用户名: 密码: 验证码:
太赫兹雷达系统总体与信号处理方法研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
太赫兹波是国际学术界公认的一个非常重要的前沿技术领域,是极具研究和开发价值的新频率资源。由于太赫兹频段的波长远小于现有微波、毫米波,更适合于极大信号带宽和极窄天线波束的实现,有利于实现目标的高分辨率成像。这就使得太赫兹雷达探测系统非常适合于微小目标探测、极高分辨率的目标成像识别。目前太赫兹技术正处于快速发展阶段,尤其是发达国家对太赫兹技术的研究相当重视,美国和德国相关科研单位已研制开发出了具备成像功能的太赫兹雷达试验系统。
     随着太赫兹技术的快速发展,太赫兹系统将在物体成像、环境监测、医疗诊断、射电天文、安全检查、反恐探测,尤其是在卫星通讯和雷达探测等领域,具有重大的科学价值和广阔的应用前景,特别对于高分辨雷达成像有着巨大的发展潜力,大大提高我国的相关科学技术发展及空间态势感知能力。通过开展太赫兹雷达探测系统的研究工作,不仅可以充分发挥太赫兹技术的科学价值和应用潜力,提高我国信息获取与探测技术的水平和能力,而且有利于拓展太赫兹技术的应用领域,对太赫兹领域的技术发展起到巨大的促进和推动作用。
     但是,由于太赫兹频段在大气中衰减比较严重,且大功率太赫兹源及高灵敏度检测器件的研制具有相当的难度,需要针对国内现有太赫兹技术研究现状,对雷达系统进行系统设计,突破现有的系统体系结构,提出具有可行性的太赫兹雷达系统方案。同时,由于太赫兹频段与常规微波波段在频率及波长上存在较大差异,这就导致了太赫兹雷达与微波雷达在进行信号处理时会有一定的区别,其中,以微多普勒现象最为明显。太赫兹雷达具有明显的微多普勒特征,该现象在为目标的探测、识别与成像提供全新思路的同时,也会导致目标检测性能的下降,从而影响雷达的基本性能,这就需要在目标检测算法上进行一定的改进,使之与雷达系统相匹配。
     基于以上研究思路,本文的工作与贡献如下:
     1.针对国内外太赫兹技术研究现状,对太赫兹雷达系统进行详细设计,分别针对发射系统与接收系统,选择合理的性能指标参数,并对指标进行论证。在此基础上,提出了基于双固态频率源的太赫兹雷达系统理论模型,解决了国内现有技术条件下太赫兹雷达系统可实现性的问题,并对雷达设计功能进行系统仿真及信号处理研究。
     2.研究了目标微多普勒现象,讨论了几种典型的目标微动特征模型,并在此基础上,结合时频分析算法,对太赫兹频段目标微多普勒现象进行了定量分析,提出了基于原子分解的微多普勒分析方法,该方法具有更好的抗噪性能。分析了微多普勒现象在太赫兹频段与微波波段的差异,为后文微动情况下的目标检测提供理论依据。同时,本文还讨论了目标微动特征参数提取技术,该技术可为将来进一步的目标特征识别和高分辨成像技术提供有利基础。
     3.分析了微多普勒现象对常规雷达目标探测算法的影响,并从理论上分析计算了目标微动的存在对经典的确知信号检测算法的性能损耗,提出了适用于太赫兹雷达的微动目标检测理论模型,并针对该模型进行了算法流程设计和性能仿真,解决了微多普勒特征明显时回波信号与发射信号相关性较差的问题。比较了在目标存在微动的情况下,基于微动特征的检测算法与常规目标检测算法的性能差异。
     4.研究了太赫兹雷达系统集成技术,利用所研制的太赫兹雷达关键元部件进行系统集成,并分别针对雷达发射模块的发射功率和接收模块的噪声系数进行测试,验证其性能指标,并在此基础上完成系统集成,实现太赫兹雷达原理验证系统的搭建,完成部分功能验证试验,为进一步的雷达系统实验打下基础。
     综上所述,本文立足于国内太赫兹技术研究现状,系统主要元部件研制开发均具有独立自足的知识产权。同时,虽然国内太赫兹器件研制已有一定基础,但是系统级研究尚未开展。本文正是针对该领域开展具体工作,提出了具有可行性的太赫兹雷达系统方案,实现了太赫兹雷达原理验证试验系统,并开展了针对太赫兹频段的目标检测算法研究,为今后我国太赫兹雷达系统的进一步研究提供技术基础。
Terahertz wave is a very important research domain recognized by the domestic and overseas academic circles nowadays, which is a valuable undeveloped frequency resource. Compared to the traditional millimeter wave radar, the advantages of terahertz radar system are as follows. First of all, the shorter wave length is favorable toward providing a wider bandwidth, which could benefit higher precision of imaging. Secondly, the narrow antenna beam in terahertz band could not only obtain higher antenna gain in radar LOS, improving the ability of multi-target discrimination and recognition, but also reduce the opportunity of main lobe jamming.The technology of Terahertz is developing rapidly because of the great attention by developed countries, such as USA and Germany, in which, the experimental radar system have been researched and developed.
     By the rapid development of terahertz technology, terahertz system could be applied in the domain of the target imaging, environment monitoring, safety inspection and anti-terrorism detection, especially in satellites communication and imaging radar. The capability of high resolution of terahertz wave can enhance the ability for spatial perception. Therefore, the research on terahertz can not only benefit to the level of information acquisition and detection, but also promote the technology of terahertz development.
     On the other hand, electromagnetic wave will be absorbed strongly by vapor and oxygen in terahertz band due to the interaction between polar molecule and incident wave will induce strong absorption and the water coagulum (e.g. raindrop, fog, snowflake, frost and cloud etc.) will cause additional attenuation. Meanwhile, it is still of much difficulty to produce high power frequency source and high sensitivity detection device. Thus a new frame of terahertz radar system is needed, which could be suitable for the present situation of terahertz technology and make full use of the performance of these components.
     Whereas, the huge difference between terahertz wave and microwave in frequency and wavelength will induce some distinction on target detection, especially in micro-doppler phenomenon. This phenomenon provides a new concept of target detection, recognition, and imaging. But it may reduce the performance of detection if we still use the traditional detection method. So a new target detection method for terahertz radar system is needed.
     In consideration of the above, the work for this subject has been done as follows:
     1. To design a terahertz radar system. Aiming at design transmitting and receiving subsystem, we chose suitable parameters of radar system and demonstrated the system’s key technical indexes in detail. Then, we presented a feasible terahertz radar system model and make simulation to verify the validity of this system.
     2. To research on the phenomenon of micro-doppler. In this dissertation, we discussed the typical model of micro-doppler, and quantitative analyzed them by joint time-frequency method. From this analysis, we could find out the difference between terahertz and microwave, which could be beneficial to target detection. Then, the feature extraction of micro-doppler has been done for high resolution imaging or target recognition.
     3. To analyze the influence of micro-doppler for target detection under terahertz band. Discussion the performance losses of ascertained signal detection method when micro-doppler is existing. Then, we presented a model for target detection which has micro motion and simulations were done for performance verification.
     4. To research technology for radar system integration. We integrated the components of radar system which have been done, and tested the performance of this system, such as the transmitting power, the noise figure, and so on. Then we did the experiments to verify the functions of radar system.
     In this dissertation, we presented a feasible terahertz radar system frame, and verified the functions after implementing it. In addition, we researched the algorithm for target detection method, which has micro motion. It is the foundation for further research on terahertz radar system.
引文
[1]刘盛纲,太赫兹科学技术的新发展,中国基础科学, Vol. 8, No. 1, pp:7-12, 2006.
    [2]刘盛纲,姚建铨,张杰,封松林,太赫兹科学技术的新发展,第270次香山会议,北京, 2005年11月.
    [3] A. G. Davies, E. H. Linfield, M. Pepper, Discussion Meeting: The Terahertz Gap, Phil Trans Royal Soc, pp:195-414, 2004.
    [4] B. Piosczyk, T. hesnicki, A. Hold, H. Budig,G. Damcrlz, O. Dumbra, S. Illy, J. Jin, K. Koppenburg, W. Leonhardt, G. Miche1, M. Sehmid, M. Thumml and X. Yang, Progress in the Development of the 170GHz Coaxial Cavity Gyrotron, International Conference on Infrared, Millimeter, and Terahertz Waves, pp:107-108, 2004.
    [5] V. Bratman, M. Glyavin, T. Idehara, et al, Review of Subterahertz and Terahertz Gyrodevices at IAP RAS and FIR FU, IEEE Trans. on Plasma Science, Vol. 37, No. 1, pp:36-43, Jan. 2009.
    [6] B. S. Williams, S. Kumar, Q. Hu and J. L. Reno, High-power Terahertz Quantum-cascade Lasers, Electron. Lett., Vol. 42, No. 2, pp:89-90, Jan. 2006.
    [7] Z. Q. Yang, M. Hajenius, J. N. Hovenier, et al, Compact Heterodyne Receiver At 2.8 THz Based On A Quantum Cascade Laser And A Superconducting Bolometer, International Conference on Infrared, Millimeter, and Terahertz Waves, pp:465-466, 2005.
    [8] A. Doria, G. P. Giovenale, et al, A metal-grating FEL experiment at ENEA compact-FEL facility, Nuclear Instruments and Methods in Physics Research, pp:318-322, 2001.
    [9] F. R. Morales, K. S. Yngvesson, D. Z. Gu, Wideband IF-Integrated Terahertz HEB Mixers: Modeling and Characterization, IEEE Trans. on Microwave Theory And Techniques, Vol. 58, No. 5, pp:1140-1150, May 2010.
    [10] V. A. Savu, C. M. Wilson, L. Frunzio, et al, Diffusion-Engineered Quasiparticle Multiplication for STJ Single Photon Detectors, IEEE Trans. on Applied Super Conductivity, Vol. 15, No. 2, pp:609-612, Jun. 2005.
    [11] A. Maestrini, J. S. Ward, J. J. Gill, H. S. Javadi, E. Schlecht, C. Tripon-Canseliet, G. Chattopadhyay, I. Mehdi, A 540-640-GHz High-Efficiency Four-Anode Frequency Tripler, IEEE Trans. on Microwave Theory Technology, Vol. 9, No. 53, pp:2835– 2843, 2005.
    [12] C. R. Yolanda, S. Christoph, L. Arnulf, A D-Band Frequency Doubler MMIC Based On A100-Nm Metamorphic HEMT Technology, IEEE Microwave and Guided wave Letter, Vol. 10, No. 11, pp:323-326, 2000.
    [13] C. N. Edward, A. P. Robert, F. Life, and J. B. Inder, Microwave and Millimeter-Wave Integrated Circuits, IEEE Trans. on Microwave and Techniques, Vol. 50, No. 3, pp:846-857, Mar. 2002.
    [14] G. Chattopadhyay, E. Schlecht, J. Ward, An All Solid-State Broadband Frequency Multiplier Chain at 1500 GHz. IEEE Trans. on Microwave Theory Technology, Vol. 52, No. 5, pp:1538-1547, 2004.
    [15] D. W. Porterfield, T. W. Crowe, R. F. Bradley, N. R. Erickson, A High-Power Fixed-Tuned Millimeter-Wave Balanced Frequency Doubler, IEEE Trans. on Microwave Theory Technology, Vol. 47, No. 4, pp:419-425, 1999.
    [16] P. H. Siegel, A. R. Kerr, W. Hwang, Topics In The Optimization Of Millimeter-Wave Mixers, NASA Technical Paper 2287, 1984.
    [17] A.G. Williamson, Analysis And Modelling Of A Single-Post Waveguide Mounting Structure, Proceeding IEE, Vol. 129, part H, pp:271–277, 1982.
    [18] A. G. Williamson, Analysis And Modelling Of Two-Gap Coaxial Line Rectangular Waveguide Junctions, IEEE Trans. on Microwave Theory Tech., Vol. 31, No. 5, pp:295-302, 1983.
    [19] P. Penfield, R. P. Rafuse,Varactor applications. Cambridge, Mass, The MIT Press, pp:215-248, 1962.
    [20] J. Grajal, V. Krozer, F. Maldonado, E. Gonzalez, L. Chi-I, H. L. Hartnagel, Tripler circuit design with Schottky varactors, Terahertz Electronics Proceedings, IEEE Sixth International Conference, pp:153-156, Sep. 1998.
    [21] N. R. Erickson, Very high efficiency frequency triplers for 100–300 GHz, Proceeding 10th International Conference Infrared and Millimeter Waves, Miami, pp:54-55, 1985.
    [22] C. B. Burckhardt, Analysis Of Varactor Frequency Multipliers For Arbitrary Capacitance Variation And Drive Level, Bell System Tech., Vol. 44, pp:75-92, 1965.
    [23] J. E. Carroll, Hot electron microwave generator, Edward Arnold, 1970
    [24] J. Ondria, Wideband electronically tunable GaAs Gunn VCO’s at W-band, IEEE Trans. On MTT-S Digest. Vol. 85, pp:375-378, 1985.
    [25] S. J. TENG, R. E. Goldwasser, High-Performance Second-Harmonic Operation W-Band Gaas Gunn Diodes, Electron Device Letters. Vol. 10, No. 9, pp:412-414, 1989.
    [26] A. Rydberg, High Efficiency And Output Power From Second- And Third- HarmonicMillimeter-Wave Inp-TED Oscillators At Frequcecies Above 170 GHz, Electron Device Letters. Vol. 11, No. 5, pp:439-441, 1990.
    [27] T. Yoshida, Ka-band Planar Gunn Oscillators Using Flip-chip GaAs Gunn Diodes Fabricated By Boron Ion Implantation, IEEE GaAs Digest, 2000.
    [28] H. Eisele, Recent Advances in the Performance of InP Gunn Devices and GaAs TUNNETT Diodes for the 100-300-GHz Frequency Range and Above, IEEE Trans. on Microwave theory and Techniques, Vol. 48, No. 4, pp:626-631, Apr. 2000.
    [29] H. Eisele, InP Gunn Devices for 400-425 GHz, Electronics Letters, Vol. 42, No. 6, pp:358-359, 2006.
    [30] J. Bae, A Second Harmonic Oscillator Using an Overmoded Waveguide Resonator with Gunn Diodes, Microwave Symposium IEEE/MTT-S International, pp:1537-1540, Honolulu, Jul. 2007.
    [31] A. V. Dyadchenko, A. A. Mishnyov, N. E. Polyanski, Broadband GaAs-oscillators of mm-range, Physics and Engineering of Microwaves, Millimeter and Submillimeter Waves. No. 2, pp:543-545, 2004.
    [32] N. R. Erickson, A High Efficiency Frequency Tripler For 230 GHz, Proceeding 12th European Microwave Conference, pp:241-246, Helsinki, 1982.
    [33] M. Axelbank, W. W. Camp, V. L. Lynn, J. Margolin, A High-Sensitivity Radar with One-Half-Meter Range Resolution, IEEE 71 International Conv. Digest., New York, pp:112–113, Mar. 1971.
    [34] R. K. Avent, J. D. Shelton, P. Brown, The ALCOR C-Band Imaging Radar, IEEE Antennas Propag. Mag., Vol. 38, No. 3, pp:16–27, 1996.
    [35] G. J. Linde, M. T. Ngo, B. G. Danly, et al. WARLOC: A High-Power Coherent 94 GHz Radar, IEEE Trans. on Aerospace and Electronic Systems, Vol. 44, No. 3, pp:1102-1117, 2008.
    [36] R. Appleby, R. N. Anderton, Millimeter-Wave and Submillimeter-Wave Imaging for Security and Surveillance, Proceedings of the IEEE, Vol. 95, No. 8, pp:1683-1690, 2007.
    [37] R. M. Langdon, V. Handerek, P. Harrison, Military Applications of Terahertz Imaging, 1st EMRS DTC Technical Conference, Edinburgh, 2004.
    [38] W. W. Camp, J. T. Mayhan, R. M. O’Donnell, Wideband Radar for Ballistic Missile Defense and Range-Doppler Imaging of Satellites, Lincoln Laboratory Journal, Vol. 12, No. 2, pp:267-280, 2000.
    [39] I. Gorshkov, V. Averianov, Secret Microwave“Door”For Inspection Of People And Luggage,Stand-off Detection of Suicide Bombers and Mobile Subjects, pp:11-16, 2006.
    [40] S. Galoda, G. Singh, Fighting Terrorism With Terahertz, IEEE Potentials, Vol. 26, No. 6, pp:24-29, 2007.
    [41] C. Jastrow, K. Munter, R. Piesiewicz, 300 GHz Transmission System, Electronics Letters, Vol. 44, No. 3, pp:213-214, 2008.
    [42] C. Jastrow, S. Priebe, B. Spitschan, Wireless Digital Data Transmission At 300 GHz, Vol. 46, No. 9, pp:661-663, 2010.
    [43] J. B. Mead, R. E. McIntosh, A 225 GHz Polarimetric Radar, IEEE Trans.on Microwave Theory and Techniques, Vol. 38, No. 9, pp:1252-1258, Sep. 1990.
    [44] R. W. McMillan, C. W. Trussell, J. Ronald, A. Bohlander, et al, An Experimental 225 GHz Pulsed Coherent Radar, Vol. 39, NO. 3, pp:555-562, Mar. 1991.
    [45] T. M. Goyette, J. C. Dickinson, J. Waldman, et al, A 1.56thz Compact Radar Range For W-Band Imagery Of Scale-Model Tactical Targets, Algorithms For Synthetic Aperture Radar Imagery VII, Proceedings of SPIE, Vol. 4053, pp:615-622, Aug. 2000.
    [46] I. Hosako, N. Sekine, M. Patrashin, et al, At the Dawn of a New Era in Terahertz Technology, Proceedings of the IEEE, Vol. 95, No. 8, pp:1611-1623, 2007.
    [47] C. Mann, First Demonstration of a Vehicle Mounted 250GHz Real Time Passive Imager, Terahertz Physics, Devices, and Systems III: Advanced Applications in Industry and Defense, Proceeding of SPIE, Vol. 7311, Orlando, 2009.
    [48] A. Luukanen, L. Gr?nberg, M. Gr?nholm, Real-Time Passive Terahertz Imaging System For Standoff Concealed Weapons Imaging, Passive Millimeter-Wave Imaging Technology XIII, Proceeding of SPIE, Vol. 7670, Orlando, 2010.
    [49] K. B. Cooper , R. J. Dengler, N. Llombart, An Approach for Sub-Second Imaging of Concealed Objects Using Terahertz (THz) Radar, Journal of Infrared Millimeter and Terahertz Waves, Vol. 30, No. 12, pp:1297–1307, 2009.
    [50] K. B. Cooper, R. J. Dengler, N. Llombart, et al, Fast, High-Resolution Terahertz Radar Imaging At 25 Meters, Terahertz Physics, Devices, and Systems IV: Advanced Applications in Industry and Defense, Proceeding of SPIE, Vol. 7671, Orlando, 2010.
    [51] M. Rosker, Progress Towards a THz Imager, MTOIMS 2007 Workshop WFE, Jun. 2007.
    [52] G. Chattopadhyay, Submillimeter-Wave Coherent and Incoherent Sensors for Space Applications, Lecture Notes in Electrical Engineering, Vol. 21, No. 10, pp:387-414, 2008.
    [53] P. H. Siegel, Terahertz Technology in Biology and Medicine, IEEE Trans. on MicrowaveTheory Tech., Vol. 52, No. 10, pp:2438-2447, 2004.
    [54] N. C. Luhmann, W. A. Peebles, Instrumentation for Magnetically Confined Fusion Plasma Diagnostics, Rev. Sci. Instrum., Vol. 55, No. 3, pp: 279-331, 1984.
    [55] C. J. Higginsb, N. A. Salmona, Passive Millimetre Wave Imaging for Ballistic Missile Launch Detection, Millimetre Wave and Terahertz Sensors and Technology, Cardiff, Wales, Sep. 2008.
    [56] R. J. Dengler, F.Maiwald, and P. H. Siegel, A Compact 600 Ghz Electronically Tunable Vector Measurement System For Submillimeter Wave Imaging, IEEE MTT-S Int. Digest, San pp:1923–1926, Francisco, Jun. 2006.
    [57] R. J. Dengler, K. B. Cooper, G. Chattopadhyay, I. Mehdi, E. Schlecht, A. Skalare, C. Chen, and P. H. Siegel, 600 Ghz Imaging Radar With 2cm Range Resolution, IEEE MTT-S Int. Digest, Honolulu, pp:1371–1374, Jun. 2007.
    [58] K. B. Cooper, R. J. Dengler, G. Chattopadhyay, E. Schlecht, J. Gill, A. Skalare, I. Mehdi, and P. H. Siegel, A High-Resolution Imaging Radar at 580 GHz, IEEE Microwave and Wireless Components Letters, Vol. 18, No. 1, pp:64-66, Jan. 2008.
    [59] C. A. Weg, W. V. Spiegela, R. Hennebergerb, Fast Active Thz Camera With Range Detection By Frequency Modulation, Terahertz Technology and Applications II, Proceeding of SPIE, Vol. 7215, Orlando, 2009.
    [60] C. A. Weg, W. V. Spiegel, R. Henneberger, et al, Fast Active THz Cameras with Ranging Capabilities, Journal of Infrared Millimeter and Terahertz Waves, Vol. 30, No. 8, pp:1281-1296, 2009.
    [61] V. C. Chen, Micro-Doppler Effect Of Micro-Motion Dynamics: A Review. Proceedings of SPIE, Vol. 5102, pp:240-249, Orlando, 2003.
    [62] V. C. Chen, F. Y. Li, Micro-Doppler Effect In Radar-Phenomenon, Model And Smulation Study. IEEE Trans. on Aerospace and Electronic Systems, Vol. 42, No. 1, pp:2-21, 2006.
    [63] V. C. Chen, F. Y. Li, Analysis Of Micro-Doppler Signatures. IEE Proceedings on Radar, Sonar and N avigation, Vol. 150, No. 4, pp:271-276, 2003.
    [64] T. Sparr, B. Krane, Micro-Doppler Analysis Of Vibrating Targets In SAR. IEE Proceedings on Radar, Sonar and Navigation, Vol. 150, No. 4, pp:277-283, 2003.
    [65] V. C. Chen, H. Ling , Time-Frequency Transforms for Radar Imaging and Signal Analysis. Boston, Artech House, pp:93-104, 2002,.
    [66] V. C. Chen, Analysis Of Radar Micro-Doppler Signature With Time-Frequency Transforms, In Proceedings of the 10th IEEE Workshop on Statistical Signal and Array Processing,pp:463-466, USA, 2000.
    [67] A. Ghaleb, L. Vignaud, J. M. Nicolas, Micro-Doppler Analysis Of Wheels And Pedestrians In ISAR Imaging, IET Signal Process, Vol. 2, No. 3, pp:301-311, 2008.
    [68] T. Thayaparan, S. Abrol, E. Riseborough, et al. Analysis Of Radar Micro-Doppler Signatures From Experimental Helicopter And Human Data, IET Radar, Sonar and Navigation, Vol. 1, No. 4, pp:289-299, 2007.
    [69]陈行勇,黎湘,姜斌,基于微多普勒特征的空中目标识别,现代雷达, Vol. 28, No. 10, pp:30-33, 2006.
    [70]陈行勇,黎湘,郭桂蓉,微进动弹道导弹目标雷达特征提取,电子与信息学报, Vol. 28, No. 4, pp:643-646, 2006.
    [71]陈行勇,刘永祥,黎湘,郭桂蓉,微多普勒分析和参数估计,红外与毫米波学报, Vol. 25, No. 5, pp:360-363, 2006.
    [72]高红卫,文树梁,微多普勒理论建模与仿真研究,中国电子科学研究院学报, Vol. 3, No. 1, pp:34-39, 2008.
    [73] V. C. Chen, Joint Time-Frequency Analysis for Radar Signal and Imaging, IEEE International Geoscience and Remote Sensing Symposium, pp:5166-5169, Barcelona, Jul. 2007.
    [74] S. Lawrence, Large Dynamic Range Time-Frequency Signal To Helicopter Doppler Radar Data, Sixth International Symposium on Signal Processing and its Applications, Vol. 1, pp:260-263, Kuala-Lampur, 2001.
    [75] J. Li, H. Ling, Application Of Adaptive Chirplet Representation For ISAR Feature Extraction From Targets With Rotating Parts, IEE Proceeding, Radar Sonar Navigator, Vol. 150, No. 4, pp:284-291, 2003.
    [76] H. Ling, Exploitation Of Microdoppler And Multiple Scattering Phenomena For Radar Target Recognition. A375771, AD, University of Texas at Austin, Austin, USA, 2004.
    [77] M. I. Skolnik, Introduction to Radar Systems, Third Edition, McGraw-Hill, 2001.
    [78] ITU-RP.676-1 Attenuation by Atmospheric Gases in the Frequency Range 1-350 GHz, 2007.
    [79] K. C. Allen, H. J. Liebe, Tropospheric Absorption and Dispersion of Millimeter and Submillimeter Waves, IEEE Trans. on Antennas Propagat., Vol. 31, No. 1, pp:221-223, 1983.
    [80] H. W. Hubers, Terahertz Heterodyne Receivers, IEEE Journal of Selected Topics in Quantum Electronics, Vol. 14, No. 2, pp:378-391, 2008.
    [81]弋稳,雷达接收机技术,电子工业出版社, pp:30-78, 2005年.
    [82] R. S. Raven. Requirements on Master Oscillators for Coherent Radar, Porceeding IEEE, Vol.54, No. 2, pp:237-243, Feb. 1966.
    [83] L. S. Cutler, C. L. Searle, Some Aspects of the Theory and Measurement of Frequency Fluctuations in Frequency Standards. Proceeding IEEE, Vol. 54, No. 2, pp:136-154, Feb. 1966.
    [84] J. Rutman. Relations Between Spectral Purity and Frequency Stability, Frequency Control, 28th Annual Symposium, 1974.
    [85] R. Collin, Foundation of Microwave Engineering, McGraw-Hill, New York, pp:89-110, 1996.
    [86] J. Smith, Modern Communication Circuits, McGraw-Hill, New York, pp:25-42, 1997.
    [87] J. Frohmaier, Noise Performance Of A Three-Stage Microwave Receiver, Electronic Tech. pp:245-249, 1960.
    [88] J. Rutman. Characterization of Phase and Frequency Instabilities in Precision Frequency Sources. Fifteen Years of Progress, Porceeding IEEE, Vol. 66, No. 9, Sep. 1978.
    [89] E. J. Baghdady, R. N. Lincoln, B. D. Nelin. Short-Term Frequency Stability: Character- ization, Theory, and Measurement, Proceeding IEEE, pp:704-722, Jul. 1965.
    [90] D. B. Leeson, G. F. Johnson, Short-Term Stability for a Doppler Radar: Requirements, Measurement, and Techniques, Porceeding IEEE, Vol. 54, No. 2, pp:244-247, Feb, 1966.
    [91] H. J. Kuno, Solid-State Microwave and Millimeter-Wave Sources Development-A Personal Account, IEEE Trans. on Microwave and Techniques, Vol. 32, No. 9, pp:1083-1087, Sep. 1984.
    [92] L. Cohen, Time-Frequency Analysis, Engle- wood Cliffs, New Jersey, Prentice-Hall, 1995.
    [93] N. E. Huang, et al. The Empirical Mode Decomposition And Hilbert Spectrum For Nonlinear Non-Stationary Time Series Analysis. Proceedings of the Royal Society of London, pp:903-995, 1998.
    [94]范录宏,费智婷,黄顺吉,基于时频分析方法的多弹头成像处理算法,电子科技大学学报, Vol. 35, No. 3, pp:317-319, 2006.
    [95]范录宏,黄顺吉,侯印鸣,基于HH变换的非平稳运动目标的ISAR成像,电波科学学报, Vol. 21, No. 4, pp:264-267, 2006.
    [96] V. C. Chen, W. Miceli, Time-varying spectral analysis for radar imaging of maneuvering targets, IEE Proceeding Radar Sonar Navigation, Vol. 145, No. 5, pp:262–268, 1998.
    [97] J. Gray, The Effect Of Non-Uniform Motion On The Doppler Spectrum Of Scattered Continuous Wave Waveform. IEE Proceedings on Radar, Sonar and Navigation, Vol. 150, No. 4, pp:262-270, 2003.
    [98] D. M. Vavriv, et al, High-Accuracy Doppler Signal Processing: Techniques And Applications, IEEE MSMW'07 Symposium Proceedings, pp:25-30, Kharkov, 2007.
    [99] H. L. Van Trees, Detection, Estimation and Modulation Theory, Part III, Wiley, New York, 1971.
    [100] S. M. Kay, Fundamentals of Statistical Signal Processing: Detection Theory, Prentice-Hall, Englewood Cliffs, 1998.
    [101] M. A. Richards, Fundamentals of Radar Signal Processing, McGraw-Hill, New York, 2005.
    [102] Jin Li, Yiming Pi, Micro-Doppler Signature Feature Analysis in Terahertz Band, Journal of Infrared, Millimeter, and Terahertz Waves. Vol. 31, No. 3, pp:319-328, 2010.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700