岷江上游山地森林—干旱河谷交错带土壤理化性质研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本文以岷江上游理县山地森林-干旱河谷交错带地区退耕还林后的土壤为研究对象,根据海拔高度划分为典型干旱河谷地段、交错带和山地森林段,并分别在每个地段分别选取代表性植被类型,开展植被调查和土壤取样分析,探讨不同植被条件下土壤理化性质在不同环境因子下的变异情况和变化规律,探索山地森林-干旱河谷交错带植被恢复及管理的调节机制,充实交错带生态演化过程理论,为山地森林-干旱河谷交错带植被恢复及复合生态系统管理提供理论依据。研究主要结果如下:
     ①研究区不同植被类型土壤容重在0.96~1.65 g.cm~(-3)之间,随土层加深而增大;土壤孔隙度是表层优于下层。表层土壤pH值在低海拔荒地与岷江柏林处最高,随着海拔高度的增加而降低。亚表层土壤pH值变化趋势相同,但(10~20cm)高于上层(0~10cm)。土壤机械组成主要以粒级d<0.25mm和0.25~0.5mm为主,土壤物理性质表层变异大于下层变异,其主要原因应与土壤水分含量变化和人为活动等有关。
     ②研究区粘粒粒级(<0.002mm)粉粒粒级(0.02-0.002mm)含量普遍较高,同时随海拔梯度增加与植被覆盖的增加其含量呈增加的趋势。细砂粒级(0.25-0.02mm)含量次之,但其含量随海拔梯度增加和植被覆盖的增加而降低。
     ③随着海拔高度增加和植被恢复,土壤全氮、全磷、有效磷、全钾、速效钾及有机质含量之明显增加,表明研究区土壤水分和植被因素是影响土壤养分状况的主要因子。除土壤有机质外,土壤中各养分含量与土壤容重呈显著负相关关系,说明土壤容重越高,土壤越板结,土壤养分含量越低。植被恢复后各季节土壤有机质、全氮、全磷、速效磷、全钾、速效钾含量均增加,各林分土壤养分含量为秋季>冬季>春季>夏季。表明植被恢复能明显的改良土壤,增加土壤养分含量。植被恢复类型上,交错带上缘天然恢复的青冈、桦木次生林养分含量最高,交错带下缘各人工恢复林养分含量次之,干旱河谷段岷江柏林与荒地养分含量最低。
     ④交错带山地森林和人工林所处地段的土壤养分状况优于干旱河谷段,表明该区自然环境条件相对于河谷下部优越,只要进行人工造林并采取封禁措施,减少放牧干扰,植被就能快速恢复。因此,在植被恢复过程中应考虑海拔对土壤养分分布的影响。沿交错带逐步向下恢复森林,使林线下移,最终达到干旱河谷区植被恢复的目的,是干旱河谷区植被恢复的一条行之有效的途径,可在干旱河谷区进行植被恢复时推广。
     ⑤各林分土壤微团聚体分形维数的大小为:次生林>灌木>刺槐林>阔叶混交林>针阔混交林>岷江柏>荒地;2>荒地1。在垂直方向上,团聚体分形维数PFD是山地次生林>交错带>干旱河谷段,可以看出山地森林/干旱河谷交错带植被恢复情况是高海拔优于低海拔,这为干旱河谷区植被恢复从上至下逐渐推进,提高植被恢复成效提供了理论依据。决定分形维数是土壤细颗粒的含量,植被恢复后,淋淀粘化作用加强,且随着大量枯落物的归还及植被对风蚀物和降尘的截获效应,土壤细颗粒物质增加,土壤分形维数升高,土壤肥力与结构变好,说明分形维数可以反映干旱河谷植被恢复的程度。交错带内PFD是灌木>刺槐林>阔叶混交林>针阔混交林,灌木林由于减少了干扰的影响优于其它植被类型,表明在山地森林/干旱河谷交错带植被恢复中,进行封禁管理应是确保植被恢复效果的重要措施之一。
In this paper,the returning farmland to forest soil which in mountain forest - the arid valley of ecotone in Li County in the upper Minjiang River was studied. According to altitude,we divide the study area into three parts:typical arid valley area, ecotone area and mountain forest area.In these three parts,we choose representation of vegetation types respectively,and carry out vegetation surveys and soil sampling analysis.Study the soil physical and chemical properties Variability and change under different conditions of vegetation and under different environmental factors.Explore the mountain forest - the arid valley of ecotone vegetation restoration and management of the adjustment mechanism,and enrich Ecotone ecological theory of evolution,and ultimately to provide a theoretical basis in the mountain forest - the arid valley of ecotone vegetation restoration and management of complex ecosystems.
     The results indicated:
     ①The soil bulk density under different vegetation types is around 0.96-1.65 g/cm~3 in the study area,and with soil depth increased;The soil porosity of surface layer is better than the lower.The PH of surface layer is greater in lower altitude (wasteland and Cupressus chengiana) and with the increase in altitude to reduce.The PH of sub-top soil has the same trend,but the value of its upper(0-10cm) is small than the lower(10-20cm).Due to the change of soil water content,human activities and other reasons,the majority of soil mechanical composition size are d<0.25mm and 0.25~0.5mm,and variability of soil physical properties,the surface is greater than the lower.
     ②The content of clay size(<0.002mm) and granule size(0.02-0.002mm) is relatively high,and it increase with the increase in altitude and the increase in vegetation cover.The fine sand content of the second,but it reduces with the increase in altitude and the increase in vegetation cover.As the clay size and granule size can easily form their own micro-aggregates or soil organic matter to form a stable aggregate structure,enhance the corrosion resistance of the soil,this indicate that the increase in altitude soil corrosion resistance gradually enhanced in the study area.
     ③With the increase in altitude and vegetation restoration,the content of soil total nitrogen,total phosphorus,available phosphorus,total potassium,available potassium and organic matter have a marked increase in the study area showed that soil moisture and vegetation are the main factors influencing soil nutrient status.In addition to soil organic matter,the soil nutrient content and the soil bulk density was significantly negatively related to illustrate the higher soil bulk density,soil compaction and Vietnam,the lower the nutrient content of soil.After restoration of vegetation,soil organic matter,total nitrogen,total phosphorus,available phosphorus,total potassium, available potassium increased in four seasons.The soil nutrient content in the stands: autumn>winter>spring>summer.It shows that the restoration of vegetation significantly improved the soil,increase soil nutrient content.For the types of restoration of vegetation,the natural recovery Cyclobalanopsis and birch have the highest nutrient content,which followed by the Plantation,the Cupressus chengiana and wastelanarid in the arid valley of Minjiang River have the lowest nutrient content.
     ④Mountain forest - ecotone area and plantation area where the soil nutrient is superior to the arid valley area shows that the natural conditions of the area is superior to the lower valley,as long as the afforestation,closed forest measure and to reduce the disturbance of grazing,vegetation can be rapid recovery.Therefore,in the process of vegetation restoration,the impact of elevation on the distribution of soil nutrients should be considered.Along ecotone,restoration forest step by step and make the timberline down,and ultimately to achieve the restoration of vegetation in arid valley, is a well-established channel in arid valley vegetation restoration,can be carried out in the arid valley of the promotion of vegetation recovery.
     ⑤The size of soil micro-aggregates of fractal dimension in the stands:secondary forest>shrub>Robinia pseudoacacia forest>mixed forest>coniferous forest>Minjiang hodginsii>wasteland 2>wasteland 1.In vertical direction,PFD of the aggregate fractal dimension:Mountain secondary forest>ecotone>Dry Valley area. That indicate the mountain forest - arid valley ecotone vegetation restoration is high-altitude superior to low-altitude,providing a theoretical basis improve the effectiveness of the restoration of vegetation in arid valley vegetation restoration,of gradually advancing from top to bottom to.Decision is the fractal dimension of the content of fine particles of soil,after vegetation restoration,the leaching of the enhanced role of visco-lake,and with a large number of the return of litter and vegetation on wind erosion and dust of the intercepted material effect on fine particulate matter increased the soil,soil the fractal dimension increased,soil fertility and structural change,and that the fractal dimension can reflect the vegetation in the arid valley of the degree of recovery.PFD of ecotone:shrubs>Robinia pseudoacacia forest>mixed forest>coniferous forest.Due to the impact of a reduction of interference,shrub is superior to the other vegetation types,indicating that in the mountain forest - arid valley of ecotone,closed forest is the one of the important measures in ensuring vegetation recovery.
引文
[1]Clements F E.Research methods in ecology.University Publishing Company[M], Lincoln,Nebraska, USA. 1905
    
    [2]Leopold A. Game management[M]. Charles Scribner's Sons, New York, USA. 1933
    
    [3]Kent M,Gill W J,Weaver R E,Armitage R P.Landscape and plant community boundaries in biogeography[J]. Progress in Physical Geography, 1997,21:315-353.
    
    [4]Odum E P.Fundamentals of ecology(Third edition). W B Saunders Company[M], Philadelphia,USA. 1971
    
    [5]Walter H.Vegetation of the earth and ecological systems of the geo-biosphere(Third edition).Springer-Verlag[M], New York,USA. 1984
    
    [6]Allen C D and Breshears D D. Drought-induced shift of a forest-woodland ecotone: rapid landscape response to climate variation[J]. Proceedings of the National Academy of Sciences of the USA, 1998 95: 14839-14842.
    
    [7]Pickett S T A, White P S. The ecology of natural disturbance and patch dynamics[M].Academic Press, New York, USA. 1985
    
    [8]Forman R T T,Godron M.Landscape Ecology[M]. John Wiley and Sons,New York,USA. 1986
    
    [9]Turner M G.Landscape heterogeneity and disturbance.Springer-Verlag[M],New York,USA.1987
    
    [10]Hansen A J,Castri F D, Naiman R J. Ecotones: what and why? In: A new look at ecotones:emerging international projects on landscape boundaries[J]. Biology International, 1988,17(Special Issue): 1-163.
    
    [11]Gosz J R,Sharpe P J H.Broad-scale concepts for interactions of climate,topography,and biota at biome transitions[J]. Landscape Ecology, 1989,3:229-243.
    
    [12]Holland M M.SCOPE/MAB technical consultations on landscape boundaries.In:di Castri F D and Hansen A J.A new look at ecotone:emerging international projects on landscape boundaries. Biology International, Special Issue 1988:17:47-90.
    
    [13]M, Risser P G & Naiman R J eds. Ecotones:the role of landscape boundaries in the management and restoration of changing environments[M]. London,UK. Chapman & Hall.1991,31-51.
    
    [14] Neilson R P.Climatic constraints and issues of scale controlling regional biomes. In: Holland M M.,Risser P G &.Naiman R J eds.Ecotones:the role of landscape boundaries in the management and restoration of changing environments[M].London,UK.Chapman & Hall.1991,31-51.
    [15]王健锋,雷瑞德.生态交错带研究进展[J]西北林学院学报2002,17(4):24-27
    [16]朱芬萌等,生态交错带及其研究进展[J]生态学报2007,27(7):3032-3042
    [17]乔青.川滇农牧交错带景观格局与生态脆弱性评价[M].北京林业大学.2007
    [18]张荣祖.横断山区干旱河谷[M].北京:科学出版社,1992.
    [19]王金锡,许金铎等.长江上游高山高原林区迹地生态与营林更新技术[M].北京:中国林业出版社:1995,37-53
    [20]何飞,刘兴良,郑绍伟等.四川卧龙自然保护区川滇高山栋林在海拔梯度上的植物种-面积的关系[[J].成都大学学报(自然科学版),2005,25(1):31-34
    [21]Schweinfurth U.Plateau,river gorges,and land wind Phenomena.In:Geological and Ecological Studies of Qinghai-Xizang Plateau[J],Vol,2,Beijing:Science Press,1981,205-210
    [22]郭晓鸣.四川干旱河谷地区生态建设的主要问题与对策建议[J].社会科学研究,2001,(5):33-36.
    [23]沈茂英.川西干旱河谷区生态环境建设的社会保障机制研究[J].四川林业科技,2003,24(1):19-25.
    [24]谢以萍,杨再强.攀西干旱干热河谷退化生态系统的恢复与重建对策[J].四川林勘设计,2004,(1):11-14.
    [25]关文彬,冶民生,马克明,等.岷江干旱河谷植被分类及其主要类型[J].山地学报,2004,22(6):679-688.
    [26]高以信,青藏高原土壤区划[J].山地研究,1995,13(4):203-211
    [27]西南林学院、云南林业调查规划的设计院、云南省林业厅,高黎贡山国家自然保护区[M],1995,北京:中国林业出版社:30-49
    [28]郑远昌,高生淮,柴宗新,试论横断山区自然垂直带[J].山地研究,1986,4(1):75-83
    [29]杨勤业,沈达康,滇西北横断山区的自然垂直带[J],地理学报,1984,39(2):141-147
    [30]周乐福,云南土壤分布的特点及地带性规律[J],山地研究,1983,1(4):31-38
    [31]马溶之,中国山地土壤的地理分布规律[J].土壤学报,1965,13(1):1-7
    [32]张万儒,李贻铃,杨继镐,等.中国森林土壤分布规律[J],林业科学,1981,17(2):163-172
    [33]张渲光,横断山区气候区划,山地研究,1989,7(1):21-28
    [34]文传甲,横断山区地形对水热条件的影响,山地研究,1989,7(1):65-73
    [35]王春明,孙辉,陈建中,等.保水剂在干旱河谷造林中的应用研究[J].应用与环境生态学报,2001.7(3):197-200
    [36]潘洪泽,聂媛.混交林土壤养分效益的初步分析[J].辽宁林业科技,1997(6):57-60
    [37]张萍,刘宏茂,陈爱国,等.西双版纳热带山地利用过程中的土壤退化[J].山地学报,2001.19(1):9-13
    [38]沙丽清,邓继武,谢克金,等.西双版纳次生林火烧前后土壤养分变化的研究[J].植物生态学报,1998,22(6):513-517
    [39]杜平,高运茹,张恩生,等冀北山地华北落叶松人工林对土壤肥力的影响[J].河北林业科技,1999(2):6-8
    [40]Mc Donald M A,Healey JR.Nutrient cycling in secondary forests in the Blue Mountains of Jamaica[J].FOR Ecol Manag,2000,139:257-278
    [41]周厚诚,任海,向言词,等.南澳岛植被恢复过程中不同阶段土壤的变化[J].热带地理,2001,21(2):104-107
    [42]刘义,关继义,葛建平.不同森林类型土壤肥力的差异分析[J].东北林业大学学报,2002,30(3):76-78
    [43]刘世梁,傅伯杰,陈利顶,等.卧龙自然保护区土地利用变化对土壤性质的影响[J].地理研究,2002,21(6):682-688
    [44]王国梁,刘国彬,许明样.黄土丘陵区纸坊沟流域植被恢复的土壤养分效应[J]水土保持通报,2002,22(1):1-5
    [45]张全发,郑重,金义兴,植物群落演替与土壤发展之间的关系[[J].武汉植物学研究.1990,8(4):325-334
    [46]刘良梧,龚子同.全球土壤退化评价[J],自然资源,1994(1):10-14.
    [47]李香真,曲秋皓.蒙古高原草原土壤微生物量碳氮特征[J].土壤学报,2002,3(1):97-104
    [48]戎郁萍,韩建国,王培.放牧强度对草地土壤理化性质的影晌叨.中国草地,2001,23(4):34-38.
    [49]文海燕.赵哈林.傅华.开垦和封育年限对退化沙质草地土壤性状的影响[J].草业学报2005,14(1):31-37
    [50]朱志诚.陕北黄土高原植被基本特征及其对土壤性质的影响明[J].植物生态学与地植物 学学报,1993,17(3):280-286
    [51]张庆费 由文辉 宋永昌,浙江天童森林公园植物群落演替对土壤物理性质的影响[J].植物资源与环境,1997.6(2):36-40
    [52]卢其明,林琳等.车八岭不同演替阶段植物群落土壤特性的初步研究[J].华南农业大学学报.1997,18(3):48-52
    [53]Tisdall J.M,Organic matter and water-stable aggregates[J].Journal of soil science,1997,48:39-48
    [54]陈喁,陈凌编著.分形几何学[M].北京:地震出版社,,1998
    [55]龚伟,胡庭兴,王景燕,等.川南天然常绿阔叶林人工更新后土壤团粒结构的分形特征[J].植物生态学报.2007,31(1):56-65.
    [56]李进峰,宫渊波,陈林武,等.广元市不同土地利用类型土壤的分形特征[J].水土保持学报,2007,21(5):167-170.
    [57]廖尔华,张世熔,邓良基,等.丘陵区土壤颗粒的分形维数及其应用[J].四川农业大学学报,2002,20(3):242-245.
    [58]吴承祯,洪伟.不同经营模式土壤团粒结构的分形特征研究[J].土壤学报,1999,36(2):162-167.
    [59]Rasiah V,Kay.B.D,Perfect E.New mass-based model for estimating fractal dimension of soil aggregates[J].soil Sci.Soc.Am.J,1983,57:891-895
    [60]Perfect E,Kay B D.Fractal theory applied to soil aggregation[J].Soil Sci.Soc.Am.J,1991,55:1552-1558
    [61]Kravchenko A,Zhang RD.Estimating the soil water retention from particle-size distribution:a fractal approach[J].Soil Soc.Am,1998,63(3):171-174
    [62]杨培岭,罗远培,石元春.用粒径的重量分布表征的土壤分形特征[J].科学通报,1993,38(20):1896-1899
    [63]佟金,任露泉,陈乘聪等.土壤颗粒尺寸分布分维及时粘附行为的影响[J].农业工程学报1994,10(3):27-33
    [64]鲁植雄,张维强,潘君拯等.分形理论及其在农业土壤中的应用[J].土壤学进展.1994,22(5):40-45
    [65]张维强,潘君拯.江苏省水田土壤强度分维研究[J].农业机械学报.1995,10(4):14-19
    [66]梁士楚,董鸣,等.英罗港红树林土壤粒径分布的分形特征[J].应用生态学报,2003, :11-14
    [67]岷江上游综合考察队.岷江上游森林生态问题综合考察报告[J].四川林业科技,1980,增刊:1-31
    [68]刘文彬.岷江上游半干旱河谷灌丛植物区系[J].山地研究,1992,10(2):83-88
    [69]胡泓,刘世全等.川西亚高山针叶林人工恢复过程的土壤性质变化明[J].应用与环境生物学报,2001,7(4):308-314
    [70]乐文廉.森林资源过伐对峨扛水文情势的影响[J].山地研究.1983,1(2):15-18
    [71]刘斌,张仁绥,纪先桃.岷江上游干旱河谷的水土流失现状和原因[J].四川农业大学学报,1990,8(4):351-354
    [72]郭永明,汤宗祥.岷江上游水土流失及其防治[J].山地研究.1995,13(4):267-272
    [73]晏少春,冉生隆,程隆鑫.汶川干旱河谷地区油松、云南松等树种撤播试验[J].四川林业科技.1983,42-44
    [74]包维楷,陈建中,王春明.岷江上游山地退化治理与恢复过程中物种选择的技术方法与实践[J].山地学报。2000
    [75]包维楷,陈庆但,陈克明.岷江上游山地困难地段植被恢复优化调控技术研究[J].应用生态学报.1999,10(5):542-544
    [76]包维楷,王春明.岷江上游山地生态系统退化机制[J].山地学报,2000,18(1):57-62
    [77]赵文智,程国栋,生态水文学-揭示生态格局和生态过程水文学机制的科学[J].冰川冻土2001,23(4):450-457
    [78]王金锡.四川西部干旱河谷的生态环境与退耕还林[J].四川林业科技,2001,22(1):27-31
    [79]溥发鼎.岷江上游生态学现状及生物多样性保护[J].资源科学,2000,22(5):83-55
    [80]叶延琼,樊宏,陈国阶.岷江上游土地退化及其防治对策[J].水土保持通报,2002,22(6):56-70
    [81]包维楷,陈庆恒.山地植被恢复与重建的基本理论和方法[J].长江流域资源与环境,1998,(4):370-37
    [82]刘文彬.岷江上游干旱河谷灌丛的主要群落类型[J].山地研究.1994,12(1):27-31
    [83]南京农业大学主编.土壤农化分析(二版)[M].北京:农业出版社出版1996
    [84]中国科学院南京土壤研究所土壤物理室.土壤物理性质测定法[M].北京:科学出版社,1978
    [85]何其华,何永华,包维楷.岷江上游干旱河谷典型阳坡海拔梯度上土壤水分动态[J].应用与环境生物学报,2004,10(1):68-74
    [86]魏义长,康玲玲,等.水土保持措施对土壤物理性状的影响-以黄土高原水士保持世界银行贷款项目区为例[J].水土保持学报.2003,17(5):114-116
    [87]华孟,王坚.土壤物理学[M].北京农业大学出版社.1983,7-9
    [88]黄昌勇.土壤学[M].中国农业出版社.2000.32-46
    [89]鲍士旦.土壤农化分析[M].北京:中国农业出版社,2000
    [90]迟凤琴.通径分析在土壤微团聚体研究中的应用[J].农业系统科学与综合研究.1997,13(1):58-60
    [91]陈恩凤,关连珠.土壤特征微团聚体的组成比例与肥力评价[J].土壤学报.2001,38(1):49-52.
    [92]陈翠玲,蒋爱凤.土壤微团聚体与土壤有机质及有效氮、磷、钾的关系研究[J].河南职业技术师范学院学报2003,31(4):7-9.
    [93]许广波,梁运江.野生蕨菜产地土壤微团聚体质量分数与养分因子关系研究[J].北华大学学报(自然科学版).2003,4(3):247-251
    [94]汪景宽,张继宏.棕壤不同粒级微团聚体中磷素的保持与供应[J].土壤通报.2001,32(3):113-115
    [95]中国科学院南京土壤研究所.土壤理化分析[M].上海:科学技术出版社,1975
    [96]中国科学院南京土镶研究所土壤系统分类课题组,中国土壤系统分类课题研究协作组。中国土壤系统分类[M].北京:科学出版社,1991
    [97]Rattan Lal.Physical management of soil of the topics:priorities for the 21# century[J].Soil Science.2000,165:191-207
    [98]Barral M T,Arias M,Guerif J.Effects of iron and organic matter on the porosity and structural Stability of soil aggregates[J].Soil & Tillage Research,1998,46:162-172
    [99]Salako F K.Babalola O,Hauset S,et al.Soil macroaggtegate stability under different fallow management systems and cropping intensities in south western Nigeria[J].Geoderma,1999,91:103-123
    [100]宫阿都,何毓蓉.金沙江干热河谷区退化土壤结构的分形特征研究[J].水土保持学报,2001,15(3):112-115.
    [101]李阳兵,魏朝富,谢德体,等.岩溶山区植被破坏前后土壤团聚体分形特征研究[J].土 壤通报,2006,37(1):51-55
    [102]高以信,李明森.横断山区土壤[M].北京:科学出版社,2000

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700