用户名: 密码: 验证码:
滚筒干燥机研制及南瓜粉干燥过程数学模拟
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
滚筒干燥机因其操作弹性大、适应性广、热效率高、设备成本低而广泛应用于食品工业中。与其他干燥方式相比,滚筒干燥有预糊化作用,可以提高产品的糊化度,改善产品的冲调性,同时,滚筒干燥有利于增大产品的孔隙率,提高产品的复水性。南瓜粉是一种深受消费者喜爱的产品,具有很高的经济价值。目前,南瓜粉的干燥方法主要有喷雾干燥和热风干燥。热风干燥的干燥温度高、加热时间长,生产的南瓜粉不仅感官质量差,营养物质也损失严重,喷雾干燥生产的南瓜粉均匀细腻、速溶性好,但是喷雾干燥能耗高、设备投入成本高。本课题通过对滚筒干燥原理的分析及滚筒干燥机结构的研究,设计制造了一台可以适用于干燥多种物料的单滚筒干燥试验台,在此试验台上,进行开发滚筒干燥生产南瓜粉的试验研究,并以南瓜为原料研究滚筒干燥过程中的干燥动力学及传热传质特性,用数学的方法对滚筒干燥过程进行模拟和分析。主要研究内容和结论如下:
     1、研制了滚筒干燥试验台,并对试验台进行整机性能检测和新产品开发的试验研究。详细分析了滚筒干燥机的结构和设计原理,研制的滚筒干燥试验台具有广泛的适用性,各项指标和功能既符合了生产实际又满足了试验要求。
     2、开发了一种滚筒干燥生产南瓜粉的工艺。确定了滚筒干燥生产南瓜粉的工艺步骤,即:选材、切分、热处理、打浆、滚筒干燥和粉碎筛分;通过试验确定热处理方式及热处理工艺参数为南瓜丁在80℃水中漂烫2min,迅速放到自来水中冷却至物料中心温度达到室温,再常压蒸制4min;优化出滚筒干燥生产南瓜粉的最佳干燥工艺参数组合为:进料质量流量40kg/h、滚筒转速1.00r/min、蒸汽压力0.39MPa。
     3、研究了不同蒸汽压力下南瓜浆滚筒干燥的动力学特性。根据物料在干燥过程中的状态,将滚筒干燥过程分为浆状区和膜状区两个阶段,物料中的大部分水分是在浆状区中蒸发;水分在膜状区的干燥为降速干燥,蒸汽压力越高、物料进入膜状区的初始水分含量越低、初始阶段干燥速率越小,但是蒸汽压力越高,干燥速率降低得越慢,整体干燥时间越短;将试验数据与薄层干燥模型进行拟合,优选出在各个压力下最匹配的南瓜滚筒干燥动力学模型均为Midilli-Kucuk模型。
     4、分析了膜状区中物料温度和滚筒外表面温度的变化规律。不同蒸汽压力下,物料温度和滚筒外表面温度均沿位移呈现上升趋势,温度的变化与水分干燥速率有关,干燥速率越快,物料表面温度升高越慢,干燥速率降低得越快,滚筒表面温度升高越快。
     5、建立了膜状区中滚筒干燥传热传质模型,并在稳态循环条件下对模型求解,以南瓜为原料对模型进行了验证,通过模型计算出的物料温度与试验值有较高的匹配程度,真实反映了滚筒干燥过程中物料温度随位移的变化规律。
     6、比较了不同干燥工艺对南瓜粉感官质量、冲调性、营养性、得率和能耗的影响。滚筒干燥工艺生产的南瓜粉感官质量和冲调性都与喷雾干燥南瓜粉相近,但营养物质的保存率低于喷雾干燥,热风干燥产品的品质最差;滚筒干燥的得率高于喷雾干燥,低于热风干燥,但是滚筒干燥的干燥速率快,单位时间产量高,单位能耗与喷雾干燥相比降低了35.89%。
Drum dryer is widely used in food industry because of its easy operation, good adaptability, high thermal efficiency, short drying time and low equipment cost. Compared with the other drying methods, drum drying has the advantage of pregelatinization which can improve the grade of gelatinization of the product and make the product to be instant edible. Moreover, product dried by drum drying has a higher quality of rehydration because of increasing porosity and complete inner structure. Pumpkin powder with high economic value is one of the most popular pumpkin products. Hot wind drying and spray drying are widely used in producing of pumpkin powder at present. However, both of them have some disadvantages such as high temperature, long drying time, low quality, and highly lost of nutrients of hot wind drying method and its production. For spray drying although the production maintains a relatively large amount of the nutrients and is characterized by good solution and satisfactory taste, it still cannot be widely used in the industry owing to its high investment of spray dryer and high energy consumption and operation cost. In order to design and manufacture a test bed of drum drying which can be used to dry many different kinds of materials, the drying theory and the structure of the drum dryers were deeply studied in this paper. By using the drum drying method, a new type of pumpkin powder was developed and the processing was optimized. According to the heat and mass transfer mechanism, the drying kinetic was analyzed and a numerical model was developed in the study. The main research contents and results were summarized as follows:
     1. A test bed of single drum drying was developed. The configuration and operating principle of the equipment was deeply analyzed. The test bed of drum drying can be used to dry different kinds of materials. The test indicators and functions of the test bed not only are consistent with the actual production but also meet the experimental requirements.
     2. The product processing of a new kind of pumpkin powder with drum drying was developed. The determined process steps include selection, cutting, cooking, mashing, drum drying and smashing. Through numerous experiments, the best cooking process was determined:small pumpkin pieces should be blanched in 80℃water for 2min, then be put into running water to cool down with its core temperature getting to room temperature, and finally be steamed for 4min. The drying processing was optimized by using the Orthogonal Rotatable Central Composite Design. Considering the higher product quality, the optimum data were developed: flow mass is 40 kg/h, rotary speed is 1.00 r/min, and vapor pressure is 0.39 MPa.
     3. Drum drying characteristics of pumpkin pulp were investigated. The drum drying process was divided into two phases:pulp phase and flake phase. It was indicated from the results that most of the moisture evaporated during the pulp phase; the higher the steam pressure was the higher the drying rate became. It was also shown that during the flake phase only falling rate period took place. As the steam pressure increased, on the one hand, the initial moisture content of flake phase became less and the drying rate decreased, on the other hand, the decreasing of the drying rate slowed down and the drying time was much shorter. The experimental moisture loss data were fitted with 10 thin-layer drying models. Consequently, of all the drying models, a semi-theoretical Midilli - Kucuk model was fitted best.
     4. During the flake phase, variation of the temperatures of the product and the outer surface of the drum dryer was analyzed. Results showed that both of the temperatures increased with displacement under different vapor pressures. It can also be indicated that variation of the temperatures were related to variation of the drying rate, the faster the drying rate was the slower the temperature of the product increased, the faster the drying rate decrease the faster the temperature of the outer surface of the drum dryer increased.
     5. The heat and mass transfer model of the product during flake phase was established and the equations were solved under steady-state condition. The experimental data of the pumpkin pulp dried by drum drying were used to validate the simulation results. The experimental and simulation results had a high correlation value which shows that the model could be used to predict the variation of the product temperature with displacement.
     6. Comparison analysis on sensory quality, dissolvability, nutritional quality, yield and energy consumption of the pumpkin powder with drum drying, spray drying and hot wind drying was done. Results showed that compared with the spray drying pumpkin powder with drum drying had a similar quality on sensory and dissolvability, higher yield, but lower nutritional preservation rate. The product quality of the hot wind drying was the worst. The energy consumption of drum drying decreased 35.89% per kilogram water compared with spray drying.
引文
[1]APV Crepaco Inc. Dryers:Technology and Engineering. In Encyclopedia of Food Science and Technology,2nd Ed.; Francis, J., Ed.; John Wiley & Sons, Inc.:New York,2000; 542-578.
    [2]申国其,杨芳,侯建丽.滚筒干燥技术在食品加工中的应用.1994.食品科学,12:43-48.
    [3]Hall, C.W.; Farrall, A.W.; Roppen, A.L. Drum drier. In Encyclopedia of Food Engineering,2nd Ed.; Eds.; AVI Publishing Company, Inc.:Westport, Connecticut,1986; 264-266.
    [4]Moore, J.G. Drum Dryers. In Handbook of Industrial Drying,2nd Ed.; Mujumdar, A.S., Ed.; Marcel Dekker, Inc.:New York,1995; Vol.1,249-262.
    [5]Bonazzi, C.; Dumoulin, E.; Raoult-Wack, A.; Berk, Z.; Bimbenet, J.J.; Courtois, F.; Trytram, G.; Vasseur, J. Food Drying and Dewatering. Drying Technology.1996,14,2135-2170.
    [6]尹学清,张清泉,程跃胜,等.雪花全粉滚筒干燥机薯泥彩带式自动布料技术.中国农业机械学会2008年学术年会论文集,2008,986-987.
    [7]李云飞,葛克山.食品工程原理.中国农业大学出版社.北京,2002.
    [8]Rodriguez, G.; Vasseur, J.; Courtois, F. Design and Control of Drum Dryers for the Food Industry. Part 1. Set-Up of a Moisture Sensor and an Inductive Heater. J. Food Eng.1996,28,271-282.
    [9]张友松.变性淀粉生产与应用手册.北京:中国轻工业出版社,1999:134-137.
    [10]吴玉凯.接枝淀粉超强吸水剂的研制.商业科技开发.1997,2.
    [11]张寒冰,王璋,许时婴.用滚筒干燥法生产固体蜂蜜的研究.食品工业科技,2004,25(12):97-100.
    [12]叶云花,涂宗财,刘成梅,等.高膳食纤维藕粉的滚筒干燥.江西食品工业,2006,1:21-23.
    [13]Fritze, M.1973. Heat and mass transfer problems in the production of food stuffs on drum dryers. Escher Wyss. News. No.2.
    [14]冯承,张燕萍.滚筒干燥技术及其在变性淀粉生产中的应用.包装与食品机械,2004,22(6):34-37.
    [15]Trystram, G., Meot, J. M., Vasseur, J., et al. Dynamic modeling of a drum dryer for foodproducts. In Proceedings of the sixth international drying symposium,Versailles, France,1988:13-18.
    [16]Abchir R., Vasseur J. and Trystram G. Modelisation and simulation of drum drying. Six International Drying Symposium, IDS'88, Versailles,1988:435-439.
    [17]Rodriguez G., Vasseur J. and Courtois F. Design and control of drum dryers for the food industry. Part 1. Set-up of a moisture sensor and an inductive heater. Journal of Food Engineering,1996a. 28,271-282.
    [18]Rodriguez G., Vasseur J. and Courtois F. Design and control of drum dryers for the food industry. Part 2. Automatic control. Journal of Food Engineering,1996b,30,171-183.
    [19]Cording, Jr., Willard, M.J., Eskew, R.K., and Sullivan, J.F. Advances in the dehydration of mashed potatoes by the flake process. Food Technol.,1957.11(4):236-240.
    [20]Talburt, N.F. and Smith, O. Potato processing. Third edition.1957:463-512.
    [21]Charm, S.E. The fundamentals of food engineering. Westport, AVI Publishing Co.,1963.348-352.
    [22]Nonhebel, G. and Moss, A.A. Continuous drum or film dryers:drying of solids in the chemical industry. Butterworth Publ., London.1971:158-179.
    [23]Fritze, H. Dry gelatinized starch produced on different types of drum dryers. Ind. Eng. Chem., Process design and development.1973.12:2.
    [24]Fritze, H. The use of drum dryers in the human food industry. Intl. Symp. of Heat and Mass Transfer Problems, in Food Engineering, Wageningen.1972:1-23.
    [25]Kozempel M. F., Sullivan J.F., Craig J. C. and Heilang W. K.1986. Drum-drying potato flakes-a predictive model. Lebens.-Wiss. U. Technol.19:193-197.
    [26]Daud W. R. b. W. and Armstrong W. D. Pilot plant study of the drum dryer. In A. S. Mujumdar(Ed.), Drying 87',1987.101-108.
    [27]Daud W. R. b. W. Thermal dynamics of a drum dryer. Drying Technology,1991,9(2),463-478.
    [28]Trystram, G., Meot, J. M., Vasseur, J., et al. Dynamic modeling of a drum dryer for foodproducts. In Proceedings of the sixth international drying symposium, Versailles, France 1988,13-18.
    [29]Trystram, G.,& Vasseur, J. The modeling and simulation of a drum dryer. International Chemical Engineering,1992,32(4),689-705.
    [30]Vasseur J., Abchir F. and Trystram G. Modelling of drum drying. In A. S. Mujumdar, I. Filkova (Eds.), Drying 91',1991 a.121-129.
    [31]Vasseur, J., Kabbert, R.,& Lebert, A. Kinetics of drying in drum drying. In A. S. Mujumdar & I. Filkova (Eds.), Drying_91 1991b.292-300
    [32]Vasseur, J.,& Loncin, M. High heat transfer coefficient in thin film drying: Application to drum drying. In B. M. McKenna (Ed.), Proceedings of 3rd international congress, Dublin, Ireland. Engineering and food, vol.1:Engineering sciences in the food industry 1983.217-225
    [33]Rodriguez, G., Vasseur, J.,& Courtois, F. Design and control of drum dryers for the food industry, Part 1. Set-up of a moisture sensor and an inductive heater. Journal of Food Engineering,1996,28: 271-282.
    [34]Rodriguez, G., Vasseur, J.,& Courtois, F. Design and control of drum dryers for the food industry, Part 2. Automatic control. Journal of Food Engineering,1996,30,171-183.
    [35]Kitson J. A. and Mac Gregor D. R. Technical note:drying fruit purees on an improved pilot plant drum dryer. Journal of Food Technology,1982,17,285-288.
    [36]Rosenthal A. and Sgarbieri V. C. Nutritional evaluation of a fresh sweet corn drum drying process. In A. S. Mujumdar (Ed.) Drying 92',1992,1419-1425.
    [37]Anastasiades, A., Thanou, S., Loulis, D., et al. Rheological and physical characterization of pregelatinized maize starches. Journal of Food Engineering,2002,52,57-66.
    [38]Gavrielidou, M. A., Vallous, N. A., Karapantsios, T. D., et al. Heat transport to a starch slurry gelatinizing between the drums of a double drum dryer. Journal of Food Engineering,2002,54(1), 45-58.
    [39]Kalogianni, E., Xinogalos, V., Karapantsios, T. D., et al. Effect of feed concentration on the production of pregelatinized starch in a double drum dryer. Lebensmittel-Wissenschaft & Technologie,2002,35(8),703-714.
    [40]Karapantsios, T. D., Kostoglou, M.,& Karabelas, A. J. Local condensation rates of steam/air mixtures in direct contact with a falling liquid film. International Journal of Heat and Mass Transfer,1995,38(5),779-794.
    [41]Karapantsios, T. D., Sakonidou, E. P.,& Raphaelides, S. N. Water dispersion kinetics during starch gelatinization. Carbohydrate Polymers,2002,49(4),479-490.
    [42]N. A. Vallous, M. A. Gavrielidou, T. D. Karapantsios et al. Performance of a double drum dryer for producing pregelatinized maize starches. Journal of Food Engineering,2002,51,171-183.
    [43]Thodoris D. Karapantsios. Conductive drying kinetics of pregelatinized starch thin films. Journal of Food Engineering.2006,76,477-489.
    [44]中国科学院中国植物志编辑委员会.中国植物志第七十三卷第一分册.科学出版社,1986:262.
    [45]张芳,蒋作明,章恩明.南瓜的功能特性及其在食品工业中的应用.食品工业科技,2000,21(6):62-64.
    [46]刘晓梅,赵珊珊.喷雾干燥法生产南瓜粉工艺.饮料工业,2010,13(3):14-15.
    [47]张学杰,刘宜生,姚蔚等.不同南瓜品种果实生长发育过程中果胶物质的动态变化.中国农业科学,2002,35(9):1154-1158.
    [48]张建农,满艳萍.南瓜果实营养成分测定与分析.甘肃农业大学学报,1999,34(3):300-302.
    [49]王萍,刘杰才,赵清岩等.南瓜果实营养成分分析及其利用研究.内蒙古农业大学学报,2002,23(3):52-54.
    [50]王萍,赵清岩.南瓜的营养成分药用价值及开发利用.长江蔬菜,1998,7:1-4.
    [51]于纪姗,刘洪银.谈谈几种常见植物油的营养.食品科技,1995,1:35.
    [52]王萍,赵清岩,王若菁等.籽用南瓜种子成熟过程中主要营养成分的分析.园艺学报,2001,28(1):47-51.
    [53]张拥军,沈晓春.南瓜的药用价值及其开发利用前景.中国计量学院学报,2003,14(3):204-206.
    [54]李巧玲.果胶的提取.食品研究与开发,2002,23(3):16-17.
    [55]陈栓虎,李晓宇.盐析法从苹果皮中提取果胶的最佳工艺条件.食品科学,1994,4:24-26.
    [56]孔瑾,李新峥,常景玲,等.盐析法从干南瓜皮中提取果胶的技术研究.食品研究与开发,2005,26(1):69-73.
    [57]杨韩晖.南瓜果胶盐析法提取工艺的研究.农产品加工学刊,2007,9:44-47.
    [58]牛德龙,谢宗坡,贾宝莹,王文博.南瓜皮中果胶的微波快速提取.粮油加工,2008,3:118-120.
    [59]王燕,车振明,万国福.南瓜果胶脱色工艺的研究.食品工业科技,2005,26(6):121-122.
    [60]M. Murkovio, U. MCtlleder and H. Neunteufl. Carotenoid Content in Different Varieties of Pumpkins. Journal of food composition and analysis,2002,15:633-638.
    [61]武维振,王兰,刘红丽.天然食素南瓜黄的制备和性质研究.郑州粮食学院学报,1996,17(2):25-29.
    [62]魏冰.南瓜籽油的开发和利用.粮油加工,2008,5:60-63.
    [63]邹宇晓,肖更生.南瓜的功能性成分与保健食品开发与研究.中国果蔬,2004,4:47-48.
    [64]李燕杰,甄成,陈洪涛,等.南瓜籽饼粕中蛋白的综合利用.食品研究与开发,2009:30(8):173-175.
    [65]刘政,陶敏慧,黄跃,等.南瓜籽粕蛋白酶解制备低分子肽的研究.中国油脂,2009,34(11):24-26.
    [66]秦蓝,许时婴,王璋.采用酶法液化技术制备高品质的南瓜汁.食品与发酵工业,2003,29(12):49-53.
    [67]贺小琼.南瓜的营养与保健.中国食物与营养,2003,8:43-46.
    [68]何群,练惠辉,韩鹏,郑国兴,陈清西.南瓜粉的酶法制备及营养成分分析.厦门大学学报(自然科学版),2006,45:57-59.
    [69]唐咏梅,宁鸿珍,刘辉,等。南瓜粉的营养价值评价.食品科技,2006,10:299-301.
    [70]彭红,黄小茉,欧阳友生,等.南瓜多糖的提取工艺及其降糖作用的研究.食品科学,2002,23(8):260-263.
    [71]孔庆胜,王彦英,蒋滢。南瓜多糖的分离、纯化及其降血脂作用.中国生化药物杂志,2000,21(3):130-132.
    [72]车千红,吕敏,段宝珊,等.南瓜粉配合临床治疗糖尿病疗效观察.辽宁药物与临床,2002,5(4):201-202.
    [73]张雪萍,白学敏.复方南瓜粉对糖尿病模型小鼠药理作用的实验研究.中国现代应用药学杂志,2004,21(4):278-280.
    [74]白学敏,张雪萍.复方南瓜粉对糖尿病模型小鼠肾脏的保护作用.医药导报,2006,25(7):616-617
    [75]安静林,张兆国.南瓜加工利用的研究进展.中国农业工程学会2007年学术年会论文集,2007.
    [76]周日兴,韩清华,马季威,等.南瓜全粉生产工艺及设备.食品与机械,2001,5:29-30.
    [77]孔庆新,祝冬青.微波千爆法生产南瓜粉的研究.食品工业科技,2006,9:150-152.
    [78]董先平.南瓜粉加工关键工艺参数的研究.[硕士学位论文].合肥工业大学,1999.
    [79]周先汉,程杰顺,董先平.恒温与分段变温真空干燥南瓜粉的比较研究.食品工业科技,2003,24(2):17-21.
    [80]方雪花.鲜切南瓜生理特性与南瓜粉抗氧化活性.[硕士学位论文].杭州:浙江大学,2005.
    [81]区子弁,王琴.超微粉碎技术及其设备在粮油加工中的应用.广州农业科学,2010,7:192-194.
    [82]安静林,张兆国,刘坦.不同粒径南瓜粉体的营养成分溶出与理化特性研究.东北农业大学学报,2009,40(7):111-114.
    [83]张拥军,姚惠源,张之佳,等.超细南瓜粉的质构特性研究.食品工业科技,2001,22(6):16-18.
    [84]孙赞,周日兴,王习治.南瓜喷雾干燥生产线工艺研究.粮油加工与食品机械,2001,4:26-27.
    [85]焦云鹏.南瓜粉喷雾干燥法制备研究.食品科技,2006,12:54-57.
    [86]刘晓梅,赵珊珊.喷雾干燥法生产南瓜粉工艺.饮料工业,2010,3:14-15.
    [87]田晓琴,段旭昌.酶解速溶保健南瓜粉加工技术研究.食品研究与开发,2007,28(8):105-108.
    [88]黄军,熊华,李亮,等.南瓜酶解及微囊化速溶南瓜粉工艺研究.食品科技,2008,7:74-77.
    [89]翟玮玮.速溶南瓜粉生产工艺改进研究.食品科学,2008,29(10):228-230.
    [90]刘文慧,王颉,王静,等.喷雾干燥南瓜粉生产工艺研究.食品科技,2007,9:62-65.
    [91]许春英,乔长晟,贾士儒,等.天然南瓜粉生产工艺及关键技术的研究.食品科学,2007,28(1):377-380.
    [92]樊黎生,王金华.南瓜保健粉生产工艺条件的研究.粮油加工与食品机械,2001,7:34-36.
    [93]唐遵峰.[硕士学位论文].中国农业大学,2002.
    [94]Erdinc Ilhan, Fehim Findik and Salim Aslanlar. An investigation of the factors affecting the design of drum dryers. Materials and Design,2003,24:503-507.
    [95]郝慧英,赵光整,徐岩,等.苹果中多酚氧化酶的性质.无锡轻工大学学报,2004,22(1):78-82.
    [96]周永生,周文娟.美拉德反应及其对食品加工过程的影响.安徽农业科学,2010,38(27):15092-15095.
    [97]Amoldi A, Corain EA, Scaglioni L. New colored compounds from the Maillard reaction between xylose and lysine. Journal of Agxicultural and Food Chemistry,1997,45(3):650-655.
    [98]林振光,黄风华,陈建新.结构与反应性一氨基化合物与碳基化合物反应明.安徽师范大学(自然科学版),1997,20(2):131-136.
    [99]章平等.氨基酸和还原糖类反应的研究.贵州工学院学报,1996,25(4):90-94.
    [100]王肇慈.粮油食品品质分析.北京:中国轻工业出版社,1994.
    [101]黄伟坤等.食品检验与分折.中国轻工出版社.1993年第一版.
    [102]黄建韶,张洪,田洪现.苹果中多酚氧化酶的性质.食品与机械.2001,3:21-22.
    [103]蒋长兴,焦云鹏.喷雾干燥法制备南瓜粉的工艺参数研究.食品研究与开发,2007,28,(2):111-115
    [104]赵凤敏.利用马铃薯薯渣固态发酵生产蛋白饲料的机理及工艺研究.[博士学位论文].北京:中国农业机械化科学研究院,2005.
    [105]任露泉编著.试验优化设计与分析(第二版)[M].北京:高等教育出版社,2003.
    [106]张建华,李里特,丁长河.中心组合设计优化曲霉豆豉纯种发酵制曲工艺(上).中国调味品,2004,(6):7-10.
    [107]张建华,李里特,丁长河.中心组合设计优化曲霉豆豉纯种发酵制曲工艺(下).中国调味品,2004,(7):26-28.
    [108]洪楠,侯军SAS for windows统计分析系统教程.北京:电子工业出版社,2001.
    [109]邓祖新.SAS系统和数据分析.北京:电子工业出版社,2001.
    [110]袁志发,周静,等.试验设计与分析.北京:高等教育出版社,2003:329-372.
    [111]张敏,张兆国,孙勇,等.油菜籽挤压膨化系统参数优化试验.农业机械学报,2006,37(8):5-9.
    [112]杨俊红.植物性含湿多孔介质在干燥过程中优化传热传质机理的研究.[博士学位论文].天 津:天津大学,2007.
    [113]张洪沅,丁绪淮,顾毓珍.化工过程及设备.北京:高等教育出版社,1957:2.
    [114]Pehlivan D, Togrul I T. Modelling of thin layer drying kinetics of some fruits under open—air sun drying process. Journal of Food Engineering,2004,65:413-425.
    [115]Akpinar E K. Determination of suitable thin layer drying curve model for some vegetables and fruits. Journal of Food Engineering,2006,73:75-84.
    [116]娄永江.龙头鱼热风干燥的数学模型及优化参数组合.食品科技,2000(1):30-31.
    [117]孙妍.海参干燥动力学的研究.[硕士学位论文].青岛:中国海洋大学,2004.
    [118]张厚军,崔建云,任发政,等.猪通脊肉干燥模型建立与试验.农业机械学报,2006,37(8):163-167.
    [119]Hayaloglu A A, Karabulut I, Alpaslan M, et al. Mathematical modeling of drying characteristics of strained yoghurt in a convective type tray-dryer. Journal of Food Engineering,2007,78:109-117
    [120]Kamil Sacilik. Effect of drying methods on thin-layer drying characteristics of hull-less seed pumpkin (Cucurbita pepo L.). Journal of Food Engineering.2007,79:23-30.
    [121]Ibrahim D. The kinetics of forced-convective air-drying of pumpkin slices. Journal of Food Engineering.2007,79:243-248.
    [122]Ruamporn Liamkaewl, Aluck Thipayaratl, Woranut Koetsinchai. Kinetics model of vacuum microwave drying of dried pumpkin slices. Technology and Innovation for Sustainable Development Conference,2008,11-16.
    [123]王宝和.干燥动力学研究综述.干燥技术与设备.2009,7(1):51-56.
    [124]Akpinar E. K., Bicer Y., Cetinkaya F. Modelling of thin layer drying of parsley leaves in a convective dryer and under open sun. Journal of Food Engineering,2006,75(3):308-315.
    [125]Turner I, Mujumdar A. S. Mathemical modeling and numerical techniquis in drying technology. Marcel Dekker 1996.
    [126]Ebru KAVAK AKPINAR. Experimental determination of convective heat transfer coefficient of some agricultural products in forced convection drying. Int. Comm. Heat Mass Transfer.2004. 31(4):585-595.
    [127]Hwang, CH and Gunasekaran S.Specific heat capacity measurement. In:Heldman DR, editor. Encyclopedia of Agricultural, Food and Biological Engineering. New York: Marcel Dekker, Inc. 2003:927-935
    [128]Chio, Y., Okos MR. Effects of temperature and composition on thermal properties of food. In:Le Maguer M, Jelen P, editors. Food Engineering and Process Applications, Vol.1.New York: Elsevier Applied Science Publishers.1986:269-312.
    [129]于民治,张超.钢材产品手册.化学工业出版社.北京,2011.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700