用户名: 密码: 验证码:
水分处理对不同专用型小麦籽粒蛋白质品质和产量调节效应的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
于2001—2003年在河南农业大学校内试验站和科教园区,采用盆栽的方法,较为系统地研究了水分处理对不同专用型小麦品质和产量调节效应,研究结果表明:
     第一:水分处理对不同专用型小麦氮同化关键酶活性有明显影响。旗叶硝酸还原酶(NR)活性于花后呈下降趋势,且在60%FC(field capacity)下最强,其次为40%FC,活性最低的是80%FC。旗叶和籽粒中谷氨酰胺合成酶(GS)活性均呈先下降后上升趋势,各水分处理间酶活性大小为:80%FC>60%FC>40%FC。各水分处理间旗叶和籽粒谷氨酸合成酶(GOGAT)活性的大小关系同GS。不同水分处理下籽粒蛋白质含量与叶片NR、GS和籽粒GOGAT活性均呈正相关,与旗叶GOGAT活性呈负相关。对于豫麦34,40%FC和80%FC下籽粒蛋白质含量只与旗叶GS活性相关性达显著水平,60%FC下蛋白质含量则与旗叶NR和籽粒GS活性均达显著相关,与旗叶GS活性达极显著相关;对于豫麦49,40%FC下蛋白质含量与旗叶NR呈显著相关,60%FC和80%FC下与旗叶GOGAT呈显著负相关;对于豫麦50,各水分处理下蛋白质含量均与旗叶NR呈显著相关,且在40%FC下蛋白质含量也与籽粒GS呈显著相关,在60%FC下与旗叶GOGAT呈极显著负相关。
     第二:开花后随着时间的推移,小麦叶鞘、茎中氮含量逐渐降低,而根中氮含量先下降后上升。80%FC提高叶鞘氮含量;豫麦34茎氮含量变化不大,豫麦49在60%FC下茎氮含量最高,豫麦50茎氮含量在40%FC下最高。各营养器官氮转运量品种间为豫麦50>豫麦49>豫麦34,各水分处理间差异均为80%FC>60%FC>40%FC。各品种叶鞘氮转运效率随含水量的增加而增加;豫麦34茎氮转运效率随含水量的增加而降低,豫麦49和豫麦50以60%FC最高。各营养器官及总转运氮对籽粒的贡献率为80%FC>60%FC>40%FC。各品种器官转运
    
    河南农业大学硕士学位论文
    【中文摘要】
    量和贡献率均为:叶鞘>茎,器官转运效率为:茎>叶鞘。
     第三:土壤水分对专用小麦生育后期光合特性及产量的影响不同。强筋
    小麦豫麦34旗叶叶绿素计读数(SPAD值)、PSll活性(Fv/Fo)和PSH最大
    光能转换效率(Fv/Fm)在土壤相对含水量60%FC的条件下最高,光化学碎灭
    系数(qP)、非光化学碎灭系数(qN)、有效电子传递速率(ETR)和传递的
    量子产率(中psn)在80%FC下最高;高产小麦豫麦49旗叶SPAD值、qP、
    qN、ETR均以80%FC下最高,Fv/Fo、Fv/Fm和。ps 11受土壤水分影响不大;
    弱筋小麦豫麦50,除qN在80%FC下最低外,其余光合特性参数均以80%FC的
    条件下最高。
     第四:在各处理下不同专用型小麦籽粒灌浆过程呈“S”型变化趋势,并
    用三次多项式对其进行模拟,这些方程中的参数在各品种中受水分处理影响
    不同。40%FC提高(早)了豫麦34各项籽粒灌浆参数,提高了豫麦49灌浆
    速率和粒重,提早了最大灌浆速率出现时间,提高了豫麦50灌浆持续期和粒
    重;60%FC增加了豫麦49灌浆持续期,提早了豫麦50最大灌浆速率出现时
    间;80%FC增加了豫麦49有效灌浆持续期,提高了豫麦50的灌浆速率。同
    时,豫麦34和豫麦50粒重与各灌浆参数均呈正相关,但差异均不显著;豫
    麦49粒重与灌浆持续期呈显著负相关,与平均灌浆速率呈显著正相关。
     第五:不同专用型小麦品质受土壤水分的影响较大。强筋型小麦豫麦34
    是面包专用型小麦,在60%FC下,籽粒蛋白质含量、赖氨酸含量、清蛋白、
    球蛋白和谷蛋白含量较高,同时小麦籽粒容重、湿面筋含量和沉降值也最高。
    营养品质和加工品质得到改善,同时产量也最高。中筋型小麦豫麦49蛋白质
    含量以40%FC处理最高,赖氨酸含量、籽粒容重和湿面筋含量以80%FC处理
    最高,且在80%FC处理下籽粒产量达最大值。弱筋型小麦豫麦50属于饼干专
    用型小麦,
     因此,
    在S0%FC下蛋白质含量最低,产量最高,适应饼干专用的要求。
    根据本实验对于北方半干旱地区应以种植强筋型小麦豫麦34为主,
    
    河南农业大学硕士学位论文
    【中文摘要】
    这样能使小麦产量和品质兼顾。对于半湿润地区在应以种植高产型小麦豫麦
    49和弱筋型小麦豫麦50为主,同时加以适量适时的灌溉,也能达到产质兼顾
    的效果。
In order to understand the effect of water treatment on the kernal protein quality and yield of winter wheat with specialized end-uses pot experiments were carried out at Henan Agricultural University and Demonstration Plot of Scientific Research and Teaching during 2001-2003. The results were showed as follows:
    Firstly, nitrate reductase(NR) activities in flag leaf declined after anthesis, and that of 60%FC >40% FC >80%FC . Glutamine synthetase (GS) activities in both flag leaf and grain all declined from the beginning of anthesis to 15 days after anthesis, and then climbed. The order among three water treatments was 80%FC > 60%FC > 40%FC.The order of Glutamate synthase(GOGAT ) is the same as GS. Grain protein content was positive correlation to NR and GS activity in flag leaves and GOGAT activity in grains, and was negative correlation to GOGAT activity in flag leave for all water treatment. For Yumai34, under the treatment of 40%FC and 80%FC, there was a significance correlation between grain protein content and GS activity in flag leave, Under the treatment of 60%FC, the correlation ship between grain protein content and NR activity in flag leave and GS activity in grain were significant, and was closely significant to GS activity in flag leave. For Yumai49, under the treatment of 40%FC, there was a significance
     correlation between grain protein content and NR activity in flag leave, under the treatment of 60%FC and 80%FC, the correlationship between grain protein content and GOGAT activity in flag leave. For Yumai50, there was a significance correlation between grain protein content and NR activity in flag leave, and under the treatment of 40%FC, the correlationship between grain protein content and GS activity in grain, and there was a significance correlation
    51
    
    
    between grain protein content and GOGAT activity in flag leave under the treatment of 60%FC.
    Secondly, with the time went on , Nitrogen content of wheat leaf sheath and stem decreased gradually after anthesis, while Nitrogen content in root decreased first, then increased.80%FC improved the nitrogen content of leaf sheath. Nitrogen content in stem of yumai34 changed not too much, and for Yumai49,60%field capacity improved the nitrogen content of stem, and for YumaiSO, the nitrogen content of stem was highest with 40%field capacity. Nitrogen translocation of vegetative parts were different in three wheat cultivars, and the order was Yumai50> Yumai49Yumai34, Nitrogen translocation in vegetative parts of different cultivars were different in different water treatment and the order was 80%FC(field capacity)>60%FO40%FC. In the whole, Nitrogen translocation of different cultivars was 80%FC>60%FC>40%FC,and Nitrogen translocation in stem of different cultivars with water treatment was different in three cultivars, for Yumai34,the Nitrogen translocation was 40%FO60%FO80%FC, and for Yumai49,was 60%FC>40%FO80%FC, and Yumai50 was 60%FO80%FC>40%FC. Grain protein content came from redistribution of N accumulated in vegetative organs, and the order of the contribution of water treatment ,which is important to nitrogen content in different vegetative organs and grain, was 80%FC>60%FC>40%FC.The order of both the transfer and contribution of different vegetative organs was leaf sheath>stem the translocation of different vegetative organs was stem>leaf sheath.
    Thirdly, as to Yumai 34, the value of chlorophyll meter(SPAD), PSII activity (Fv/Fo) and maximal PSII light energy transformation efficiency (Fv/Fm) were the highest when soil moisture was at 60% field capacity(60%FC), however the photochemical quenching coefficient (qP), the non-photochemical quenching coefficient (qN),the apparent photosynthetic electron transport rate(ETR) ,and the ratio of photochemical quantum yield of PSII (O2) were all increased at 80%FC; To the high yield cultivar Yumai 49,the values of SPAD ,qP ,qN and ETR were higher at 80%FC than the other water trentment, while FC took little effect on
    52
    
    Fv/Fo ,Fv/Fm and O2; To Yumai 50,the values of photosynthetic characteristics were the h
引文
[1] 刘尊英,郭天才.氮素供应对小麦籽粒蛋白质组分及积累动态的影响[J].河南农业大学学报,1999,33(4):317-320
    [2] 曹广才,王绍中主编.小麦品质生态[M].北京.中国科学技术出版社.1994.
    [3] 王立秋.小麦品质生理研究进展[J].国外农学-麦类作物,1996,3:31-32
    [4] 朱德群,朱遐龄.与小麦籽粒蛋白质有关的几项生理参数[J].作物学报,1991,17(2):135-143
    [5] 浙江农业大学.植物营养与肥料[M].北京.农业出版社.1988.
    [6] Hageman RH, Lambert RJ, eatl. In improvement of seed protein[M]. Natt. Acad. Sci, U. S. A. washington, D. C., 1976: 103
    [7] 王志敏.小麦籽粒蛋白质贮积的生理学研究进展[J].国外农学-麦类作物,1996,4:23-26
    [8] 王宪泽,张树芹.不同蛋白质含量小麦品种叶片NRA与氮素积累关系的研究[J].西北植物学报,1999,19(2):315-320
    [9] 王洪刚,姜丽君.小麦叶片中硝酸还原酶活性,游离氨基酸和粗蛋白含量与籽粒蛋白质含量关系的研究[J].西北植物学报,1995,15(4):282-287
    [10] 李春喜.张根发.氮肥对小麦硝酸还原酶活性和籽粒蛋白质含量变化动态的影响[J].西北植物学报,1995,15(4):276-281
    [11] 孙宝启,李玉京.小麦灌浆过程中硝酸还原酶活性与籽粒蛋白质的积累[J].中国农业大学学报,1997,2(5):20-30
    [12] Lam, H. M., K. T. Coschigano & I. C. Oliveiva. The molecular genetics of nitrogen assimilation into amino acids in higher plants[J]. Annual Review of Plant Physiology Plant Molecular Biology, 1996. 47: 569-593
    [13] Dechard E L, Busch R H. Nitrate reductase assays as prediction testfor crosses and lines in spring wheat[J]. Crop Sci., 1978; 18: 289-293
    [14] Dalling, M. J., G. Boland & J. H. Willson. Relation between acid proteinase activity and redistribution of nitrogen during grain development in wheat[J]. Australia Journal Plant Physiology, 1976, 3: 721-730
    [15] Cren, M. &B. Hirel. Glulamine synthetase in higher plant: regulation of gene and protein expression from the organ to the cell[J]. Plant Cell Physiology, 1999, 40: 1187-1193
    [16] 李常健,林清华,张楚富等.NaCl对水稻谷氨酰胺合成酶活性及同工酶的影响[J].武汉大学学报(自然科学报).1999,8:497-500
    [17] Ochs G., G. Schoth& M. Trischler. Complexity and expression of the glutamine synthetase multigene family in the ampnidiploid crop brassica napus[J]. Plant Molecular Biology, 1999, 39: 395-405
    
    
    [18] 林清华,李常键,彭进等.Nacl对水稻谷氨酸合酶和谷氨酸脱氢酶的胁迫作用[J].武汉植物学研究,2000,18:206-210
    [19] 王月福,于振文,李尚霞等.氮素营养水平对冬小麦氮代谢关键酶活性变化和籽粒蛋白质含量的影响[J].作物学报.2002,28:743-748
    [20] 马新明,王晓纯.王志强.氮素形态对冬小麦氮代谢关键酶活性及子粒品质的影响[J].生态学报(已接受)
    [21] 杜金哲,李文雄,胡尚连等.春小麦不同品质类型氮的吸收转化利用及子粒产量和蛋白质含量的关系[J].作物学报,2001,27(2):253-260
    [22] 侯有良,钟纪荣,L.O’Brien.普通小麦营养器官氮素和果聚糖的运转[J].中国农业科学,2002,35(9):1066-1070
    [23] 王旭清,王法宏.栽培措施和环境条件对小麦籽粒品质的影响[J].山东农业科学.1999,1:52-55
    [24] 王月福,陈建华.土壤水分对小麦籽粒品质和产量的影响[J].莱阳农学院学报.2002,19(1):7-9
    [25] 胡廷积,杨永光.小麦生态与生产技术[M].郑州.河南科学技术社.1986.
    [26] 郑丕尧.作物生理学导论[M].北京.北京农业大学出版社.1992.
    [27] 徐恒永,赵君实.高产冬小麦的冠层光合能力及不同器官的贡献[J].作物学报.1995.21(2):204-209
    [28] Benzian B, et al. Protein concentration of grain in relation to some weather and soil factors during 17 years of English winter-wheat experiment[J]. J. Sci. Food Agric, 1986(37): 435-444
    [29] 彭羽,郭天才,王晨阳.冬小麦开花后水分调控对光合特性及产量性状的影响[J].麦类作物学报,2001,21(4):83-86
    [30] Banziger M, Feil B, etal. Competition between nitrogen accumlation and grain growth for carboh-ydrates during grain filling of wheat[J]. Crop Science, 1994; 35(2): 443-45
    [31] 郭文善,严六零.小麦源库协调栽培途径的研究[J].江苏农学院报,1995,16(1):33-37
    [32] 岳寿松,于振文.不同生育时期施氮对冬小麦氮素分配及叶片代谢的影响[J].作物学报,1998,24(6):811-815
    [33] 中国植物生理学会.光合作用研究进展(第三集)[M].北京.科技出版社.40-42
    [34] 陈防.鲁剑巍.SPAD-502叶绿素计在作物营养快速诊断上的应用初报[J].湖北农业科学,1996,(2):31-34
    [35] 王月福,于振文,潘庆民等.不同水分处理对耐旱性不同小麦品种旗叶衰老的影响[J].西北植物学报,2002,22(2):303-308
    
    
    [36] 石岩,于振文,位东斌等.土壤水分胁迫对小麦根系与旗叶衰老的影响[J].西北植物学报,1998,18(2):196-201
    [37] 张守仁.叶绿素荧光动力学参数的意义及讨论[J].植物学通报,1999,16(4):444-448
    [38] Krause GH, Weis E. ChlorophyⅡ fluorescence and photosynthesis[J]. Ann Rev Plant Physiol Plant Mol Biol, 1991, 42: 313-349
    [39] Maxwell K, Johnson GN. ChlorophyⅡ fluorescence—A practical guide[J]. J Exp Bot, 2000, 51(345): 659-668
    [40] Genty BE, Briantais JM, Baker NR. Biochim Biophys Acta[J], 1989, 990: 87-92
    [41] Van Kooten O, Snel JKH[J]. Photosyn Res, 1990, 25: 147—150
    [42] 肖春旺,周广胜.毛乌素沙地中间锦鸡儿幼苗生长,气体交换和叶绿素荧光对模拟降水量变化的响应[J].应用生态学报,2001,12(5):692—696
    [42] 李永华,王玮,马千全等.干旱胁迫下抗旱高产小麦新品系旱丰9703的渗透调节与光合特性[J].作物学报,2003,29(5):759—764
    [44] 张其德,刘合芹,张建华等.限水灌溉对冬小麦旗叶某些光合特性的报[J].作物学报,2000,26(6):869-873
    [45] 张秋英,李发东,刘孟雨等.不同水分条件下小麦旗叶叶绿素a荧光参数与子粒灌浆速率[J].华北农学报,2003,18(1):26-28
    [46] 张爱良,黄桂英,苗果园等.不同土壤水分对冬小麦旗叶生理特性的影响[J].山西农业大学学报,1998,18(3):200-202
    [47] 谭新星,许大全.叶绿素缺乏的大麦突变体的光合作用和叶绿素荧光[J].植物生理学报,1996,22(1):51-57
    [48] 张秋英,李发东,刘孟雨等.水分胁迫对小麦旗叶叶绿素a荧光参数和光合速率的影响[J].干旱地区农业研究,2002,20(9):80-84
    [49] 梁新华,许兴,徐兆桢等.干旱对春小麦旗叶叶绿素荧光动力学特征及产量间关系的影响[J].干旱地区农业研究,2001,19(3):72-77
    [50] 张其德,蒋高明,朱新广等.12个不同基因型冬小麦的光合能力[J].植物生态学报,2001,25(5):532—536
    [51] 史吉平,董永华.水分胁迫对小麦光合作用的影响[J].国外农学—麦类作物,1995,(5):49-51
    [52] 王月福,于振文,潘庆民等.水分处理与旱性不同的小麦光合特性及物质运转[J].麦类作物,1998(5):44-47
    [53] 王月福,李素美,王玉叶等.水分对冬小麦开花后光合产物积累运转的影响[J].莱阳农学院学报,1998,15(2):94-98
    [54] 李科江,张西科,刘文菊等.不同栽培措施下冬小麦灌浆模拟研究[J].华北农学报,2001,16(2):70—74
    [55] 吴少辉,高海涛,王书子等.干旱对冬小麦籽粒形成的影响及灌浆特性分
    
    析[J].干旱地区农业研究,2002,20(2):49—51
    [56] Wiegand C L, Cuellar JA. Duration of grain filling and kernel weight of wheat as effected by temperature[J]. Crop Sci., 1981, 21(1): 95-101
    [57] 陈集贤.青海高原春小麦生态[M].北京.科学出版社.1994.
    [58] 张晓龙.小麦品种籽粒灌浆的研究[J].作物学报,1982,8(2):87-93
    [59] Nass H G. Grain filling period and grain yield relationship in spring wheat[J]. Can. Plant Sci., 1975, 27: 451-455
    [60] Brocklehurst P A. Factors controlling grains weight in wheat[J]. Nature, 1997, 266: 348-349
    [61] 蔡庆生,吴兆苏.小麦籽粒生长各阶段干物质积累量与粒重的关系[J].南京农业大学报,1993,16(1):27-32
    [62] 任正隆,李尧权.小麦开化后的物质积累.籽粒相对生长率和灌浆速率品种间的变异[J].中国农业科学,1981,6:12-19
    [63] 周竹青,朱旭彤.不同粒重小麦品种(系)灌浆特性分析[J].华中农业大学学报,1999,18(2):107-110
    [64] 李文雄,曾寒冰.春小麦籽粒增重的研究[J].中国农业科学,1985,6:14-19
    [65] 刘丰明,陈明灿,郭香风.高产小麦粒重形成的灌浆特性分析[J].麦类作物,1997,17(6):38-41
    [66] 李世清,邵明安,李紫燕等.小麦籽粒灌浆特征及影响因素的研究[J].西北植物学报,2003,23(11):2031—2039
    [67] 王志强,周晓明,申占保等.播期对不同专用型小麦籽粒灌浆特征参数和产量的影响[J].河南农业科学,2003,4:4-6
    [68] 兰林旺主编.中国北方旱地作物节水增产理论与技术[M].北京.中国农业科技出版社.1996.
    [69] 华北平原作物水分胁迫与干旱研究课题组编.作物水分胁迫与干旱研究[M].郑州.河南科学技术出版社.1991
    [70] 程宪国,汪德水,张美荣等.不同土壤水分条件对冬小麦生长及养分吸收的影响[J].中国农业科学,1996,29(4):67-74
    [71] 国家小麦工程技术研究中心编.胡廷积文选[M].北京.中国科技出版社.2000.
    [72] Fereres E. etal. WUE in sustainable agricultural system[J]. International Crop Science I U. S. A., 1993: 95: 83-89
    [73] 马忠明.有限灌溉条件下作物—水分关系的研究[J].干旱地区农业研究 1998.16(2):75-78
    [74] 山仑,徐萌.节水农业及其生理生态基础[J].应用生态学报,1991,2(1):70-76
    [75] 许育彬.作物水分利用效率研究进展[J].陕西农业科学,1998,(4):13-15
    
    
    [76] 尹成华.施肥和灌溉对小麦加工品质的影响[J].河南职技师院学报,1989,17(3-4):104-107
    [77] Fabrizius MA, Cooper M. etal. Genetic analysist of variation for grain yield and protein contentration in two wheat crosses[J]. Australian Journal of Agriculture Research, 1997: 48(5): 605-614
    [78] Bebykin VM, Zlobin LN. Importanco of genotype and environmental factors for determination of quality of summer wheat grain[J]. Sel's Ko Khozyaistrennaya Biologiya, 1997; 10(3): 94-100
    [79] 王晨阳.李九星等.北方麦田水资源现状及其有效利用对策[J].河南农业科技,1998,(8):7-10
    [80] 朱履宽,朱振武.农业气象条件对小麦籽粒蛋白质形成的影响[J].中国农业气象,1992,13(4):49-52
    [81] 张练红.自然生态条件对小麦籽粒品质的影响[J].世界农业,1988,(5):21-24
    [82] 汪永钦,杨海鹰等.试论冬小麦籽粒品质与气象条件的关系[J].中国农业气象,1990,11(2):1-7
    [83] 邹琦主编.植物生理生化实验指导[M].北京.中国农业出版社.1995.
    [84] 赵世杰,刘华山等编著.植物生理学实验指导[M].北京.中国科学技术出版社.1998.
    [85] Zhang, Ch. F., Sh. B. Peng, X. X. Peng. Response of glutamine synthetase isoforms to nitrogen sources in rice(oryza sativa L. )roots[J]. Plant Science, 1997, 125: 163—170
    [86] Lin, C. C. & C. H. Kao. Disturbed ammonium assimilation is associated with growth inhibition of roots in rice seedlings caused by NaCl[J]. Plant growth Regulation, 1996, 18: 233—238
    [87] 李合生主编.植物生理生化实验原理与技术(面向21世纪课程教材)[M].北京.高等教育出版社.2000.
    [88] 郑铁松,龚院生编著.生化实验指导[M].郑州.河南医科大学出版社.1996.
    [89] Pena R. J., A. Amaya, S. Rajarm & A. Mujeeb kazi. Variation in Quality Characteristics Associated with Some Spring 1B/1R Transloeation Wheats[J]. Journal Cereal Science, 1990, 12: 105-112
    [90] 金同铭,刘钤.近红外光谱技术及其在蔬菜中的应用[J],热带作物学报,1998,8:53-59
    [91] 盖钧镒主编.试验统计方法(面向21世纪课程教材)[M].北京.中国农业出版社.2000.
    [92] 荆奇.曹卫星,戴廷波.小麦籽粒品质形成及其调控研究进展[J].麦类作物,1999,19(4):46-50
    
    
    [93] 张喜英,裴冬,由懋正.几种作物的生理指标对土壤水分对变动的阈值反应[J].植物生态学报,2000,24(3):280-283
    [94] 张庆江,张立信,毕桓武.春小麦品种氮的吸收积累和转运特征及与子粒蛋白质的关系[J].作物学报,1997,23(6):712-718
    [95] Hou You-liang, L. O' Brien, Zhang Gai-Rong. Study on the Dynamic changes of the distribution and accumulation of nitrogen in different plant of wheat[J]. Acta agronomica sinica, 2001, 7: 493-499
    [96] 李建民,彭根元,李冰等.灌水处理对物质生产与氮素积累的影响[J].冬小麦水肥高效利用栽培技术原理.北京.中国农业大学出版社,2000,221-226
    [97] 王之杰,王纪华,黄文江等.冬小麦冠县不同叶层和茎鞘氮素与籽粒品质关系的研究[J].中国农业科学,2003,36(12):1462-1468
    [98] 常文锁,张彩英,张丽珍.优质冬小麦籽粒灌浆过程中蛋白质和粒重积累动态研究[J].河北农业大学学报,2003,26(1):1-3
    [99] 王增铭,王健,卢少源等.冬小麦品种氮及干物质积累分配研究[J].河北农业大学学报,1989,12(2):56-64

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700