用户名: 密码: 验证码:
东海西湖凹陷中央反转构造带成藏特征研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
西湖凹陷位于东海陆架盆地东北部,面积约4.6×104km2,中央反转构造带位于凹陷的中部,主体呈NNE向展布,自南向北由天台、黄岩、宁波和嘉兴4个构造带。研究区目的层段始新统至中新统发育海相和陆相两种沉积环境,其中始新统以海相沉积环境为主,渐新统至中新统以陆相沉积环境为主。始新统平湖组和渐新统花港组是研究区内两套重要的烃源岩层系;储集岩类型主要为砂质岩,以中-细砂岩为主,层位上以始新统平湖组和渐新统花港组最为重要。中央反转构造带发育多套储层和盖层,可形成多套储盖组合。中新统龙井组有利储盖组合以北部的花港构造最为发育,玉泉构造较发育,南部相对不发育;渐新统花港组有利储盖组合以北部花港构造最为发育;始新统平湖组有利的储盖组合发育程度差别较大,以天外天1井区最为发育。
     综合钻井测试资料,中央反转构造带的地温梯度较高,为3.8℃/100m;在中央反转构造带内,浅部压力系数均为1.0左右,属正常压力系统,超压顶界面大致位于3700m,且超压幅度较小,压力系数多小于1.25,以弱超压为主。
     根据东海西湖凹陷地区构造、沉积演化特征,油源特征以及异常孔隙流体压力的分布特征,可将本区自下而上分为四个成藏动力系统:1)底部自源高压成藏动力系统;2)下部自源-它源高压成藏动力系统;3)中部自源-它源高压-常压成藏动力系统;4)上部它源常压-高压成藏动力系统。研究表明:自源成藏动力系统为中央反转构造带油气勘探开发的主要目标,应继续在残雪构造带、天外天构造带和春晓构造带平湖组和花港组内寻找自源油气藏,同时加强对南部的断桥构造带、春晓构造带以及北部的玉泉构造带的龙井组内它源成藏动力系统的勘探研究;横向上,中央反转构造带中南部的天台构造带与黄岩构造带油气勘探成果显著,勘探成功率高,具有较小的油气勘探风险,为有利勘探区,中央反转构造带北部的宁波构造带具备油气成藏的基本条件,具有较大的油气勘探前景,为较有利勘探区。
Xihu sag is in the northeast of the East China sea shelf basin, and the area ofabout4.6×104km2, Central Inversion Structural Belt is NNE-extension, which is inthe Xihu sag, includes Tiantai, Huangyan, Ningbo and Jiaxing tectonic belts fromsouth to north. The Eocene-Miocene boundary of the purpose of the objectiveinterval have marine and continental sedimentary environments, and the Eocenehave marine ssedimentary environments, the Oligocene-Miocene have continentalsedimentary environments. The Eocene Pinghu Formation and the OligoceneHuagang Formation are very important hydrocarbon source rocks is the area. The mostimportant sandy rock of fine sandy rock is mainly reservoir rock type in the Eocene PinghuFormation and the Oligocene Huagang Formation.
     Many Reservoirs and Seals in the Central Inversion Structural Belt, and theymake up many reservoir-seal assemblages. The Huagang tectonic belt is the bestreservoir-seal assemblage in north of Miocene Longjing Formation, and the Yuquantectonic belt is better, the sorth is worse; The Huagang tectonic belt is the bestreservoir-seal assemblage in north of Oligocene Huagang Formation; Thedevelopment levels of reservoir-seal assemblage are difference in the Eocene PinghuFormation, and the best is the area of TWT1.
     The Room temperature layer of Central Inversion Structural Belt is3.8℃/100m, its higher than others. In the Central Inversion Structural Belt, shallowpressure coefficient of about1.0, is a normal pressure system, the interface at3700m case roughly, and small scale of pressure, the pressure coefficients much less than1.25, with weak overpressure primarily.
     Based on the structure of Xihu depression, the characteristics of sedimentaryevolution, the characteristics of source rock and the characteristics of abnormal porefluid pressure distribution,4migration-accumulation dynamics systems can bevertically classified in this region. The migration-accumulation dynamics system ofself source is the main objective of oil and gas exploration and development, weshould continue to find of self source reservoir in the Pinghu Formation and Huagang Formation of Huagang, Canxue, Tianwaitian, Chunxiao and YuQuan tectonic belts,while strengthening the exploration of the migration-accumulation dynamics systemof other source in the Longjing Formation, in the sorth of Duanqiao, Chunxiao,Huangyan tectonic belts and the north of Huagang tectonic belt. Horizontally, theTiantai tectonic belt and Huangyan tectonic belt of sorth Central Inversion StructuralBelt is the most favorable exploration area, its have remarkable achievements andhigh success rate and lower the risk in oil and gas exploration. The Ningbo tectonicbelt is the for more favorable exploration area, it has the basic condition of oil and gasaccumulation explorations and large oil and gas exploration prospects.
引文
[1]吴元燕,吕修祥.利用含油气系统认识油气分布[J].石油学报1995,16(4):17-22.
    [2]顾惠荣;李纯洁;叶加仁.东海西湖凹陷浙东中央背斜带生排烃史模拟[J].海洋石油,2001,20:19-20.
    [3]田世澄,陈永进,张兴国,等.论成藏动力系统中的流体动力学机制[J].地学前缘,2001,8(4):329-336.
    [4]田世澄,孙自明,傅金华,等.论成藏动力学与成藏动力系统[J].石油与天然气地质,2007,28(2):129-138.
    [5]武法东,周平.东海陆架盆地西湖凹陷第三系层序地层与沉积体系分析[M].北京:地质出版社,2000,47-58.
    [6]贾健谊,顾惠荣.东海西湖凹陷含油气系统与油气资源评价[M].北京:地质出版社,2002:166.
    [7]张忠民,周瑾,邬兴威.东海盆地西湖凹陷中央背斜带油气运移期次及成藏[J].石油试验地质,2006,28(1):30-37.
    [8]张先平,张树林,陈海红,等.东海西湖凹陷平湖构造带异常压力与油气成藏[J].海洋地质与第四纪地质,2007,27(3):93-97.
    [9]李海华,陈拥锋,刘建宁,等.东海西湖凹陷第三系剩余孔隙流体压力分析[J].石油实验地质,2004,26(1):35-39.
    [10]陈晓东.西湖凹陷黄岩7-1及14-1油气藏特征及成藏模式[J].中国海上油气(地质),2003,17(1):57-63.
    [11]李敏,陈永进,姜文斌.西湖凹陷平湖组岩性油气藏形成条件[J].油气地质与采收率,2012,19(2):23-25.
    [12]顾惠荣,贾健谊,叶加仁.东海西湖凹陷含油气系统特征[J].石油与天然气地质,2002,23(3):295-297.
    [13]王闯,闫洁,王丽顺.东海西湖凹陷中南部油气成藏动力学特征及成藏机理[J].海洋石油,2008,28(4):1-5.
    [14]叶加仁,顾惠荣,贾健谊.东海陆架盆地西湖凹陷油气成藏动力学[J].天然气工业,2005,25(12):5-8.
    [15]叶加仁,顾惠荣.东海西湖凹陷浙东中央背斜带烃源岩生排烃史研究[J].海洋地质与第四纪地质,2001,21(3):75-80.
    [16]张敏强,钟志洪,夏斌,等.东海西湖凹陷中南部晚中新世构造反转与油气运聚[J].中国海上油气,2005年,17(2):73-79.
    [17]姜文斌,陈永进,李敏.东海西湖凹陷成藏动力系统特征[J].特种油气藏,2011,18(5):33-36.
    [18]张忠民,吴乃芩,周瑾.东海西湖凹陷中央背斜带油气成藏模式研究[J].天然气工业,2005,25(10):7-10.
    [19]叶加仁,顾惠荣.西湖凹陷浙东中央背斜带含油气系统[J].天然气工业,2001,21(1):13-17.
    [20]李上卿.东海西湖凹陷新生代地质构造特征与演化[J].海洋石油,2000,20(2):8-12.
    [21]田海芹.西湖凹陷含油气系统研究[J].中国石油大学学报(自然科学版),2000,24(1):38-43.
    [22]解习农,刘晓峰.超压盆地流体动力系统与油气运聚关系[J].矿物岩石地球化学通报,2000,19(2):103-108.
    [23]贾健谊,须雪豪,孙伯强.东海西湖凹陷原油与天然气的地球化学特征[J].海洋石油,2000,7(2):1-7.
    [24]刘景彦,林畅松,姜亮,等.东海西湖凹陷第三系反转构造及其对油气聚集的影响[J].地球学报,2000,21(4):350-355.
    [25]熊斌辉,张喜林,张锦伟,等.西湖凹陷油气成藏的主控因素[J].海洋石油,2008,28(2):14-24.
    [26]张远兴.东海西湖凹陷流体动力场演化及其对油气成藏的影响作用:[硕士学位论文].武汉:中国地质大学(武汉),2009.
    [27]陈永进.应用成藏动力学系统和层序地层学理论寻找隐蔽油气藏研究:[博士学位论文].北京:中国地质大学(北京),2001.
    [28] Osbome M J,Swarbrick R E.Mechanisms for generating overpressure in sedimentarybasins:a reevaluation[J].AAPG Bull,1997;81(6):1023-1028.
    [29] Hindel A D.Petroleum migration pathways and charge concentration:a three dimensionalmodel[J].AAPG Bull,1997;81(9):1451-1481.
    [30] Mann U,Hantschel T,Schaefer R Get al.Petroleum migration:mechanism,pathways,efficiencies and numerical simulations.In: Welte D H,Horsfield B,Baker D Reds,Petroleum and Basin Evolution:Insight from Petroleum Geochemistry,Geology and BasinModeling[J].Berlin Heidelberg:Springer-Verlag,1997:403-520.
    [31] Okui A,Siebert R M,Matsubayashi H.Simulation of oil expulsion by1-D and2-D basinmodelling–saturation threshold and relative permeabilities of source rocks.In:DüppenbeckerS J,Iliffe J E eds,Basin Modelling:Practice and Progress[J].Geological Society,London,Special Publications,1998,141):45-72.
    [32] Agosta F,Alessandroni M (Oblique normal faulting along the northern edge of the MajellaAnticline, central Italy: Inferences on hydrocarbon migration andaccumulation[J].JOURNAL OF STRUCTURAL GEOLOGY.2009,31(7):674-690.
    [33] Monreal FR,Villar HJ, Baudino R,et al..odeling an atypical petroleum system: A casestudy of hydrocarbon generation,migration and accumulation related to igneous intrusions inthe Neuquen Basin,Argentina[J].MARINE AND PETROLEUM GEOLOGY.2009,26(4):590-605.
    [34] Le Heron DP,Craig J,Etienne JL.Ancient glaciations and hydrocarbon accumulations inNorth Africa and the Middle East[J].EARTH-SCIENCE REVIEWS,2009,93(3-4):47-76.
    [35] Shukla V, Upreti DK.Polycyclic aromatic hydrocarbon (PAH) accumulation in lichen,Phaeophyscia hispidula of DehraDun City,Garhwal Himalayas[J].ENVIRONMENTALMONITORING AND ASSESSMENT.2009,149(1-4):1-7.
    [36] Khain VE,Polyakova ID.Large and giant hydrocarbon accumulations in the transitionalcontinent-ocean zone[J].GEOTECTONICS,2008,42(3):163-175.
    [37] Rachinskiy MZ,Chilingar GV,Gorfunkel MV.Compaction of clays as a factor in theformation of hydrodynamic regime and hydrocarbon migration andaccumulation[J]. ENERGY SOURCES PART A-RECOVERY UTILIZATION ANDENVIRONMENTAL EFFECTS.2008,30(7):573-592.
    [38] Punanova SA,Vinogradova TL.Prediction of the phase state of hydrocarbon accumulationsin the mesozoic deposits of northwestern Siberia[J].GEOCHEMISTRY INTERNATIONAL2006,44(9):912-924.
    [39] Magoon L B,Dow W G. The petroleum system: form source to trap [J]. AAPG Memoir60,1994.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700