用户名: 密码: 验证码:
基于输运床气化炉的IGCC系统集成研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
IGCC技术是以煤为主要燃料的高效洁净能源动力系统的重要技术选择方向。输运床气化技术可有效利用高灰分高灰熔点煤种,是一种适合于我国发展煤基IGCC的气化技术。本文对基于输运床煤气化技术的IGCC系统集成进行了研究,为形成优化的IGCC系统方案提供了参考。本文分为五部分内容,具体如下:
     1.IGCC系统关键部件数学模型
     作为系统分析的基础,建立了输运床气化、低热值燃料气燃气轮机及其NOx排放、高低压空分等IGCC关键部件数学模型并进行了验证。
     2.IGCC中燃气轮机与空分集成研究
     将燃气轮机分为理想燃气轮机和实际燃气轮机两类,考虑了燃气轮机改烧低热值煤气以后的变工况性能以及NOx排放的约束,对燃气轮机与空分集成的各种方式进行了研究。得到了低压空分时不宜采用空分整体化和氮气回注,而高压空分应与氮气回注和空分整体化配合的结果。与低压空分相比,采用高压整体空分且氮气回注的系统具有较低的NOx排放和较高的系统效率。
     3.单元过程及参数对IGCC系统性能影响
     比较了设置煤气余热锅炉和激冷流程的IGCC系统性能,分析了煤气余热锅炉蒸汽参数以及煤气出口温度对IGCC系统效率的影响。结果表明设置煤气余热锅炉的流程比激冷流程系统效率高2.82个百分点,产高压蒸汽比产中压蒸汽方案系统效率高1.25个百分点。对采用注蒸汽降NOx的IGCC系统,煤气余热锅炉设置省煤器的必要性不大。
     针对不同热回收利用方式,设计了5种煤气低品位热利用方案并进行了比较。结果表明,通过燃料湿化和凝结水预热可有效利用煤气低品位热,与不回收这部分热量相比,可提高系统效率1.21个百分点。
     分析了燃料湿化方式在IGCC系统中的作用,并就燃料湿化与注蒸汽降NOx对IGCC系统效率的影响进行了比较。结果表明一定程度的燃料湿化既可以提高系统效率,同时又能降低NOx排放;从系统效率的角度看,燃料湿化降NOx优于注蒸汽;
     比较了输运床纯氧气化和空气气化的IGCC系统性能,结果显示采用空气气化的IGCC系统在效率、净发电功率以及NOx排放方面都有优势。
     对输运床气化的除尘工艺选择进行了分析,结果表明采用干法除尘的IGCC系统比湿法除尘效率高1.81个百分点。
     4.燃气轮机改烧低热值煤气的性能
     提出了一种估算燃气轮机透平冷却空气量的方法。选取了几种典型的输运床气化产煤气,对PG9351FA燃气轮机改烧中低热值煤气以后的性能进行了分析。并对燃气轮机的各种调整通流能力的措施进行了分析比较,包括提高压气机压比、减小压气机流量、增加透平通流面积、降低透平进口温度以及空分整体化等。结果表明在采用输运床纯氧气化且燃料气不稀释时,燃机无需增加通流能力;而采用输运床空气气化时,采取从燃机抽气供气化炉的方式可解决燃机通流问题。
     5.基于现有联合循环改造的IGCC系统
     设计了3种将PG9351FA天然气联合循环改造为基于输运床气化炉的IGCC的方案,对联合循环变工况性能和IGCC整体性能进行了计算。结果显示改造后燃气轮机排气流量和温度与设计工况差距不大,底循环偏离设计工况点不远;改造后的IGCC系统供电效率能达到40%以上。
IGCC technology is recognized as one of the most promising clean coal technologies while transport gasifier can gasify the coal of high ash and high ash fusion point efficiently. This paper will investigate the integration aspects of transprot gasifier based IGCC system which intends to get some useful suggestions for the optimization of the IGCC power plant. The contents include five parts as follows:
     1. Key components models of IGCC system
     As the basis of system analysis, the components models of IGCC are built including transport gasifier, low calorific gas turbine and its NO_x emission, high and low pressure air separation units etc. The models are verified and show reasonable results thus can be used for the analysis of IGCC system.
     2. Integration of gas turbine and air separation unit
     Various integration options between the gas turbine and air separation unit are analyzed including gas turbine air extraction, ASU nitrogen reinjection and the combination of the two options. The gas turbine characteristics, NOx constrain and the pressure of the ASU are considered in the system analysis. The affects of gas turbine air extraction and ASU nitrogen reinjection to IGCC performance is analyzed and some suggestions about the integration of gas turbine and ASU are obtained.
     3. The effects of unit processes on the performance of IGCC system
     The quench process and the process with syngas coolers are compared and how steam parameter and outlet syngas temperature affect the system thermal efficiency are analyzed. Results show that with a syngas cooler producing high pressure steam, IGCC system can achieve much higher efficiency than the quench process. While the efficiency is almost the same whether saturated high pressure steam or superheated steam is produced. Besides that, for a system with NO_X reduction by steam injection, the equipment of an economizer at the downflow of the syngas cooler seems not necessary.
     Low temperature heat utilization of the syngas is discussed and five cases are compared. Results show that by fuel saturation and condensate preheating, the low temperature heat of the syngas can be used efficiently and improve the system efficiency by 1.21 percent. How the fuel saturation benefits the IGCC system is studied and compared to steam injection method when using water as the dilution to reduce NO_x emission of the gas turbine. The fuel saturation show more favorable performance than steam injection. The comparison of oxygen blown transport gasifier and air blown gasifier show that IGCC based on an air blown gasifier has higher efficiency, more power output and lower NO_x emission. Finally different particulate removal methods are compared, and the results show that system with a dry filter has higher efficiency of 1.81 percent than that with a wet scrubber particulate removal.
     4. Gas turbine performance when firing low calorific coal gas
     A method to calculate the turbine cooling flow is given and the performance of PG9351FA gas turbine when firing typical low calorific coal gases is calculated. Various methods to increase the surge margin and to decrease the power output are compared including compressor pressure ratio increase, compressor flow reduction, turbine critical area increase, turbine inlet temperature decrease and the compressor air extraction. Results show that to close the IGV can reduce the power output of gas turbine but have little effect on the increase of surge margin. When firing syngas produced by oxygen blown transport gasifier with no dilution, the gas turbine power and surge margin can meet the requirement. While firing syngas produced by an air blown transport gasifier, the compressor air extraction is suggested for the operation of gas turbine.
     5. Retrofit natural gas combined cycle power plant with IGCC
     Three IGCC processes based on transport gasifier to retrofit existing natural gas combined cycle power plant is designed and analyzed. Results show that the gas turbine combined cycle can operated independently and need not to be modified significantly, and the system can achieve the overall efficiency of over 40%.
引文
[1]国家统计局.2008年中国统计年鉴.北京:中国统计出版社.2008.
    [2]王家诚,赵志林.中国能源发展报告(2001).北京:中国计量出版社.2001.
    [3]许世森,张东亮,任永强.大规模煤气化技术—煤清洁转化新技术丛书:化学工业出版社.2006.
    [4]中国电力企业联合会.中国电力行业年度发展报告.北京.2008.
    [5]IEA.World Energy Outlook 2006.Paris:Intemational Energy Agency.2006.
    [6]Holt NAH.Integrated Gasification Combined Cycle Power Plants.2001.
    [7]Coca aT.Integrated Gasification Combined Cycle Technology:IGCC,Its Actual Application in Spain:Elcogas.Puertollano.2003.
    [8]段立强,林汝谋,金红光等.新型IGCC系统研究与概念设计[J].工程热物理学报.2002,23(2):139-142.
    [9]DOE/NETL.Cost and Performance Baseline for Fossil Energy Plants.2007.
    [10]焦树建.IGCC的某些关键技术的发展与展望[J].动力工程.2006,26(2):153-165,179.
    [11]IEA.Intemational Energy Annual 1999.2001 February.
    [12]EIA.Annual Energy Outlook 2007.
    [13]Ishibashi Y,Shinada O.First Year Operation Results ofCCP's Nakoso 250MW Air-blown IGCC Demonstration Plant.In:Gasification Technologies Conference.2008.Washington,D.C.2008.
    [14]Peltier R.日本磐城市IGCC示范电厂介绍[J].电力建设.2008,29(3):91-93.
    [15]Hooie DT.Japan's Energy Policy:Working Together to Provide Clean Air and Abundant Energy for a Better Future.2001 FALL.
    [16]The 1st Workshop for the Clean Coal Technology Roadmap.In.Calgary,Alberta,Canada.2004.
    [17]Clean Coal Technologies Roadmpas,IEA Profiles.2003.
    [18]庞忠甲.失落的能源战略——回眸IGCC二十五年[J].经济管理文摘.2005,(18):10-22.
    [19]许世森.中国IGCC现状与发展.2006.
    [20]Collot AG.Matching gasification technologies to coal properties[J].Coal Geology.2006,65:191-212.
    [21]贺永德.现代煤化工技术手册.北京:化学工业出版社.2003.
    [22]于遵宏,沈才,王辅臣等.水煤浆气化炉气化过程的三区模型[J].燃料化学学报.1993,21(2):90-95.
    [23]王辅臣,龚欣,代正华等.Shell粉煤气化炉的分析与模拟[J].华东理工大学学报:自然科学版.2002,29(2):202-205,216.
    [24]李政,王天骄.Texaco煤气化炉数学模型的研究—建模部分[J].动力工程.2001,21(2):1161-1165,1168.
    [25]李政,王天骄.Texaco煤气化炉数学模型研究(2)—计算结果及分析[J].动力工程.2001,21(4):1316-1319.
    [26]Johnson MS.The Effects of Gas Turbine Characteristics on Integrated Gasification Combined-cycle Power Plant Performance [Doctor]:Stanford University.1990.
    [27]王啸,马正飞,周汉涛等.两床变压吸附空分制氧过程的模拟[J].天然气化工:Cl化学与化工.2003,28(1):50-56.
    [28]Phillips JN.A Study of the Off-design Performance of Integrated Coal Gasification Combined-cycle Power Plants [Doctor]:Stanford University.1986.
    [29]Ong'iro AO.Techno-Economic Modeling of Integrated Advanced Power Cycles [Doctor].Roma:Universita Degli Studi di Roma.1996.
    [30]刘尚明,王培勇,孙红等.IGCC电站空分系统精馏塔的建模[J].燃气轮机技术.2001,14(4):40-43.
    [31]邢翼腾.IGCC电站空分系统的研究与建模[硕士].北京:清华大学.2003.
    [32]Smith AR,Noga EJ.Air Separation Design for IGCC-Future Directions.In:EPRI Gasification Technologies Conference.San Francisco,California.1996.
    [33]Allam J,Castle-Smith.Air Separation Units,Design and Future Development.In:ECOS 2000 2000.
    [34]技术市场——低温甲醇洗系统模拟软件RPS[J].化工中间体.2005,83(8):63-64.
    [35]王铭忠,白慧峰.烧低热值煤气时燃气轮机工况点的调整与特性变化[J].燃气轮机技术.2003,16(3):48-52.
    [36]王铭忠.IGCC系统中燃气轮机的工况点选择与用“当量温度”进行特性计算[J].燃气轮机技术.1999,12(3):16-21.
    [37]白慧峰,邓世敏,王铭忠等.烧低热值煤气时燃气轮机特性计算与分析[J].热力发电.2003,11:58-60.
    [38]江丽霞,林汝谋,金红光等.IGCC蒸汽系统综合优化的研究[J].工程热物理学报.2001,22(6):661-664.
    [39]吕泽华,赵士杭,尚学伟等.三压再热汽水系统IGCC的数学模型[J].清华大学学报(自然科学版).2000.40(6):68-72.
    [40]林汝谋,江丽霞,段立强等.IGCC中蒸汽系统集成技术与设计原则[J].燃气轮机技术.2001,14(4):32-39.
    [41]胡剑辉,林汝谋.联合循环中蒸汽底循环系统稳态全工况特性模型及计算分析[J].工程热物理学报.1997,18(3):277-280.
    [42]黄文波,林汝谋,肖云汉等.联合循环中余热锅炉及热力特点分析[J].燃气轮机技术.1996,9(4):21-30.
    [43]徐钢,林汝谋,邵艳军等.IGCC联合循环系统模型通用性研究[J].燃气轮机技术.2005,18(2):1-7.
    [44]徐钢,林汝谋,邵艳军等.燃气轮机建模的通用性和精细性研究[J].中国电机工程学报.2005,25(21):106-111.
    [45]汪洋,于广锁,于遵宏.运用Gibbs自由能最小化方法模拟气流床煤气化炉[J].煤炭转化.2004,27(4):27-33.
    [46]吴学成,王勤辉,骆仲泱等.气化参数影响气流床煤气化的模型研究(Ⅱ)——模型预测及分析[J].浙江大学学报:工学版.2004,38(11):1483-1489.
    [47]吴学成,王勤辉,骆仲泱等.气化参数影响气流床煤气化的模型研究(Ⅰ)——模型建立及验证[J].浙江大学学报:工学版2004,38(10):1361-1365.1386.
    [48]徐祥.IGCC和联产的系统研究[博士论文].北京:中国科学院工程热物理研究所.2007.
    [49]NETL.Shell Gasifier IGCC Base Cases.2000.Report No.:PED-IGCC-98-002.
    [50]Outlook for coal-based IGCC Power Generation.Gas Turbine World 2007 January-February:20-28.
    [51]Division PE.Transport Gasifier IGCC Base Cases.2000.
    [52]高健.IGCC系统及以其为基础的多能源系统的研究[doctor].北京:清华大学.2008.
    [53]Bonsu AK,Eiland JD,Gardner BF.Power from PRB-Four Conceptual IGCC Plant Designs Using the Transport Gasifier.In:Twenty-Second Annual Intemational Pittsburgh Coal Conference.2005.
    [54]Rogers LH,Booras GS,Breault RW et al.Power Systems Development Facility Update on Six Trig~(TM) Studies.In:International Pittsburgh Coal Conference.Pittsburgh,PA.2006.
    [55]NETL.Texaco Gasifier IGCC Base Cases.2000.Report No.: PED-IGCC-98-001.
    [56]江丽霞,林汝谋,蔡睿贤.整体煤气化联合循环系统特性分析研究[J].工程热物理学报.2000,21(1):20-22.
    [57]Hornick MJ.Tampa Electric Polk Power Station Integrated Gasification Combined Cycle Project Final Technical Report.2002.
    [58]Gopinathan R.GE Gas Turbine for Lean Gaseous Fuels.2006.
    [59]Celis C,Pinto PdMR,Barbosa RS et al.Modeling of Variable Inlet Guide Vanes Affects on a One Shaft Industrial Gas Turbine Used in a Combined Cycle Application.In:Proceedings of ASME Turbo Expo 2008:Power for Land,Sea and Air.Berlin,Germany.2008:GT2008-50076.
    [60]Oluyede EO,Phillips J.Fundamental Impact of Firing Syngas in Gas Turbines.In:Proceedings of GT2007.Montreal,Canada.2007:GT2007-27385.
    [61]Zhu Y.Evaluation of Gas Turbine and Gasifier-based Power Generation System [Doctor]:North Carolina State University.2004.
    [62]吕泽华,赵士杭.空分系统集成度对IGCC系统性能的影响[J].燃气轮机技术.2000,13(1):28-32.
    [63]Maurstad O.An Overview of Coal based Integrated Gasification Combined Cycle (IGCC) Technology.2005.Report No.:MIT LFEE 2005-002 WP.
    [64]Dowd RA.Wabash River Coal Gasification Repowering Project.2000.
    [65]焦树建.对目前世界上五座IGCC电站技术的评估[J].燃气轮机技术.1999,12(2):1-15.
    [66]Lee C,Lee SJ,Yun Y.Effect of air separation unit integration on integrated gasification combined cycle performance and NOx emission characteristics[J].Korean J.Chem.Eng.2007,24(2):368-373.
    [67]杨勇平,郭喜燕.100MW IGCC机组设计工况下的性能计算[J].现代电力.1999,16(2):1-6.
    [68]郑世敏,李勤道,于新颖等IGCC系统模拟分析研究[J].动力工程.2000,20(5):880-884.
    [69]Venkata AN.Modeling the Performance,Emissions,and Costs of Texaco Gasifier-Based Integrated Gasification Combined Cycle Systems [Master]:North Carolina State University.1999.
    [70]Pickett MM.Modeling the Performance and Emissions of British Gas/Lurgi-Based Integrated Gasification Combined Cycle Systems [Master]:North Carolina State University.2000.
    [71]Zhao L,Xiao Y,Gallagher KS et al.Technical,environmental,and economic assessment of deploying advanced coal power technologies in the Chinese context[J].Energy Policy.2008,36(7):2709-2718.
    [72]Gutierrez JP,Sullivan TB,Feller GJ.Turning NGCC INTO IGCC:Cycle Retrofitting Issues.In:Joint Conference of ASME Power and Electric Power.Atlanta,GA,USA.2006:PWR2006-88112.
    [73]Shilling N.Understanding the NG to IGCC Conversion Option.
    [74]张荣光,那永洁,吕清刚.循环流化床煤气化平衡模型研究[J].中国电机工程学报.2005,25(18):80-85.
    [75]徐震.HAT循环空气湿化过程研究[博士论文].北京:中国科学院.2006.
    [76]Jordal K,Torisson T.Comparison of Gas Turbine Cooling with Dry Air,Humidified Air and Steam.In:Proceedings of ASME TurboExpo.Munich,Germany.2000:2000-GT-0169.
    [77]Cevasco R,Parente J,Traverso A et al.Off-Design and Transient Analysis of Saturators for Humid Air Turbine Cycles.In:Proceedings of ASME Turbo Expo.Vienna,Austria.2004.
    [78]林知望.空分设备内压缩流程与外压缩流程的比较与选择[J].深冷技术.2007,4:25-28.
    [79]杭州杭氧股份有限公司.43500Nm.3/h空分装置技术建议书.2007.
    [80]陆勇.IGCC系统中燃气轮机选型原则分析研究[J].电力设备.2002,3(4):70-73.
    [81]GateCycle User's Guide.In:GE-Enter Software Inc.2003.
    [82]Collodi G,Jones RM.The Sarlux IGCC Project an Outline of the Construction and Commissioning Activities.In:1999 Gasification Technologies Conference.San Francisco,California.1999.
    [83]Kurzke J.GasTurb~(TM)-Gas turbine performance sumulation program (http://www,gasturb.de/).In.
    [84]Brdar RD,Jones RM.GE IGCC Technology and Experience with Advanced Gas Turbines.Report No.:GER-4207.
    [85]Savelli JF,Touchton GL.Development of Gas Turbine Combustion System for Medium-BTU Fuel.In:Gas Turbine Conference and Exhibit.Houston,Texas.1985:85-GT-98.
    [86]Dennis RA,Shelton WW,Le P.Development of Baseline Performance Values for Turbines in Existing IGCC Applications.In:Proceedings of GT2007,ASME Turbo Expo 2007:Power for Land,Sea and Air.Montreal,Canada.2007:GT2007-28096.
    [87]Eurlings JTGM,Ploeg JEG.Process Performance of the SCGP at Buggenum IGCC.In:Gasification Technolgies Conference.San Francisco,California.1999.
    [88]Company TE.Final Public Design Report-Technical Progress Report.1996.
    [89]Tampa电厂IGCC发电技术考察报告.2006.
    [90]王德惠,李政.大型燃气轮机冷却空气分配及透平膨胀功计算方法研究[J].中国电机工程学报.2004,24(1):180-185.
    [91]Young JB,R.C.Wilcock.Modeling the Air-Cooled Gas Turbine Part1-General Thermodynamics.In:Proceedings of ASME Turbo Expo.New Orleans,Louisiana,USA.2001.
    [92]Jordal K.Modeling and Performance of Gas Turbine Cycles with Various Means of Blade Cooling [Doctor]:Lund University.2001.
    [93]Horlock JH,Watson DT,Jones TV.Limitations on Gas Turbine Performance Imposed by Large Turbine Cooling FLows.In:Proceedings of ASME TurboExpo 2000.Munich Germany.2000.
    [94]Matta RK,Mercer GD,Tuthill RS.Power Systems for the 21st Century-“H” Gas Turbine Combined-Cycles.
    [95]郑莆燕,姚秀平,齐进等.确定运行中的燃气轮机初温的方法探讨[J].燃气轮机技术.2005,18(1):57-59.
    [96]Biasi Vd.Catalog Performance Data Can Reveal Hidden Design Features[J].Gas Turbine World.2005.
    [97]林公舒.现代大功率发电用燃气轮机.北京:机械工业出版社.2007.
    [98]Brooks FJ.GE Gas Turbine Performance Characteristics.2005.Report No.:GER-3567H.
    [99]Orbay RC,Genrup M,Eriksson P et al.Off-Design Performance Investigation of a Low Calorific Value Gas Fired Generic Type Single-Shaft Gas Turbine.In:Proceedings of GT2007.Montreal,Canada.GT2007-27936.
    [100]Orbay RC,Genrup M,Eriksson P et al.Off-Design Performance Investigation of a Low Calorific Value Gas Fired Generic Type Single-Shaft Gas Turbine.In:Proceedings of GT2007.Montreal,Canada.2007:GT2007-27936.
    [101]高南兴,林瑛.世界F级(50Hz)重型燃气轮机电站目录[J].发电设备.2006,(6):381-393.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700