Geology, 1996, 130:247-253.
    [195]Dahl P S, Hamilton M A, Jercinovic M J, et al. Comparative isotopic and chemical geochronometry of monazite with implications for U-Th-Pb dating by electron microprobe: an example from metamorphic rocks of the eastern Wyoming Craton (U.S.A.)[J]. American Mineralogist, 2005, 90: 619-638.
    [196]Kato T, Suzuki K and Adachi M. Computer program for the CHIME age calculation [J].Earth Planet.Science Nagoya University,1999,46:49-56.
    [197]French J E,Heaman L M,Chack O T.Feasibility of chemical U-Th-total Pb bad deleyite daing electron microprobe[J].Chemical Geology,2002,188:85-104.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700