用户名: 密码: 验证码:
“益肝康”单味药对肝星状细胞活化TGF-β1信号通路的影响及其有效成分分析
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
肝纤维化(hepatic fibrosis,HF)是肝脏内细胞外基质(extra cellular matrix,ECM)弥漫性过度沉积性疾病,但无假小叶的形成。目前认为,肝纤维化是各种慢性肝病发展至肝硬化(liver cirrhosis,LC)的中间环节和前期病变。其发生机制主要是肝脏内ECM合成与降解失衡,表现为ECM在肝内的大量沉积。肝星状细胞(hepatic stellate cells,HSCs)的活化、增殖在此过程中发挥关键性作用。肝脏受损后释放多种细胞因子,如转化生长因子β1(transforming growth factor β1,TGF-β1、)、血小板衍生生长因子(platelet derived growth factor,PDGF)、肿瘤坏死因子a(tumor necrosis factor a,TNF-a)等,激活HSCs,使其转化为肌成纤维样细胞(myofibroblastic like cells,MFLCs),胶原合成能力增加4-7倍,导致大量ECM沉积于肝脏,此为肝纤维化发生、发展的核心环节。抑制HSCs活化、增殖,诱导活化HSCs凋亡,促进胶原降解是防治肝纤维化的主要途径。
     PDGF和TGF-β1在HSCs增殖和转化中分别担当重要角色。TGF-β1是目前发现最强有力的致纤维化细胞因子,PDGF是最强的促HSCs增殖因子。HSCs活化为MFLCs后可自分泌释放更多促纤维化细胞因子,形成正反馈放大式反应,HSCs活化在此放大环中处于中心地位。
     TGF-β1是目前功能最明确、作用最强的促肝纤维化细胞因子,在促进HSCs胶原分泌中发挥主要作用。TGF-β1与HSCs表面高亲和力TGF-β受体(TβR)结合形成TGF-β1-TBR信号复合体后,进一步磷酸化下游信号—Smad蛋白家族,将信号转入胞内,启动HSCs的活化增殖。参与TGF-—信号细胞内传导的相关蛋白统称为Smad信号蛋白家族,为TGF-β下游信号传导分子的统称,分为三类:受体Smad(R-Smad),其中的Smad 2、3是TGF-β1的下游受体Smad,与TGF-β1信号复合体结合后,核内移位,参与TGF-β1信号的细胞内传导。协同Smad(Co-Smad),Smad 4,协助Smad 2、3进入细胞核,调节基因表达。抑制性Smad(I-Smad),其中I-Smad 7可竞争性拮抗R-Smad 2、3与TGF-β1信号复合体的结合,阻断TGF-β1
Hepatic fibrosis (HF) is a kind of chronic disease with the characteristics of excessive extra cellular matrix (ECM) deposition throughout the liver, however, without the formation of pseudo-lobules. Now it is widely accepted that HF is the inevitable and preexisting stage for lots of chronic hepatic disease developing into liver cirrhosis (LC) eventually. The pathogenesis of HF is the disequilibrium between synthesis and decomposition of ECM, resulting in large quantity of ECM depositing in the liver. The activation and proliferation of hepatic stellate cells (HSCs) play a key role in the pathogenesis of HF. Many kinds of cytokines, such as transforming growth factor β1 (TGF-β1), platelet derived growth factor (PDGF) and tumor necrosis factor a (TNF-a), were released when livers were injured by various factors. HSCs were activated by such cytokines above, then the phenotype changed from quiescent HSCs to activated myofibroblastic like cells (MFLCs), with the increasing ability of collagen production to the extent of 4-7 times compared with the quiescent cells. Therefore, abundant of extra ECM which could not be decomposed deposited in the liver, which is the key step for fibrogenesis. Accordingly, to inhibit the activation and proliferation of HSCs, promote the apoptosis of MFLCs, and decompose the collagens might be the most effective strategy to treat HF.
    Two kinds of cytokines—PDGF and TGF-β1, played an important role in the proliferation and phenotype transition of HSCs, respectively. TGF-β1 is the most potent cytokine of fibrogenesis known up to now, at the same time, PDGF is the factor which exerts the strongest effect on the proliferation of HSCs. More cytokines promoting fibrogenesis were released by autocrine when HSCs were activated to be MFLCs. Thus the proliferation and activation
引文
1 Tsukuma H, Tanaka H, Ajiki W, et al. Liver cancer and its prevention. Asian Pac J Cancer Prev, 2005, 6(3): 244~250
    2 姚光弼.肝脏损伤的机制.中华消化杂志,1998,18(1):235~236
    3 Shimizu I, Ma Y, Mizobuchi Y, et al. Effects of Sho-saiko-to, a Japanese herbal medicine, on hepatic fibrosis in rats. Hepatology, 1999, 29(1): 149~160
    4 Issa R, Williams E, Trim N, et al. Apoptosis of hepatic stellate cells: involvement in resolution of biliary fibrosis and regulation by soluble growth factors. Gut, 2001, 48(4): 548~557
    5 Elsharkawy AM, Oakley F, Mann DA. The role and regulation of hepatic stellate cell apoptosis in reversal of liver fibrosis. Apoptosis, 2005, 10(5): 927~939
    6 Gong W, Pecci A, Roth S, et al. Transformation-dependent susceptibility of rat hepatic stellate cells to apoptosis induced by soluble Fas ligand. Hepatology, 1998, 28(2): 492~502
    7 蒋树林,李校天,姚希贤.“益肝康”对大鼠肝纤维化的防治作用.中国全科医学杂志,2002,5(7):525~527
    8 Yao XX, Jiang SL, Tang YW, et al. Efficacy of Chinese medicine Yi-gan-kang granule in prophylaxis and treatment of liver fibrosis in rats. World J Gastroenterol, 2005, 11(17): 2583~2590
    9 唐有为,姚希贤,姚洪森,等.益肝煎剂对实验性肝纤维化大鼠Ⅰ、Ⅳ型胶原蛋白表达的影响.中国消化病学杂志,2002,3(1):16~19
    10 姚希贤,唐有为,姚冬梅,等.益肝煎剂对实验性肝纤维化大鼠Ⅰ、 Ⅲ型胶原蛋白表达的影响.世界华人消化杂志,2001,9(3):263~267
    11 Yao XX, Lv T. Effects of pharmacological serum from normal and liver fibrotic rats on HSCs. World J Gastroenterol, 2005, 11(16): 2444~2449
    12 Oliver E, Eleonore K, Frank R, et al. Extracellular matrix deposition by primary human lung fibroblasts in response to TGF-β1 and TGF-β3. Am J Physiol, 1999, 276(20): L814~L824
    13 Greenwel P, Schwartz M, Rosas M. Characterization of fat-storing cell lines derived from normal and CC14-cirrhotic livers: differences in the production of interleukin-6. Lab Invest, 1991, 65(6): 644~653
    14 Wei H, Lu H, Li D, et al. The expression of AT1 receptor on hepatic stellate cells in rat fibrosis induced by CC14. Chin Med J(Engl), 2001, 114(6): 583~587
    15 Mazzocca A, Sciammetta SC, Carloni V, et al. Binding of hepatic C virus envelope protein E2 to CD81 up-regulates matrix metalloproteinase-2 in human hepatic stellate cells. J Biol Chem, 2005, 280(12): 11329~11339
    16 Vincent KJ, Jones E, Arthur MJ, et al. Regulation of E-box DNA binding during in viva and in vitro activation of rat and human hepatic stellate cells. Gut, 2001, 49(5): 713~719
    17 Wu J, Zern MA. Hepatic stellate cells: a target for the treatmeat of liver fibrosis. J Gastroenterol, 2000, 35(9): 665~672
    18 邱德凯,范竹萍.肝纤维化的发病机制及治疗进展.国外医学.消化系疾病分册,2002,22(4):195~199
    19 Friedman SL. Molecular mechanisms of hepatic fibrosis and principles of therapy. J Gastroenterol, 1997, 32(3): 424~430
    20 陶君,蔡卫民,卢良威,等.实验性肝纤维化Bcl-2、Bax的表达及干扰素-γ对其的作用.中华肝脏病杂志,2003,11(11):669~672
    21 Liu C, Chen W, Liu P, et al. Changes of lipid peroxidation in liver fibrogenesis induced by dimethylnitrosamine and drugs' intervention. Zhonghua Gan Zang Bing Za Zhi, 2001, Suppl: 18~20
    22 Sakaida I, Nagatomi A, Hironaka K, et al. Quantitative analysis of liver fibrosis and stellate cell changes in patients with chronic hepatitis C after interferon therapy. Am J Gastroenterol, 1999, 94(2): 489~496
    23 Hiramatsu N, Hayashi N, Kasahara A, et al. Improvement of liver fibrosis in chronic hepatitis C patients treated with natural interferon alpha. J Hepatol, 1995, 22(2): 135~142
    24 D'Amico E, Paroli M, Fratelli V, et al. Primary biliary cirrhosis induced by interferon-alpha therapy for hepatitis C virus infection. Dig Dis Sci, 1995, 40(10): 2113~2116
    25 Karayiannis P, Hadziyannis SJ, Kim J, et al. Hepatitis G virus infection: clinical characteristics and response to interferon. J Viral Hepat, 1997, 4(1): 37~44
    26 曾民德.中西医结合抗纤维化.肝纤维化的治疗及其疗效评估.中国中西医结合杂志,2002,22(5):329
    27 王吉耀.中西医结合抗纤维化.抗纤维化治疗的途径.中国中西医结合杂志,2002,22(5):330
    28 青献春.中药结合基因工程药(干扰素)对抗乙肝纤维化的研究.山西中医学院学报,2004,5(1):59~60
    29 张群毫,陈可冀.血清药理学在中药及复方研究中应用的评价.中国中西医结合杂志,1996,16(3):131
    30 张声鹏,施旭光,桂蜀华.关于中药血清药理学中血清供体动物是否造模的思考.中国中西医结合杂志,2001,21(5):388~389
    31 Mallat A, Preaux AM, Blazejewski S, et al. Interferon alfa and gamma inhibit proliferation and collagen synthesis of human Ito cells in culture. Hepatology, 1995, 21(4): 1003~1010
    32 Numaguchi S, Okuno M, Moriwaki H, et al. Modulation of collagen synthesis and degradation by retinoids and cytokines in 3T3 L1 preadipcytes. Intern Med, 1994, 33(6): 309~316
    1 Breikopf K, Lahme B, Tag CG, et al. Expression and matrix deposition of latent transforming growth factor beta binding proteins in normal and fibrotic rat liver and transdifferentiating hepatic stellate cells in culture. Hepatology, 2001, 33(2): 387-396
    2 Wu J, Zern MA. Hepatic stellate cells: a target for the treatmeat of liver fibrosis. J Gastroenterol, 2000, 35(9): 665-672
    3 Lee KS, Buck M, Houglum K, et al. Activation of hepatic stellate cells by TGF alpha and collagen type I is mediated by oxidative stress through C-myb expression. J Clin Invest, 1995, 96(5): 2461-2468
    4 Parsons CJ, Bradford BU, Pan CO, et al. Antifibrotic effects of a tissue inhibitor of metalloproteinase-1 antibody on established liver fibrosis in rats. Hepatology, 2004, 40(5): 1106-1115
    5 Friedman SL. Molecular mechanisms of hepatic fibrosis and principles of therapy. J Gastroenterol, 1997, 32(3): 424-430
    6 Friedman SL. Seminars in medicine of the Beth Israel Hospital, Boston. The cellular basis of hepatic fibrosis. Mechanisms and treatment strategies. N Engl J Med, 1993, 328(25): 1828-1835
    7 Hui AY, Friedman SL. Molecular basis of hepatic fibrosis. Expert Rev Mol Med, 2003, 2003: 1-23
    8 Friedman SL. Molecular regulation of hepatic fibrosis, an integrated cellular response to tissue injury. J Biol Chem, 2000, 275(4): 2247-2250
    9 Eng FJ, Friedman SL. Fibrogenesis I. New insights into hepatic stellate cell activation: the simple becomes complex. Am J Physiol Gastrointest Liver Physiol, 2000, 279(1): G7-G11
    10 Chen YX, Zhang XR, Xie WF, et al. Effects of taurine on proliferation and apoptosis of hepatic stellate cells in vitro. Hepatobiliary Pancreat Dis Int, 2004, 3(1): 106-109
    11 Caligiuri A, De Franco RM, Romanelli RG, et al. Antifibrogenic effects of canrenone, an antialdosteronic drug, on human hepatic stellate cells. Gastroenterology, 2003, 124(2): 504~520
    12 Kita Y, Masaki T, Funakoshi F, et al. Expression of G1 phase-related cell cycle molecules in naturally developing hepatocellular carcinoma of Long-Evans Cinnamon rats. Int J Oncol, 2004, 24(5): 1205~1211
    13 白经修,段方龄.细胞周期调控网络与肿瘤.胃肠病学和肝病学杂志,1999,8(3):163~165
    14 Kitamura K, Aota S,Sakamoto R, et al. Smad 7 induces G0/G1 cell cycle arrest in mesenchymal cells by inhibiting the expression of G1 cyclins. Dev Growth Differ, 2005, 47(8): 537~552
    15 Chuang JY, Tsai YY, Chen SC, et al. Induction of G0/G1 arrest and apoptosis by 3-hydroxycinnamic acid in human cervix epithelial carcinoma (HeLa) cells. In Vivo, 2005, 19(4): 683~688
    16 Toni R, Vitale M. The role of flow cytometry in the study of cell growth in the rat anterior pituitary gland. EurJ Histochem, 2000, 44(4): 315~324
    17 王芸庆.细胞的死亡.医学细胞生物学.宋今丹主编,人民卫生出版社,1997,212~213
    18 Basu A. Involvement of protein kinase C-delta in DNA damage-induced apoptosis. J Cell Mol Med, 2003, 7(4): 341~350
    19 Breitkopf K, Haas S, Wiercinska E, et al. Anti-TGF-beta strategies for the treatment of chronic liver disease. Alcohol Clin Exp Res, 2005, 29(11 Suppl): 121s-131s
    20 Chor SY, Hui AY, To KF, et al. Anti-proliferative and pro-apoptotic effects of herbal medicine on hepatic stellate cell. J Ethnopharmacol, 2005, 100(1-2): 182~186
    21 Sancho-Bru P, Bataller R, Gasull X, et al. Genomic and functional characterization of stellate cells isolated from human cirrhotic livers. J Hepatol, 2005, 43(2): 272~282
    22 Zheng S, Chen A. Activated of PPAR gamma is required for curcumin to induce apoptosis and to inhibit the expression of extracellular matrix genes in hepatic stellate cells in vitro. Biochem J, 2004, 384(Pt 1): 149-157
    23 Refik Mas M, Comert B, Oncu K, et al. The effect of taurine treatment on oxidative stress in experimental liver fibrosis. Hepatol Res, 2004, 28(4): 207-215
    24 Takahra T, Smart DE, Oakley F, et al. Induction of myofibroblast MMP-9 transcription in three-dimensional collagen I gel cultures: regulation by NF-Kappa B, AP-1 and Sp 1. Int J Biochem Cell Biol, 2004, 36(2): 353-363
    25 Mallat A, Preaux AM, Blazejewski S, et al. Interferon alfa and gamma inhibit proliferation and collagen synthesis of human Ito cells in culture. Hepatology, 1995, 21(4): 1003-1010
    26 Baroni GS, Dambrosio L, Curto P, et al. Interferon gamma decreases hepatic stellate cell activation and extracellular matrix deposition in rat liver fibrosis. Hepatology, 1996, 23(5): 1189-1199
    1 Pinzani M, Marra F. Cytokine receptors and signaling in hepatic stellate cells. Semin Liver Dis, 2001, 21(3): 397~416
    2 Parsons C J, Bradford BU, Pan CO, et al. Antifibrotic effects of a tissue inhibitor of metalloproteinase-1 antibody on established liver fibrosis in rats. Hepatology, 2004, 40(5): 1106~1115
    3 Issa R, Williams E, Trim N, et al. Apoptosis of hepatic stellate cells: involvement in resolution of biliary fibrosis and regulation by soluble growth factors. Gut, 2001, 48(4): 548~557
    4 Bruck R, Genina O, Aeed H, et al. Halofuginone to prevent and treat thioacetamide-induced liver fibrosis in rats. Hepatology, 2001, 33(2): 379~386
    5 Wu J, Zern MA. Hepatic stellate cells: a target for the treatment of liver fibrosis. J Gastroenterol, 2000, 35(9): 665-672
    6 Kim JY, Kim KM, Nan JX, et al. Induction of apoptosis by tanshinone I via cytochrome c release in activated hepatic stellate cells. Pharmacol Toxicol, 2003, 92(4): 195-200
    7 Geng XX, Yang O, Xie RJ, et al. In vivo effects of Chinese herbal recipe, Danshaohuaxian, on apoptosis and proliferation of hepatic stellate cells in hepatic fibrotic rats. World J Gastroenterol, 2005,11(4): 561-566
    8 Shibata N, Watanabe T, Okitsu T, et al. Establishment of an immortalized human hepatic stellate cell line to develop antifibrotic therapies. Cell Transplant, 2003,12(5): 499-507
    9 Shen H, Huang G, Hadi M, et al. Transforming growth factor-beta 1 downregulation of Smad 1 gene expression in rat hepatic stellate cells. Am J Physiol Gastrointest Liver Physiol, 2003, 285(3): G539-546
    10 Kitamura Y, Ninomiya H. Smad expression of hepatic stellate cells in liver cirrhosis in vivo and hepatic stellate cell line in vitro. Pathol Int, 2003, 53(1): 18-26
    11 Dooley S, Delvoux B, Lahme B, et al. Modulation of transforming growth factor beta response and signaling during transdifferentiation of rat hepatic stellate cells to myofibroblasts. Hepatology, 2000, 31(5): 1094-1106
    12 Hall MC, Young DA, Waters JG, et al. The comparative role of activator protein 1 and Smad factors in the regulation of Timp-1 and MMP-1 gene expression by transforming growth factor-beta 1. J Biol Chem, 2003, 278(12): 10304-10313
    13 Nakao A, Imamura T, Souchelnytskyi S, et al. TGF-beta receptor-mediated signalling through Smad2, Smad3 and Smad4. EMBO J, 1997,16(17): 5353-5362
    14 Tahashi Y, Matsuzaki K, Date M, et al. Differential regulation of TGF-beta signal in hepatic stellate cells between acute and chronic rat liver injury. Hepatology, 2002, 35(1): 49-61
    15 Liu C, Liu P, Hu Y, et al. Effects of salvianolic acid-B on TGF-β1 stimulated hepatic stellate cell activation and its intracellular signalling. Natl Med J China, 2002, 82(18): 1267-1272
    16 Roberts AB, Anzano MA, Lamb LC, et al. New class of transforming growth factors potentiated by epidermal growth factor: isolation from non-neoplastic tissues. Proc Natl Acad Sci U S A, 1981, 78(9): 5339-5343
    17 Breitkopf K, Haas S, Wiercinska E, et al. Anti-TGF-beta strategies for the treatment of chronic liver disease. Alcohol Clin Exp Res, 2005, 29(11 Suppl): 121S-131S
    18 Ma HH, Yao JL, Li G, et al. Effect of c-myb antisense RNA on TGF-beta1 and beta1-I collagen expression in cultured hepatic stellate cells. World J Gastroenterol, 2004,10(24): 3662-3665
    19 Hui AY, Dannenberg AJ, Sung JJ, et al. Prostaglandin E2 inhibits transforming growth factor beta 1-mediated induction of collagen alpha 1(1) in hepatic stellate cells. J Hepatol, 2004, 41(2): 251-258
    20 Chen C, Wang XF, Sun L. Expression of transforming growth factor beta (TGF beta) type III receptor restores autocrine TGF beta activity in human breast cancer MCF-7 cells. J Biol Chem, 1997, 272 (19): 12862-12867
    21 Massague J. TGF-beta signal transduction. Annu Rev Biochem, 1998, 67: 753-791
    22 Lin HY, Wang XF, Ng-Eaton E, et al. Expression cloning of the TGF-beta type II receptor, a functional transmembrance serine/threonine kinase. Cell, 1992, 68(4): 775-785
    23 Sekelsky JJ, Newfeld SJ, Raftery LA, et al. Genetic characterization and cloning of mothers against dpp, a gene required for decapentaplegic function in Drosophila melanogaster. Genetics, 1995,139(3): 1347-1358
    24 Derynck R, Gelbart WM, Harland RM, et al. Nonmenclature: vertebrate mediators of TGF beta family signals. Cell, 1996, 87(2): 173
    25 Kretzschmar M, Liu F, Hata A, et al. The TGF-beta family mediator Smadl is phosphorylated directly and activated functionally by the BMP receptor kinase. Genes Dev, 1997, 11(8): 984-995
    26 Xiao Z, Liu X, Henis YI, et al. A distinct nuclear localization signal in the N terminus of Smad 3 determines its ligand-induced nuclear translocation. Proc Natl Acad Sci USA, 2000, 97(14): 7853-7858
    27 Souchelnytskyi S, Tamaki K, Engstrom U, et al. Phosphorylation of Ser465 and Sew467 in the C terminus of Smad2 mediates interaction with Smad4 and is required for transforming growth factor-beta signaling. J Biol Chem, 1997, 272(44): 28107-28115
    28 Imamura T, Takase Masao, Nishihara A, et al. Smad6 inhibits signaling by the TGF-beta superfamily. Nature, 1997, 389(6651): 622-626
    29 Schnabl B, Kweon YO, Frederick JP, et al. The role of Smad3 in mediating mouse hepatic stellate cell activation. Hepatology, 2001, 34(1): 89-100
    1 姚希贤,徐克成.肝纤维化基础与临床.上海科技教育出版社,2003,75~84
    2 Wu J, Danielsson A. Inhibition of hepatic fibrogenesis: a review of pharmacologic candidates. Scand J Gastroenterol, 1994, 29(5): 385~391
    3 Sherman M. Pathogenesis and screening for hepatocellular carcinoma. Clin Liver Dis, 2004, 8(2): 419~443
    4 Zhang CP, Tian ZB, Liu XS, et al. Effects of Zhaoyangwan on chronic hepatitis B and posthepatic cirrhosis. World J Gastroenterol, 2004, 10(2): 295~298
    5 蒋树林,李校天,姚希贤.“益肝康”对大鼠肝纤维化的防治作用.中国全科医学杂志,2002,5(7):525~527
    6 孙玉风,姚希贤,崔东来.益肝浓缩煎剂抗肝纤维化的实验研究.中国中西医结合消化杂志,2002,10(2):84~85
    7 唐有为,姚希贤,姚洪森,等.益肝煎剂对实验性肝纤维化大鼠Ⅰ、Ⅳ型胶原蛋白表达的影响.中国消化病学杂志,2002,3(1):16~19
    8 姚希贤,唐有为,姚冬梅,等.益肝煎剂对实验性肝纤维化大鼠Ⅰ、Ⅲ型胶原蛋白表达的影响.世界华人消化杂志,2001,9(3):263~267
    9 Yao XX, Lv T. Effects of pharmacological serum from normal and liver fibrotic rats on HSCs. World J Gastroenterol, 2005, 11(16): 2444~2449
    10 Ha H, Lee YS, Lee JH, et al. High performance liquid chromatographic analysis of isoflavones in medicinal herbs. Arch Pharm Res, 2006, 29(1): 96~101
    11 Hu L, Chert X, Kong L, et al. Improved performance of comprehensive two-dimensional HPLC separation of traditional Chinese medicines by using a silica monolithic column and normalization of peak heights. J Chromatogr A, 2005, 1092(2): 191~198
    12 Liu JY, Xiao SY, Shang WF, et al. A new minor triterpene saponin from kaixin-san prescription. J Asian Nat Prod Res, 2005, 7(4): 643~648
    13 陈汉平,刘素香,李桂梅,等.高效液相色谱法测定当归及其炮制品中阿魏酸的含量.中草药,1998,19(10):15
    14 Li C, Homma M, Ohkura N, et al. Stereochemistry and putative origins of flavanones found in post-administration urine of the traditional Chinese remedies shosaiko-to and daisaiko-to. Chem Pharm Bull(Tokyo), 1998, 46(5): 807~811
    15 Zhang W, Zhang C, Liu R, et al. Quantitative determination of Astragaloside Ⅳ, a natural product with cardioprotective activity, in plasma, urine and other biological samples by HPLC coupled with tandem mass spectrometry. J Chromatogr B Analyt Technol Biomed Life Sci, 2005, 822(1-2): 170~177
    16 Zhang J, He Y, Cui M, et al. Metabolic studies on the total phenolic acids from the roots of Salvia miltiorrhiza in rats. Biomed Chromatogr, 2005, 19(1): 51~59
    17 李凤双,刘文江.百两金及其浸膏中岩白菜素的含量测定.中草药, 1988,19(7):12
    18 Liang Q, Qia H, Yao W. Identification of flavonoids and their glycosides by high-performance liquid chromatography with electrospray ionization mass spectrometry and with diode array ultraviolet diction. Eur J Mass Spectrom (Chichester Eng), 2005, 11(1): 93~101
    19 He JX, Akao T, Tani T. Development of a simple HPLC method for determination of paeoniflorin-metabolizing activity of intestinal bacteria in rat feces. Chem Pharm Bull(Tokyo), 2002, 50(9): 1233-1237
    20 Wang J, Yan R, Guan Y, et al. A study on processing of the root of Astragalus membranaceus Bge. by HPLC. Zhongguo Zhong Yao Za Zhi, 1998, 23(2): 84-85
    21 Shi Z, He J, Zhao M, et al. Simultaneous determination of five marker constituents in traditional Chinese medicinal preparation Le-Mai granule by high performance liquid chromatography. J Pharm Biomed Anal, 2005, 37(3): 469-473
    22 Vincent KJ, Jones E, Arthur MJ, et al. Regulation of E-box DNA binding during in viva and in vitro activation of rat and human hepatic stellate cells. Gut, 2001, 49(5): 713-719
    23 Nakamuta M, Kotoh K, Enjoji M, et al. Effects of fibril- or fixed-collagen on matrix metalloproteinase-1 and tissue inhibitor of matrix metalloproteinase-1 production in the human hepatocyte cell line HLE. World J Gastroenterol, 2005,11(15): 2264-2268
    24 Moustakas A, Souchelnytskyi S, Heldin CH. Smad regulation in TGF-beta signal transduction. J Cell Sc, 2001,114(Pt 24): 4359-4369
    25 Derynck R, Zhang YE. Smad-dependent and Smad-independent pathways in TGF-beta family signaling. Nature, 2003, 425(6958): 577-584
    26 Shi Y, Massague J. Mechanisms of TGF-beta signaling from cell membrance to the nucleus. Cell, 2003,113(6): 685-700
    27 Verrecchia F, Mauviel A. Transforming growth factor-beta signaling through the Smad pathway: role in extracellular matrix gene expression and regulation. J Invest Dermatol, 2002,118(2): 211-215
    28 Chen W, Fu X, Sheng Z. Review of current progress in the structure and function of Smad protein. Chin Med J(Engl), 2002,115(3): 446-450
    29 Chen Y, Blom IE, Sa S, et al. CTGF expression in mesangial cells: involvement of SMADs, MAP kinase, and PKC. Kidney Int, 2002, 62(4): 1149-1159
    30 Hu B, Wu Z, Phan SH. Smad 3 mediates transforming growth factor-beta-induced alpha-smooth muscle actin expression. Am J Respir Cell Mol Biol, 2003, 29(3 Pt 1): 397~404
    31 Hua X, Miller ZA, Benchabane H, et al. Synergism between transcription factors TFE3 and Smad 3 in transforming growth factor-beta-induced transcription of the Smad 7 gene. J Biol Chem, 2000, 275(43): 33205~33208
    32 沈吉云,燕忠生.丹参保肝抗肝纤维化药理作用及应用进展.中西医结合肝病杂志,1998,8(2):124~125
    33 刘波,陈从新,顾月华,等.氧化苦参碱与国产a-1b和a-2b干扰素对大鼠星状细胞增殖和胶原合成的抑制作用。疾病控制杂志,2004,8(4): 339~341
    34 Liu CH, Liu P, Hu YY, et al. Effects of salvianolic acid-A on rat hepatic stellate cell proliferation and collagen production in culture. Acta Pharmacol Sci, 2000, 21(8): 721~726
    35 Hsu YC, Lin YL, Chiu YT, et al. Antifibrotic effects of Salvia miltiorrhiza on dimethylnitrosamine-intoxicated rats. J Biomed Sci, 2005, 12(1): 185~195
    36 Lin YL, Wu CH, Luo MH, et al. In vitro protective effects of salvianolic acid B on primary hepatocytes and hepatic stellate cells. J Ethnopharmacol, 2006, 105(1-2): 215~222
    37 Tao YY, Liu CH. Progress of research on mechanism of salvia miltiorrhiza and its chemical ingredients against liver fibrosis. Zhong Xi Yi Jie He Xue Bao, 2004, 2(2): 145~148
    1 Vincent KJ, Jones E, Arthur MJ, et al. Regulation of E-box DNA binding during in vivo and in vitro activation of rat and human hepatic stellate cells. Gut, 2001, 49(5): 713-719
    2 Issa R, Williams E, Trim N, et al. Apoptosis of hepatic stellate cells: involvement in resolution of biliary fibrosis and regulation by soluble growth factors. Gut, 2001, 48(4): 548-557
    3 Gressner AM, Bachem MG. Molecular mechanisms of liver fibrogenesis-a homage to the role of activated fat-storing cells. Digestion, 1995: 56(5): 335-346
    4 Parsons CJ, Bradford BU, Pan CO, et al. Antifibrotic effects of a tissue inhibitor of metalloproteinase-1 antibody on established liver fibrosis in rats. Hepatology, 2004, 40(5): 1106-1115
    5 Tangkijvanich P, Yee HF Jr. Cirrhosis—can we reverse hepatic fibrosis? Eur J Surg Suppl, 2002; (587): 100-112
    6 Kinnman N, Francoz C, Barbu V, et al. The myofibroblastic conversion of peribiliary fibrogenic cells distinct from hepatic stellate cells is stimulated by platelet-derived growth factor during liver fibrogenesis. Lab Invest, 2003, 83(2): 163-173
    7 Friedman SL. Closing on the signals of hepatic fibrosis. Gastroenterology, 1997,112(4): 1406-1409
    8 Roberts AB, Anzano MA, Lamb LC, et al. New class of transforming growth factors potentiated by epidermal growth factor: isolation from non-neoplastic tissues. Proc Natl Acad Sci U S A, 1981, 78(9): 5339-5343
    9 Ma HH, Yao JL, Li G, et al. Effect of c-myb antisense RNA on TGF-beta1 and beta1-I collagen expression in cultured hepatic stellate cells. World J Gastroenterol, 2004,10(24): 3662-3665
    10 Burt DW, Law AS. Evolution of the transforming growth factor-beta superfamily. Prog Growth Factor Res, 1994, 5(1): 99-118
    11 Massague J. TGF-beta signal transduction. Annu Rev Biochem, 1998, 67: 753-791
    12 Lin HY, Wang XF, Ng-Eaton E, et al. Expression cloning of the TGF-beta type II receptor, a functional transmembrance serine/threonine kinase. Cell, 1992, 68(4): 775-785
    13 Chen C, Wang XF, Sun L. Expression of transforming growth factor beta (TGF beta) type III receptor restores autocrine TGF beta activity in human breast cancer MCF-7 cells. J Biol Chem, 1997, 272 (19): 12862-12867
    14 Zhu HJ, Iaria J, Sizeland AM. Smad 7 differentially regulates transforming growth factor beta-mediated signaling pathway. J Biol Chem, 1999, 274(45): 32258-32264
    15 Wrana JL, Attisano L, Wieser R, et al. Mechanism of activation of the TGF-beta receptor. Nature, 1994, 370(6488): 341-347
    16 Tahashi Y, Matsuzaki K, Date M, et al. Differential regulation of TGF-beta signal in hepatic stellate cells between acute and chronic rat liver injury. Hepatology, 2002, 35(1): 49-61
    17 Sekelsky JJ, Newfeld SJ, Raftery LA, et al. Genetic characterization and cloning of mothers against dpp, a gene required for decapentaplegic function in Drosophila melanogaster. Genetics, 1995,139(3): 1347-1358
    18 Derynck R, Gelbart WM, Harland RM, et al. Nonmenclature: vertebrate mediators of TGF beta family signals. Cell, 1996, 87(2): 173
    19 Lesueur JA, Fortuno ES 3rd, Mckay RM, et al. Smad 10 is required for formation of the frog nervous system. Dev Cell, 2002, 2(6): 771-783
    20 Fortuno ES 3rd, LeSueur JA, Graff JM. The amino terminus of Smads permits transcriptional specificity. Dev Biol, 2001, 230(2): 110-124
    21 Kretzschmar M, Liu F, Hata A, et al. The TGF-beta family mediator Smadl is phosphorylated directly and activated functionally by the BMP receptor kinase. Genes Dev, 1997,11(8): 984-995
    22 Nakao A,Imamura T,Souchelnytskyi S, et al. TGF-beta receptor-mediated signalling through Smad2, Smad3 and Smad4. EMBO J, 1997, 16(17): 5353-5362
    23 Xiao Z, Liu X, Henis YI, et al. A distinct nuclear localization signal in the N terminus of Smad 3 determines its ligand-induced nuclear translocation. Proc Natl Acad Sci USA, 2000, 97(14): 7853-7858
    24 Souchelnytskyi S, Tamaki K, Engstrom U, et al. Phosphorylation of Ser465 and Sew467 in the C terminus of Smad2 mediates interaction with Smad4 and is required for transforming growth factor-beta signaling. J Biol Chem, 1997, 272(44): 28107-28115
    25 Imamura T, Takase Masao, Nishihara A, et al. Smad6 inhibits signaling by the TGF-beta superfamily. Nature, 1997, 389(6651): 622-626
    26 Kitamura Y, Ninomiya H. Smad expression of hepatic stellate cells in liver cirrhosis in vivo and hepatic stellate cell line in vitro. Pathol Int, 2003, 53(1): 18-26
    27 Ulloa L, Doody J, Massague J. Inhibition of transforming growth factor-beta/SMAD signalling by the interferon-gama/STAT pathway. Nature, 1999, 397(6721): 710-713
    28 Liu C, Liu P, Hu Y, et al. Effects of salvianolic acid-B on TGF-β1 stimulated hepatic stellate cell activation and its intracellular signalling. Natl Med J China, 2002, 82(18): 1267-1272
    29 Tahashi Y, Matsuzaki K, Date M, et al. Differential regulation of TGF-beta signal in hepatic stellate cells between acute and chronic rat liver injury. Hepatology, 2002, 35(1): 49-61
    30 Dooley S, Delvoux B, Lahme B, et al. Modulation of transforming growth factor beta response and signaling during transdifferentiation of rat hepatic stellate cells to myofibroblasts. Hepatology, 2000, 31(5): 1094-1106
    31 Blobe GC, Liu X, Fang SJ, et al. A novel mechanism for regulating transforming growth factor beta (TGF-beta) signaling. Functional modulation of type III TGF-beta receptor expression through interaction with the PDZ domain protein, GIPC. J Biol Chem, 2001, 276(43): 39608-39617
    32 Attisano L, Wrana JL. Signal transduction by the TGF-beta superfamily. Science, 2002, 296 (5573): 1646-1647
    33 Gressner AM, Weiskirchen R, Breitkopf K, et al. Roles of TGF-beta in hepatic fibrosis. Front Biosci, 2002, 7: d793-d807
    34 Lo RS, Wotton D, Massague J, et al. Epidermal growth factor signaling via Ras controls the Sraad transcriptional co-repressor TGIF. EMBO J, 2001, 20(1-2): 128-136
    35 Kretzschmar M, Doody J, Massague J. Opposing BMP and EGF signalling pathways converge on the TGF-beta family mediator Smad 1. Nature, 1997, 389(6651): 618-622
    36 Kretzschmar M, Doody J, Timokhina Z, et al. A mechanism of repression of TGF-beta/Smad signaling by oncogenic Ras. Genes Dev, 1999, 13(7): 804-816
    37 Zhang Y, Chang C, Gehling DJ, et al. Regulation of Smad degradation and activity by Smurf 2, an E3 ubiquitin ligase. Proc Natl Acad Sci U S A, 2001, 98(3): 974-979
    38 Yakymovych I, Ten Dijke P, Heldin CH, et al. Regulation of Smad signaling by protein kinase C. FASEB J, 2001,15(3): 553-555
    39 Yue J, Frey RS, Mulder KM. Cross-talk between the Smad 1 and Ras/MEK signaling pathways for TGF beta. Oncogen, 1999, 18(11): 2033-2037
    40 Yoshiji H, Kuriyama S, Yoshii J, et al. Angiotensin-II type 1 receptor interaction is a major regulator for liver fibrosis development in rats. Hepatology, 2001, 34(4Pt1): 745-750
    41 Nakamura T, Sakata R, Ueno T, et al. Inhibition of transforming growth factor beta prevents progression of liver fibrosis and enhances hepatocyte regeneration in dimethylnitrosamine-treated rats. Hepatology, 2000, 32(2): 247-255
    42 Zhang M, Song G, Minuk GY. Effects of hepatic stimulator substance, herbal medicine, selenium/vitamin E, and ciprofloxacin on cirrhosis in the rat. Gastroenterology, 1996,110(4): 1150-1155
    1 侯云德.干扰素.免疫学基础,北京.人民卫生出版社,1982,33~39
    2 侯云德.干扰素研究现状和展望.国外医学微生物学分册,1985,6(12): 241~244
    3 Isaacs A, Lindenmann J. Virus interference.I. The interferon. Proc R Soc Lond B Biol Sci, 1957, 147(927): 258~267
    4 Torsteinsdottir S, Masucci MG, Bejarano MT, et al. Selective inhibitory effect of Hu-IFN-gamma on the agarose clonability of tumor-derived lymphoid cell lines. Cell Immunol, 1985, 90( 1): 65~73
    5 Garotta G, Talmadge KW, Pink JR, et al. Functional antagonism between type Ⅰ and type Ⅱ interferons on human macrophages. Biochem Biophys Res Commun, 1986, 140(3): 948~954
    6 Gray PW, Goeddel DV. Structure of the human immune interferon gene. Nature, 1982, 298(5877): 859~863
    7 Wu J, Zern MA. Hepatic stellate cells: a target for the treatmeat of liver fibrosis. J Gastroenterol, 2000, 35(9): 665~672
    8 Lee KS, Buck M, Houglum K, et al. Activation of hepatic stellate cells by TGF alpha and collagen type Ⅰ is mediated by oxidative stress through C-myb expression. J Clin Invest, 1995, 96(5): 2461~2468
    9 姚光弼.肝脏损伤的机制.中华消化杂志,1998,18(1):235~236
    10 Isbrucker RA, Peterson TC. Platelet-derived growth factor and pentoxifylline modulation of collagen synthesis in myofibroblasts. Toxicol Appl Pharmcol, 1998, 149(1): 120~126
    11 Friedman SL. Molecular mechanisms of hepatic fibrosis and principles of therapy. J Gastroenterol, 1997, 32(3): 424~430
    12 Mallat A, Preaux AM, Blazejewski S, et al. Interferon alfa and gamma inhibit proliferation and collagen synthesis of human Ito cells in culture. Hepatology, 1995, 21(4): 1003~1010
    13 管远志.干扰素—免疫系统的调节剂.免疫学译丛,北京.人民卫生出版社,2001,11(5):257~258
    14 杜平.干扰素.医学微生物学,北京.人民卫生出版社,1983,581~601
    15 闻玉梅.干扰素(抗病毒免疫).医学微生物学,北京.人民卫生出版社,2001,11(5):257~258
    16 Manabe N, Chevallier M, Chossegros P, et al. Interferon-alpha 2b therapy reduced liver fibrosis in chronic non-A, non-B hepatitis: a quantitative histological evaluation. Hepatology, 1993, 18(6): 1344~1349
    17 Chinnaiyan AM, Tepper CG, Seldin ME FADD/MORT1 is a common mediator of CD95 (Fas/APO-1) and tumor necrosis factor receptor-induced apoptosis. J Biol Chem, 1996, 271(9): 4961-4965
    18 Simon K, Gladysz A, Rotter K, et al. Therapeutic efficacy of low-dose alpha interferon therapy in liver cirrhosis associated with HBV. Pol Arch Med Wewn, 1998, 99(6): 487-492
    19 Shindo M, Ken A, Okuno T. Varying incidence of cirrhosis and hepatocellular carcinoma in patients with chronic hepatitis C responding differently to interferon therapy. Cancer, 1999, 85 (9): 1943 -1950
    20 Hiramatsu N, Hayashi N, Kasahara A, et al. Improvement of liver fibrosis in chronic hepatitis C patients treated with natural interferon alpha. J Hepatol, 1995, 22(2): 135-142
    21 Baroni GS, Dambrosio L, Curto P, et al. Interferon gamma decreases hepatic stellate cell activation and extracellular matrix deposition in rat liver fibrosis. Hepatology, 1996, 23(5): 1189-1199
    22 Czaja MJ, Weiner FR, Takahashi S, et al. Gamma-interferon treatment inhibits collagen deposition in murine schistosomiasis. Hepatology, 1989, 10(5): 795-800
    23 Numaguchi S, Okuno M, Moriwaki H, et al. Modulation of collagen synthesis and degradation by retinoids and cytokines in 3T3 L1 preadipcytes. Intern Med, 1994, 33(6): 309-316
    24 Ninomiya T, Yoon S, Nagano H, et al. Significance of serum matrix metalloproteinases and their inhibitors on the antifibrogenetic effect of interferon-alfa in chronic hepatitis C patients. Intervirology, 2001, 44(4): 227-231
    25 Tsushima H, Kawata S, Tamura S, et al. Reduced plasma transforming growth factor-beta 1 levels in patients with chronic hepatitis C after interferon-alpha therapy: association with regression of hepatic fibrosis. J Hepatol, 1999, 30(1): 1-7
    26 Sakaida I, Nagatomi A, Hironaka K, et al. Quantitative analysis of liver fibrosis and stellate cell changes in patients with chronic hepatitis C after interferon therapy. Am J Gastroenterol, 1999, 94(2): 489-496
    27 陶君,蔡卫民,卢良威,等.实验性肝纤维化Bcl-2、Bax的表达及干扰素-γ对其的作用.中华肝脏病杂志,2003,11(11):669~672
    28 Liu C, Chen W, Liu P, et al. Changes of lipid peroxidation in liver fibrogenesis induced by dimethylnitrosamine and drugs' intervention. Zhonghua Gan Zang Bing Za Zhi, 2001, Suppl: 18~20
    29 Weng HL, Cai WM, Liu RH. Animal experiment and clinical study of effect of gamma-interferon on hepatic fibrosis. World J Gastroenterol, 2001, 7(1): 42~48
    30 Zhang L, Mi J, Yu Y, et al. IFN-gamma gene therapy by intrasplenic hepatocyte transplantation: a novel strategy for reversing hepatic fibrosis in Schistosoma japonicum-infected mice. Parasite Immunol, 2001, 23(1): 11~17
    31 Perrillo R, Tamburro C, Regenstein F, et al. Low dose, titratable interferon. alpha in decompensated liver diseases caused by chronic infection with hepatitis B virus. Gastroenterology, 1995, 109(3): 908~916
    32 Nevens F, Goubau P, Van Eyken P, et al. Treatment of decompensated viral hepatitis B-induced cirrhosis with low doses of interferon alpha. Liver, 1993, 13(1): 15~19
    33 Shiffman ML, Hofmann CM, Luketic VA, et al. Improved sustained response following treatment of chronic hepatitis C by gradual reduction in the interferon dose. Hepatology, 1996, 24(1): 21~26
    34 Tassopoulos NC, Karvountzis G, Touloumi G, et al. Comparative efficacy of a high or low dose of interferon alpha 2b in chronic hepatitis C: a randomized controlled trial. Am J Gastroenterol, 1996, 91(9): 1734~1738
    35 Kasahara A, Hayashi N, Hiramatsu N, et al. Ability of prolonged interferon treatment to suppress relapse after cessation of therapy in patients with chronic hepatitis C: a multicenter randomized controlled trial. Hepatology, 1995, 21(2): 291~297
    36 Fernandez I, Castellano G, Domingo MJ, et al. Influence of viral genotype and level of viremia on the severity of liver injury and the response to interferon therapy in Spanish patients with chronic C infection. Scand J Gastroenterol 1997, 32(1): 70~76
    37 Collier J, Chapman R. Combination therapy with interferon-alpha and ribavirin for hepatitis C: practical treatment issues. BioDrugs, 2001, 15(4): 225~238
    38 Farrell G, Cooksley WG, Dudley FJ, et al. Efficacy and tolerance of a 6-month treatment course of daily interferon-alpha 2a for chronic hepatitis C with cirrhosis. The Australian Hepatitis C Sutdy Group. J Viral Hepat, 1997, 4(5): 317~323
    39 唐美芳,杨俊文,骆成榆,等.HCV基因分型与a干扰素疗效关系.中西医结合肝病杂志,1999,9(4):7~9
    40 Maynard M, Pradat P, Berthillon P, et al. Clinical relevance of total HCV core antigen testing for hepatitis C monitoring and for predicting patients' response to therapy. J Viral Hepat, 2003,-10(4): 318~323
    41 Zampino R, Marrone A, Cirillo G, et al. Sequential analysis of hepatitis B virus core promoter and precore regions in cancer survivor patients with chronic hepatitis B before, during and after interferon treatment. J Viral Hepat, 2002, 9(3): 183~188
    42 Valla DC, Chevallier M, Marcellin P, et al. Treatment of hepatitis C virus-related cirrhosis: a randomized, controlled trial of interferon alfa-2b versus no treatment. Hepatology, 1999, 29(6): 1870~1875
    43 Thevenot T, Regimbeau C, Ratziu V, et al. Meta-analysis of interferon randomized trials in the treatment of viral hepatitis C naive patients: 1999 update. J Viral Hepatol. 2001, 8(1): 48~62
    44 Ikura Y, Morimoto H, Johmura H, et al. Relationship between hepatic iron deposition and response to interferon in chronic hepatitis C. Am J Gastroenterol. 1996, 91(7): 1367~1373
    45 Piperno A, Sampietro M, D'Alba R, et al. Iron stores, response to alpha-interferon therapy, and effects of iron depletion in chronic hepatitis C. Liver, 1996, 16(4): 248~254
    46 邱望龙,李福元,管岑,等。慢性乙型肝炎C基因启动子变异与干扰素治疗应答的关系.实用肝脏病杂志,1998,3(3):136~138
    47 贺永文,轩泓,曾令兰,等.干扰素抗体对干扰素治疗肝炎疗效的影响. 实用医学杂志,1999,15(9):724~725
    48 Gallorini A, Plebani M, Pontisso P, et al. Serum markers of hepatic fibrogenesis in chronic hepatitis type C treated with alfa-2A interferon. Liver, 1994, 14(5): 257~264
    49 Ishimura N, Fukuda R, Fukumoto S. Relationship between the intrahepatic expression of interferon-alpha receptor mRNA and the histological progress of hepatitis C virus-associated chronic liver diseases. J Gastroenterol Hepatol, 1996, 11(8): 712~717
    50 Perez Roldan F, De Diego A, Casado M, et al. Treatment with interferon alfa-2b in patients with chronic hepatitis caused by hepatitis C virus: predictive factors for the response, relapse and early development to cirrhosis after treatment. Rev Esp Enferm Dig, 1996, 88(9): 609~615
    51 Gale MJ Jr, Korth MJ, Katze MG. Repression of the PKR protein kinase by the hepatitis C virus NSSA protein: a potential mechanism of interferon resistance. Clin Diagn Virol, 1998, 10(2-3): 157~162
    52 Hoofnagle JH, Di Bisceglie AM, Waggoner JG, et al. Interferon alfa for patients with clinically apparent cirrhosis due to chronic hepatitis B. Gastroenterology, 1993, 104(4): 1116~1121
    53 D'Amico E, Paroli M, Fratelli V, et al. Primary biliary cirrhosis induced by interferon-alpha therapy for hepatitis C virus infection. Dig Dis Sci, 1995, 40(10): 2113~2116
    54 Karayiannis P, Hadziyannis SJ, Kim J, et al. Hepatitis G virus infection: clinical characteristics and response to interferon. J Viral Hepat, 1997, 4(1): 37~44
    55 Everson GT, Jensen DM, Craig JR, et al. Efficacy of interferon treatment for patients with chronic hepatitis C: comparison of response in cirrhotics, fibrotics, or nonfibrotics. Hepatology, 1999, 30(1): 271~276
    56 Saito T, Shinzawa H, Kuboki M, et al. A randomized, controlled trial of human lymphoblastoid interferon in patients with compensated type C cirrhosis. Am J Gastroenterol, 1994, 89(5): 681~686

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700