用户名: 密码: 验证码:
三种典型布朗马达的定向输运与非平衡态热力学分析
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
在传统的热力学中,一旦知道系统的始态和终态能量以及连接两态的路径,便可确定系统对外作的功。事实上,两态的能量及系统与环境在路径上的交换热均有k_BT涨落,只是在玻耳兹曼统计中,这个量级的涨落被忽略了。如果系统很小,这样的涨落则不能被忽略。这类微观系统的统计热力学问题是纳米科学当前所面临的研究障碍。分子马达正是这样的微观系统,可为物理学家解决该问题提供一个理想的研究平台。
     近年来噪声诱导定向输运的现象已经引起人们的广泛兴趣。这种现象已经被普遍地应用在物理、化学以及生物上。理论和实验上研究的都比较集中的一个系统是动蛋白马达或者力蛋白马达的定向运动。这类马达蛋白主要负责细胞器官的输送,它们的运动是随机的但平均来说是定向运动,并且可以用布朗棘轮来构建这样的模型。于是布朗马达的概念便被用来解释噪声诱导定向输运。
     基于以上原因,本论文围绕几种典型的布朗马达模型进行讨论,研究了马达的定向输运行为。同时应用非平衡态热力学理论探索受不可逆因素影响的热驱动布朗马达系统的各种最优性能参量对马达性能的影响。主要研究内容如下:介绍了布朗运动的动力学理论,对定向输运系统(热力学棘齿)和布朗马达作一整体概述。详细介绍了分子马达的研究历史、分类、模型的构建以及理论框架,同时还对现有模型中马达模型研究的不足作了探讨和分析,期望对今后的研究有所启示。
     研究了由两个相同周期不对称势垒构成的两态闪烁棘齿模型中布朗粒子的定向输运。采用幂级数展开的方法得到了几率流的解析式,给出几率流随外参数变化的特性曲线。详细地讨论了不对称参数,势垒高度以及两态间的跃迁率等因素对几率流的影响。发现几率流不但会受到不对称参数和势垒高度的影响,而且两态间的跃迁率同样会影响到几率流。当两态间的跃迁率不等时,还发现势垒高度不仅会改变几率流的大小而且还会改变几率流的方向。
     基于一个更为普遍的布朗马达模型,解析求解了热驱动布朗马达的昂色格系数和普适效率。发现模型的昂色格系数满足倒易关系,由粒子运动产生的动能变化部分不会影响昂色格系数。仅当系统的热漏部分可以忽略时,昂色格系数行列式等于零。此外,详细地讨论了表征模型的各个参数对热布朗马达效率的影响。给出普适效率随系统参量变化的特性曲线,计算了效率的最大值和相应的优化参数。得到的计算结果更具有普遍意义,它们可以用来分析布朗马达在三个有趣条件下的性能特性:没有热漏情况,平均速度等于零的情况和线性响应区附近的情况。
     在上述基础上,建立了一个等效的循环系统,运用非平衡态热力学理论计算了系统的昂色格系数和最大输出功率时的效率。发现模型的昂色格系数满足倒易关系,对于现实系统的不可逆因素同样会影响模型的昂色格系数。仅当热漏和粒子动能改变部分可以忽略时,昂色格系数行列式等于零。同时还发现在非平衡态热力学框架下,对于不可逆热布朗马达的输出功率和效率可以表述成和不可逆卡诺热机相同的形式,因此所得的结果更具有普遍意义。此外这些结论还可以用来分析一类热驱动布朗马达的性能特性。
     基于理论上可以计算且实验上可以操作的双阱棘齿势,研究了延迟时间,粒子数,势垒的不对称参量对延迟反馈棘轮性能的影响。计算了布朗粒子的质心速度,平均有效扩散系数以及Pe数。详细地解释了这些参数不仅会受到延迟时间和粒子数的影响,而且还会受到双阱棘齿势的不对称参数的影响。很有趣地发现通过改变系统的粒子数可以获得定向流的反转。期望能够在某些物理和生物系统中观测到这些结果,因为本模型采用的是更为实际的并且可以在实验上实现的双阱棘齿势垒。
     本论文所得的结果可作为进一步深入研究上述三种典型布朗马达的理论基础,也可为相关纳米机器的优化设计提供理论参考。
Once we know the initial and final energies of the system and the path between them, the work output of the system can be determined by classical thermodynamics.In fact, there exists the quantity of fluctuations with k_BT dominate in the energies of the two states and the exchange heat between the system and the environment.In the Boltzmann statistic the quantity of fluctuations is usually negligible.However,the fluctuations aren't negligible as the systems are very small.The statistical thermodynamic issues appearing in microscopic systems are becoming the holdback which has to be faced with in the nano science.Molecular motors are just such microscopic systems which may serve as the basis for physicists to solve the problems.
     The phenomenon of noise induced directed transport has attracted much interest in recent years.It has widespread applications in physics,chemistry and biology.One particular system which has been intensively studied both theoretically and experimentally is the motion of motor proteins like kinesins or dyneins.These motor proteins are responsible for the transport of cell organelles along the cytosceleton.They move randomly but directly on average and have been modeled by Brownian ratchets,and consequently,the concept of Brownian motors has been used to illuminate the directed, noise-induced transport.
     Based on the above reasons,this thesis is focused on the discussion of several typical Brownian models,and then the directed transports of Brownian motors are investigated. The performance parameters of the thermally driven Brownian motors systems under the influence of the irreversibilities are searched by using nonequilibrium thermodynamics. The main research contents are organized as follows:
     The brief introduction of the dynamics theory of the Brownian motion and thermodynamic ratchets and Brownian motors are given.The research histories, classification,construction of the model and theory frame of the molecular motors are presented in detail.The insufficiency of the Brownian ratchet model in existence is explored and analyzed.It is expected that this discussion can give some inspire for future research.
     The transport of Brownian particles in two-state flashing ratchets composed of two asymmetric potentials with the same period is investigated.The analytic expression of a probability current is derived by using the power series expansion method and used to generate the curve characteristics of the current varying with other parameters.The effects of the asymmetric parameters and heights of two potentials and the transition rates between two states on the probability current are discussed in detail.It is found that the current is affected by not only the asymmetric parameters and heights of two potentials but also the transition rates between two states.It is also found that the heights of two potentials may change the magnitude as well as the direction of the current when the transition rates between two states are not the same.
     Based on a general model of Brownian motors,the Onsager coefficients and generalized efficiency of a thermal Brownian motor are calculated analytically.It is found that the Onsager reciprocity relation holds and the Onsager coefficients are not affected by the kinetic energy change due to the particle's motion.Only when the heat leak in the system is negligible,can the determinant of the Onsager matrix vanish.Moreover,the influence of the main parameters characterizing the model on the generalized efficiency of the Brownian motor is discussed in detail.The characteristic curves of the generalized efficiency varying with these parameters are presented.The maximum generalized efficiency and the corresponding optimum parameters are determined.The results obtained here are of general significance.They are used to analyze the performance characteristics of the Brownian motors operating in the three interesting cases with the zero heat leak,zero average drift velocity or linear response relation.
     An equivalent cycle system is established based on the above discussion and the Onsager coefficients and efficiency at the maximum power output of the system are analytically calculated from nonequilibrium thermodynamics.It is found that the Onsager reciprocity relation holds and the Onsager coefficients are affected by the main irreversibilities existing in practical systems.Only when the heat leak and the kinetic energy change of the particle in the system are negligible,can the determinant of the Onsager matrix vanish.It is also found that in the frame of nonequilibrium thermodynamics,the power output and efficiency of an irreversible Brownian motor can be expressed to be the same form as those of an irreversible Carnot heat engine,so the results obtained here are of general significance.Moreover,these results can be used to analyze the performance characteristics of a class of thermally driven Brownian motors.
     On the basis of the double-well potential which can be calculated theoretically and implemented experimentally,the influence of the time delay,number of particles and asymmetric parameter of the potential on the performance of a delayed feedback ratchet is investigated.The center-of-mass velocity of Brownian particles,the average effective diffusion coefficient and Pe number are calculated.It is expounded that the parameters are affected by not only the time delay and number of particles but also the asymmetric parameter of the double-well ratchet potential.It is very interesting to find that the current transport reversal may be obtained by varying the number of particles of the system.It is expected that the results obtained here may be observed in some physical and biological systems because the double-well ratchet potential is realizable experimentally.
     The results obtained in the thesis may provide some theoretical bases for the deep investigation on the three classes of typical Brownian motors mentioned above as well as some references for the optimal design of some relevant nano machines.
引文
[1]汪志诚.热力学·统计物理[M].北京:高等教育出版社,第三版,2003.
    [2]张太容.统计动力学及其应用[M].北京:冶金工业出版社,2007.
    [3]黄祖治,丁鄂江.输运理论[M].北京:科学出版社,1987.
    [4]Oster G.Brownian ratchets:Darwin's motors[J].Nature,2002,417:25.
    [5]Einstein A.Uber die von der molekularkinetischen Theorie der Warme geforderte Bewegung von in ruhenden Flussigkeiten suspendierten Teilchen[J].Ann.Phys.(Leipzig),1905,17:549-560.
    [6]Gardiner C W.Handbook of Stochastic Methods for Physics,Chemistry and the Natural Science[M].Berlin:Springer-Verlag,1983.
    [7]Langevin P.Sur la theorie du mouvement brownien[J].Comptes Rendus,1908,146:530-533.
    [8]Pathria R K.Statistical Mechanics[M].Pergamon Press,1972.
    [9]胡岗.随机力与非线性方程[M].上海:上海科技教育出版社,1994.
    [10]舒咬根.生物分子马达的定向输运机制及其ATP水解动力学[D].厦门大学博士学位论文,2004.
    [11]Fokker A D.Ann.Physik,1914,43:810.
    [12]Planck M.Sitzber.PreuB.Akad.Wiss.,1917,324.
    [13]Risken H.The Fokker-Planck Equation[M].Berlin:Springer-Vedag,1984.
    [14]张启仁.统计力学[M].北京:科学出版社,2004.
    [15]Onsager L.Reciprocal relations in irreversible processes.Ⅰ[J].Phys.Rev.,1931,37:405-426.
    [16]Onsager L.Reciprocal relations in irreversible processes.Ⅱ[J].Phys.Rev.,1931,38:2265-2279.
    [17]Onsager L,Maclup S.Fluctuations and irreversible processes[J].Phys.Rev.,1953,91:1505-1512.
    [18]苏汝铿.统计物理学[M].北京:高等教育出版社,2004.
    [19]翁甲强.热力学与统计物理学基础[M].桂林:广西师范大学出版社,2008.
    [1]Astumian R D,Bier M.Fluctuation driven ratchets:molecular motors[J].Phys.Rev. Lett.,1994,72:1766-1769.
    [2]Prost J,Chauwin J F,Peliti L,Ajdari A.Asymmetric pumping of particles[J].Phys.Rev.Lett.,1994,72:2652-2655.
    [3]Maddox J.More models of muscle contraction[J].Nature,1994,368:287.
    [4]Rousselet J,Salome L,Ajdari A,Prost J.Directional motion of Brownian particles induced by a periodic asymmetric potential[J].Nature,1994,370:446.
    [5]Doering C,Ermentrout B,Oster G.Rotary DNA motors[J].Biophys.J.,1995,69:2256.
    [6]Jung P,Kissner J G,Hanggi P.Regular and chaotic transport in asymmetric periodic potentials:inertia ratchets[J].Phys.Rev.Lett.,1996,76:3436-3439.
    [7]Frank J,Armand A,Jacques P.Modeling molecular motor[J].Rev.Mod.Phys.,1997,69:1269.
    [8]Mogilner A,Wang H,Elston T,Oster G.Molecular Motors:Theory and Experiment,Computational Cell Biology[M].New York:Springer-Verlag,2002.
    [9]Schliwa M,Woehlke G.Molecular motor[J].Nature,2003,422:759-765.
    [10]Schliwa M.Molecular motor[M].Weinheim:VCH-Wiley,2003.
    [11]Mehta A D,Rock R S,Rief M,Spudich J A,Mooseker M S,Cheney R E.Myosin-V is a processive actin-based motor[J].Nature,1999,400:590-593.
    [12]Wells A L,Lin A W,Chen L Q,Safer D,Cain S M,Hasson T,Carragher B O,Milligan R A,Sweeney H L.Myosin VI is an actin-based motor that moves backwards[J].Nature,1999,401:505-508.
    [13]Small J V.Myosin filaments on the move[J].Nature,1988,331:568-569.
    [14]Seiler S,Nargang F E,Steinberg G,Schliwa M.Kinesin is essential for cell morphogenesis and polarized secretion in Neurospora crassa[J].The EMBO Journal,1997,16:3025-3034.
    [15]Coy D L,Hancock W O,Wagenbach M,Howard J.Kinesin's tail domain is an inhibitory regulator of the motor domain[J].Nature Cell Biology,1999,1:288-292.
    [16]Schliwa M.Kinesin:walking or limping?[J].Nature Cell Biology,2003,5:1043-1044.
    [17]Shingyoji C,Higuchi H,Yoshimura M,Katayama E,Yanagida T.Dynein arms are oscillating force generators[J].Nature,1998,393:711-714.
    [18]Vallee R.Dynein and the kinetochore[J].Nature,1990,345:206-207.
    [19]Schnitzer M J.Molecular motors:Doing a rotary two-step[J].Nature,2001,410:878-881.
    [20]Wang K Y,Xue S B,Liu H T.Cell Biology[M].Beijing:Beijing Normal University Press,in Chinese,1998,238-246.
    [21]Cross R L.Molecular Motors:Turning the ATP motor[J].Nature,2004,427:407-408.
    [22]Sun S,Wang H,Oster G.Asymmetry in the F1-ATPase and its Implications for the Rotational Cycle[J].Biophys.J.,2003,83:1373-1384.
    [23]Wang H,Oster G.Energy transduction in the F1 motor of ATP synthase[J].Nature,1998,396:279-282.
    [24]韩英荣,展永,关荣华,卓益忠.旋转分子马达的代表-ATP合成酶[J].现代物理知识,2001,15:7-10.
    [25]Balajee A S,Desantis L P,Brosh R M,Selzer R,Bohr V A.Role of the ATPase domain of the Cockayne syndrome group B protein in UV induced apoptosis[J].Oncogene,2004,19:477-489.
    [26]舒咬根,欧阳钟灿.转动分子马达:ATP合成酶[J].然杂志,2007,29:249-254.
    [27]Smoluchowski M V.Experimenteu nachweisbare der ublicheb thermodynamics widersprechende molekularphanomene[J].Fhys.Z,1912,13:1069.
    [28]Feynman R P,Leighton R B,Sands M.The Feynman lectures on physics[M].M.A.:Addison-Wesley,Reading,1966,Vol.1,Chap.46.
    [29]Huxley A F.Muscle structure and theories of contraction[J].Prog.Biophys.,1957,7:255.
    [30]Tsong T Y,Astumian R D.Absorption and conversion of electric field energy by membrane bound ATPases[J].Bioelectrochem.Bioenerg,1986,15:457.
    [31]Westerhoff H V,Tsong T Y,Chock P B.How enzymes can capture and transmit free energy from an oscillating electric field[J].Proc.Natl.Acad.Scl.USA,1986,83:4734.
    [32]Julicher F,Ajdari A,Prost J.Modeling molecular motors[J].Rev.Mod.Phys.,1997, 69(4):1269-1291.
    [33]Astumian R D.Thermodynamics and kinetics of a Brownian motor[J].Science,1997,276:917-922.
    [34]Reimann P.Brownian motors:noisy transport far from equilibrium[J].Phys.Rep.,2002,361:57-265.
    [35]Zheng Z G.Spatiotemporal Dynamics and Collective Behaviors in Coupled Nonlinear Systems[M].Beijing:Higher education press,2004.
    [36]Parrondo J M R,Espanol P.Criticism of Feynman's analysis of the ratchet as engine [J].Am.J.Phys.,1996,64:1125.
    [37]Magnasco M 0,Stolovitzky G.Feynman's ratchet and pawl[J].J.Stat.Phys.,1998,93:615.
    [38]Sekimoto K.Kinetic characterization of heat bath and the energetic of thermal ratchet models[J].J.Phys.Soc.Jpn.,1997,66:1234.
    [39]Houdou T,Takaga F.Irreversible operation in a stalled state of Feynman's ratchet[J].J.Phys.Soc.Jpn.,1998,67:2974.
    [40]Sakaguchi H.Langevin simulation for the Feynman ratchet model[J].J.Phys.Soc.Jpn.,1998,67:709;
    [41]Sakaguchi H.Fluctuation theorem for a Langevin model of the Feynman ratchet[J].J.Phys.Soc.Jpn.,2000,69:104.
    [42]Jarzynski C,Mazonka O.Feynman's ratchet and pawl:an exactly solvable model[J].Phys.Rev.E,1999,59:6448.
    [43]赵同军,李微,韩英荣,卓益忠.分子马达动力学[J].原子核物理评论,2004,21:177-179.
    [44]卓益忠,赵同军,展永.分子马达与布朗马达[J].物理,2000,29:712-718.
    [45]Cordova N G,Ermentrout B,Oster G.Dynamics of single-motor molecules:The thermal ratchet model[J].Proc.Natl.Acad.Sci.USA,1992,89:339.
    [46]Rousselet J,Salome L,Ajdari A,Prost J.Directional motion of Brownian particles induced by a periodic asymmetric potential[J].Nature,1994,370:446.
    [47]Maddox J.Directed motion from random noise[J].Nature,1994,369:181.
    [48]Doering C R,Horsthemke W,Riordan J.Nonequilibrium fluctuation-induced transport[J].Phys.Rev.Lett.,1994,72:2984.
    [49]Eichhorn R,Reimann P,Hanggi P.Absolute negative mobility and current reversals of a meandering Brownian particle[J].Physica A,2003,325:101-109.
    [50]Larrondo H A,Family F,Arizmendi C M.Control of current reversal in single and multiparticle inertia ratchets[J].Physica A,2002,303:67-78.
    [51]Kostur M,Luczka J.Multiple current reversal in Brownian ratchets[J].Phys.Rev.E,2001,63:021101.
    [52]Sumithra K,Sintes T.Efficiency optimization in forced ratchets due to thermal fluctuations[J].Physica A,2001,297:1-12.
    [53]Souvik Das,Narayan O,Ramaswamy S.Ratchet for energy transport between identical reservoirs[J].Phys.Rev.E,2002,66:050103.
    [54]Risken H.The Fokker-Planck Equation[M].Berlin:Springer-Verlag,1984.
    [55]Zheng Z,Hu G Systematic perturbation solution for Brownian motion in a biased periodic potential field[J].Phys.Rev.E,1995,52:109.
    [56]Suzuki D,Munakata T.Rectification efficiency of a Brownian motor[J].Phys.Rev.E,2003,68:021906.
    [57]Kamegawa H,Hondou T,Takagi F.Energetics of a Forced Thermal Ratchet[J].Phys.Rev.Lett.,1998,80:5251-5254.
    [58]Parrondo J M R,Blanco J M,Cao F J,Brito R.Efficiency of Brownian motors[J].Europhys.Lett.,1998,43:248-254.
    [59]Parmeggiani A,Julicher F,Ajdari A,Prost J.Energy transduction of isothermal ratchets:Generic aspects and specific examples close to and far from equilibrium[J].Phys.Rev.E,1999,60:2127-2140.
    [60]Zhou H X,Chen Y D.Chemically Driven Motility of Brownian Particles[J].Phys.Rev.Lett.,1996,77:194-197.
    [61]Derenyi I,Bier M,Astumian R D.Generalized Efficiency and its Application to Microscopic Engines[J].Phys.Rev.Lett.,1999,83:903-906.
    [1]Doering C R,Horsthemke W,Riordan J.Nonequilibrium Fluctuation-Induced Transport[J].Phys.Rev.Lett.,1994,72:2984-2987.
    [2]Julicher F,Prost J.Cooperative Molecular Motors[J].Phys.Rev.Lett.,1995,75:2618-2621.
    [3]Derenyi I,Vicsek T.Cooperative Transport of Brownian Particles[J].Phys.Rev.Lett.,1995,75:374-377.
    [4]Astumian R D.Thermodynamics and kinetics of a Brownian motor[J].Science,1997,276:917-922.
    [5]Reimann P.Brownian motors:noisy transport far from equilibrium[J].Phys.Rep.,2002,361:57-265.
    [6]Saffarian S,Qian H,Collier I,Elson E,Goldberg G.Powering a burnt bridges Brownian ratchet:A model for an extracellular motor driven by proteolysis of collagen [J].Phys.Rev.E,2006,73:041909.
    [7]Menche J,Schimansky-Geier L.Two particles with bistable coupling on a ratchet[J].Phys.Lett.A,2006,359:90-98.
    [8]Zhang Y,Lin B,Chen J.Performance characteristics of an irreversible thermally driven Brownian microscopic heat engine[J].Eur.Phys.J.B,2006,53:481-485.
    [9]Vincent U E,Laoye J A.Synchronization and control of directed transport in chaotic ratchets via active control[J].Phys.Lett.A,2007,363:91-95.
    [10]Magnasco M O.Forced Thermal Ratchets[J].Phys.Rev.Lett.,1993,71:1477-1481.
    [11]Prost J,Chauwin J F,Peliti L,Ajdari A.Asymmetric Pumping of Particles[J].Phys.Rev.Lett.,1994,72:2652-2655.
    [12]Savelev S,Marchesoni F,Hanggi P,Nori F.Nonlinear signal mixing in a ratchet device[J].Europhys.Lett.,2004,67:179-185.
    [13]Julicher F,Adjari A,Prost J.Modeling molecular motors[J].Rev.Mod.Phys.,1997,69:1269-1281.
    [14]Rozenbaum V M,Yang D Y,Lin S H,Tsong T Y.Energy losses in a flashing ratchet with different potential well shapes[J].Physica A,2006,363:211-216.
    [15]Dinis L,Parrondo J M R,Cao F J.Closed-loop control strategy with improved current for a flashing ratchet[J].Europhys.Lett.,2005,71:536-541.
    [16]Linden M,Tuohimaa T,Jonsson A-B,Wallin M.Force generation in small ensembles of Brownian motors[J].Phys.Rev.E,2006,74:021908.
    [17]Craig E M,Zuckermann M J,Linke H.Mechanical coupling in flashing ratchets[J].Phys.Rev.E,2006,73:051106.
    [18]Derenyi I,Ajdari A.Collective transport of particles in a“flashing”periodic potential[J].Phys.Rev.E,1996,54:R5-R8.
    [19]Lattanzi G,Maritan A.Force Dependence of the Michaelis Constant in a Two-State Ratchet Model for Molecular Motors[J].Phys.Rev.Lett.,2001,86:1134-1137.
    [20]Moon H Y,Park Y Modified Michaelis law in a two-state ratchet model for a molecular motor as a function of diffusion constant[J].Phys.Rev.E,2003,67:051918.
    [21]Ai B Q,Wang L Q,Liu L G Flashing motor at high transition rate[J].Chaos Solitons & Fractals,2007,34:1265-1271.
    [22]Luczka J,Czernik T,Hanggi P.Symmetric white noise can induce directed current in ratchets[J].Phys.Rev.E,1997,56:3968-3975.
    [23]Kula J,Kostur M,Luczka J.Brownian transport controlled by dichotomic and thermal fluctuations[J].Chem.Phys.,1998,235:27-37.
    [24]Ai B Q,Wang L Q,Liu L G.Transport reversal in a thermal ratchet[J].Phys.Rev.E,2005,72:031101.
    [1]Astumian R D.Thermodynamics and kinetics of a Brownian motor[J].Science,1997,276:917-922;Reimann P,Hanggi P.Introduction to the physics of Brownian motors [J].Appl.Phys.A:Mater.Sci.Process.,2002,75:169-178;Li F Z,Hu K G,Su W F,Chen Y C.Symmetric linear potential and imperfect Brownian ratchet in molecular motor function[J].Chin.Phys.,2005,14:1745-1754.
    [2]Reimann P.Brownian motors:noisy transport far from equilibrium[J].Phys.Rep.,2002,361:57-265.
    [3]He D H,Yang T,Li W H,Zhang Q L,Ma H R.Brownian dynamics simulation of two confined colloidal particles[J].Chin.Phys.,2007,16:3138-3145.
    [4]Parmeggiani A,Julicher F,Ajdari A,Prost J.Energy transduction of isothermal ratchets:Generic aspects and specific examples close to and far from equilibrium[J].Phys.Rev.E,1999,60:2127-2140.
    [5]Zhou H X,Chen Y D.Chemically Driven Motility of Brownian Particles[J].Phys.Rev.Lett.,1996,77:194-197.
    [6]Bier M,Astumian R D.Biasing Brownian Motion in Different Directions in a 3-State Fluctuating Potential and an Application for the Separation of Small Particles[J].Phys.Rev.Lett.,1996,76:4277-4280.
    [7]Schreier M,Reimann P,Hanggi P,Pollak E.Giant enhancement of diffusion and particle selection in rocked periodic potentials[J].Europhys.Lett.,1998,44:416-422.
    [8]J(?)licher F,Ajdari A,Prost J.Modeling molecular motors[J].Rev.Mod.Phys.,1997,69:1269-1281.
    [9]Markin V S,Tsong T Y,Astumian R D,Robertson R J.Energy transduction between a concentration gradient and an alternating electric field[J].J.Chem.Phys.,1990,93:5062-5066.
    [10]Parrondo J M R,De Cisneros B J.Energetics of Brownian motors:a review[J].Appl.Phys.A:Mater.Sci.Process.,2002,75:179-191.
    [11]Makhnovskii Y A,Rozenbaum V M,Yang D-Y,Lin S H,Tsong T Y.Flashing ratchet model with high efficiency[J].Phys.Rev.E,2004,69:021102.
    [12]Sokolov I M.Irreversible and reversible modes of operation of deterministic ratchets[J].Phys.Rev.E,2001,63:021107.
    [13]Krishnan R,Mahato M C,Jayannavar A M.Brownian rectifiers in the presence of temporally asymmetric unbiased forces[J].Phys.Rev.E,2004,70:021102.
    [14]Derenyi I,Bier M,Astumian R D.Generalized Efficiency and its Application to Microscopic Engines[J].Phys.Rev.Lett.,1999,83:903-906.
    [15]Gomez-Marin A,Sancho J M.Tight coupling in thermal Brownian motors[J].Phys.Rev.E,2006,74:062102.
    [16]Asfaw M,Bekele M.Current,maximum power and optimized efficiency of a Brownian heat engine[J].Eur.Phys.J.B,2004,38:457-461.
    [17]Zhang Y,Lin B H,Chen J C.Performance characteristics of an irreversible thermally driven Brownian microscopic heat engine[J].Eur.Phys.J.B,2006,53:481-485.
    [18]Sakaguchi H.A Langevin Simulation for the Feynman Ratchet Model[J].J.Phys.Soc.Jpn.,1998,67:709-712.
    [19]Van Kampen N G.Diffusion in inhomogeneous media[J].J.Phys.Chem.Solids,1988,49:673-677.
    [20]Fekade S,Bekele M.Model-dependent nature of blowtorch effect on the escape and equilibration rates[J].Eur.Phys.J.B,2002,26:369-374.
    [21]Sancho J M,San Miguel M,Durr D.Adiabatic elimination for systems of Brownian particles with nonconstant damping coefficients[J].J.Stat.Phys.,1982,28:291-305.
    [22]Dufty J W,Brey J J.Brownian motion in a granular fluid[J].New J.Phys.,2005,7:20.
    [23]Li W,Zhao T J,Guo H Y,Ji Q,Zhan Y.A nonuniform ratchet model with Gauss-transition rates for Brownian motor[J].Acta Phys.Sin.,2004,53:3684-3689.
    [24]Van den Broeck C.Thermodynamic Efficiency at Maximum Power[J].Phys.Rev.Lett.,2005,95:190602.
    [25]Van den Broeck C,Kawai R.Brownian Refrigerator[J].Phys.Rev.Lett.,2006,96:210601.
    [26]Suzuki D,Munakata T.Rectification efficiency of a Brownian motor[J].Phys.Rev.E,2003,68:021906.
    [27]Machura L,Kostur M,Talkner P,Luczka J,Marchesoni F,Hanggi P.Brownian motors:Current fluctuations and rectification efficiency[J].Phys.Rev.E,2004,70:061105.
    [28]Rozenbaum V M,Korochkova T Ye,Liang K K.Conventional and generalized efficiencies of flashing and rocking ratchets:Analytical comparison of high-efficiency limits[J].Phys.Rev.E,2007,75:061115.
    [29]Kostur M,Machura L,Hanggi P,Luczka J,Talkner P.Forcing inertial Brownian motors:Efficiency and negative differential mobility[J].Physica A,2006,371:20-24.
    [30]Astumian R D.Protein conformational fluctuations and free-energy transduction[J].Appl.Phys.A:Mater.Sci.Process.,2002,75:193-206.
    [31]Mayor P,D'Annal G,Barrat A,Loreto V.Observing Brownian motion and measuring temperatures in vibration-fluidized granular matter[J].New J.Phys.,2005,7:28.
    [32]Lin F,Bao J D.Approach of continuous time random walk model to anomalous diffusion[J].Acta Phys.Sin.,2008,57:696-702.
    [1]Reimann P.Brownian motors:noisy transport far from equilibrium[J].Phys.Rep.,2002,361:57-265.
    [2]Astumian R D,H(?)nggi P.Brownian motors[J].Phys.Today,2002,55:33-39.
    [3]Gao T F,Zhang Y,Chen J C.The current characteristics of two-state flashing ratchets composed of two asymmetric potentials[J].Mod.Phys.Lett.B,2008,22:2967-2978.
    [4]Sekimoto K,Takagi F,Hondou T.Carnot's cycle for small systems:Irreversibility and cost of operations[J].Phys.Rev.E,2000,62:7759-7768.
    [5]Parrondo J M R,De Cisneros B J.Energetics of Brownian motors:a review[J].Appl.Phys.A:Mater.Sci.Process.,2002,75:179-191.
    [6]Parmeggiani A,Julicher F,Ajdari A,Prost J.Energy transduction of isothermal ratchets:Generic aspects and specific examples close to and far from equilibrium[J].Phys.Rev.E,1999,60:2127-2140.
    [7]Hondou T,Sekimoto K.Unattainability of Carnot efficiency in the Brownian heat engine[J].Phys.Rev.E,2000,62:6021-6025.
    [8]Van den Broeck C.Carnot Efficiency Revisited[J].Adv.Chem.Phys.,2007,135:189-201.
    [9]Buttiker M.Transport as a consequence of state-dependent diffusion[J].Z.Phys.B,1987,68:161-167.
    [10]van Kampen N G.Relative stability in nonuniform temperature[J].IBM J.Res.Dev.,1988,32:107-111.
    [11]Landauer R.Motion out of noisy states[J].J.Stat.Phys.,1988,53:233-248.
    [12]Landauer R.Inadequacy of entropy and entropy derivatives in characterizing the steady state[J].Phys.Rev.A,1975,12:636-638.
    [13]Landauer R.Stability and relative stability in nonlinear driven systems[J].Helv.Phys.Acta,1983,56:847-861.
    [14]Derenyi I,Astumian R D.Efficiency of Brownian heat engines[J].Phys.Rev.E,1999,59:R6219-R6222.
    [15]Gomez-Marin A,Sancho J M.Tight coupling in thermal Brownian motors[J].Phys.Rev.E,2006,74:062102.
    [16]Asfaw M,Bekele M.Current,maximum power and optimized efficiency of a Brownian heat engine[J].Eur.Phys.J.B,2004,38:457-461.
    [17]Zhang Y,Lin B H,Chen J C.Performance characteristics of an irreversible thermally driven Brownian microscopic heat engine[J].Eur.Phys.J.B,2006,53:481-485.
    [18]Sakaguchi H.A Langevin Simulation for the Feynman Ratchet Model[J].J.Phys.Soc.Jpn.,1998,67:709-712.
    [19]Verhas J,De Vos A.How endoreversible thermodynamics relates to Onsager's nonequilibrium thermodynamics[J].J.Appl.Phys.,1997,82:40-42.
    [20]Van den Broeck C.Thermodynamic Efficiency at Maximum Power[J].Phys.Rev.Lett,2005,95:190602.
    [21]Chen J.The maximum power output and maximum efficiency of an irreversible Carnot heat engine[J].J.Phys.D:Appl.Phys,1994,27:1144-1149.
    [22]Onsager L.Reciprocal relations in irreversible processes.Ⅰ[J].Phys.Rev,1931,37:405-426.
    [23]Onsager L.Reciprocal relations in irreversible processes.Ⅱ[J].Phys.Rev,1931,38:2265-2279.
    [24]Onsager L,Maclup S.Fluctuations and irreversible processes[J].Phys.Rev,1953, 91:1505-1512.
    [25]Derenyi I,Bier M,Astumian R D.Generalized Efficiency and its Application to Microscopic Engines[J].Phys.Rev.Lett.,1999,83:903-906.
    [26]Jarzynski C,Mazonka O.Feynman's ratchet and pawl:An exactly solvable model[J].Phys.Rev.E,1999,59:6448-6459.
    [27]Velasco S,Roco J M M,Medina A,Calvo Hernandez A.Feynman's ratchet optimization:maximum power and maximum efficiency regimes[J].J.Phys.D:Appl.Phys.,2001,34:1000-1006.
    [28]Van den Broeck C,Kawai R.Brownian Refrigerator[J].Phys.Rev.Lett.,2006,96:210601.
    [29]van den Broek M,Van den Broeck C.Chiral Brownian Heat Pump[J].Phys.Rev.Lett.,2008,100:130601.
    [30]Callen H.Thermodynamics and an Introduction to Thermostatistics[M].New York:Wiley,1985,p320.
    [31]De Groot S R,Mazur P.Non-Equilibrium Thermodynamics[M].New York:Dover,1984,p350.
    [32]Kedem O,Caplan S R.Degree of coupling and its relation to efficiency of energy conversion[J].Trans.Faraday Soc,1965,61:1897-1911.
    [33]Kostur M,Machura L,Hanggi P,Luczka J,Talkner P.Forcing inertial Brownian motors:Efficiency and negative differential mobility[J].Physica A,2006,371:20-24.
    [34]Tu Z C.Efficiency at maximum power of Feynman's ratchet as a heat engine[J].J.Phys.A,2008,41:312003.
    [35]Esposito M,Lindenberg K,Van den Broeck C.Universality of Efficiency at Maximum Power[J].Phys.Rev.Lett.,2009,102:130602.
    [1]Reimann P.Brownian motors:noisy transport far from equilibrium[J].Phys.Rep.,2002,361:57-265.
    [2]Liepelt S,Lipowsky R.Kinesin's Network of Chemomechanical Motor Cycles[J].Phys.Rev.Lett,2007,98:258102.
    [3]Gebhardt J C M,Clemen A E-M,Jaud J,Rief M.Myosin-V is a mechanical ratchet [J].Proc.Natl.Acad.Sci.U.S.A.,2006,103:8680-8685.
    [4]Grillo A,Jinha A,Federico S,Ait-Haddou R,Herzog W,Giaquinta G.Directed transport of Brownian particles in a changing temperature field[J].J.Phys.A:Math. Theor.,2008,41:015002.
    [5]Chacon R.Optimal control of ratchets without spatial asymmetry[J].J.Phys.A:Math.Theor.,2007,40:F413-F419.
    [6]Prost J,Chauwin J F,Peliti L,Ajdari A.Asymmetric Pumping of Particles[J].Phys.Rev.Lett.,1994,72:2652-2655.
    [7]Igarashi A,Tsukamoto S,Goko H.Transport properties and efficiency of elastically coupled Brownian motors[J].Phys.Rev.E,2001,64:051908.
    [8]Craig E M,Zuckermann M J,Linke H.Mechanical coupling in flashing ratchets[J].Phys.Rev.E,2006,73:051106.
    [9]Downton M T,Zuckermann M J,Craig E M,Plischke M,Linke H.Single-polymer Brownian motor:A simulation study[J].Phys.Rev.E,2006,73:011909.
    [10]Julicher F,Ajdari A,Prost J.Modeling molecular motors[J].Rev.Mod.Phys.,1997,69:1269-1281.
    [11]Hanggi P,Marchesoni F,Nori F.Brownian motors[J].Ann.Phys.(Leipzg),2005,14:51-70.
    [12]Stengel R F.Optimal Control and Estimation[M].New York:Dover,1994.
    [13]Bechhoefer J.Feedback for physicists:A tutorial essay on control[J].Rev.Mod.Phys,2005,77:783-836.
    [14]Rousselet J,Salome L,Ajdari A,Prost J.Directional motion of brownian particles induced by a periodic asymmetric potential[J].Nature,1994,370:446-448.
    [15]Bier M.The stepping motor protein as a feedback control ratchet[J].BioSystems,2007,88:301-307.
    [16]Borromeo M,Giusepponi S,Marchesoni F.Recycled noise rectification:An automated Maxwell's daemon[J].Phys.Rev.E,2006,74:031121.
    [17]Borromeo M,Marchesoni F.Stochastic synchronization via noise recycling[J].Phys.Rev.E,2007,75:041106.
    [18]Vincent U E,Njah A N,Laoye J A.Controlling chaos and deterministic directed transport in inertia ratchets using backstepping control[J].Physica D,2007,231:130-136.
    [19]Doering C R,Horsthemke W,Riordan J.Nonequilibrium Fluctuation-Induced Transport[J].Phys.Rev.Lett.,1994,72:2984-2987.
    [20]Dan D,Mahato M C,Jayannavar A M.Multiple current reversals in forced inhomogeneous ratchets[J].Phys.Rev.E,2001,63:056307.
    [21]Ai B Q,Wang L Q,Liu L G.Transport reversal in a thermal ratchet[J].Phys.Rev.E,2005,72:031101.
    [22]de Souza Silval C C,Van de Vondel J,Morelle M,Moshchalkov V V.Controlled multiple reversals of a ratchet effect[J].Nature,2006,440:651-654.
    [23]Peyrard M,Remoissenet M.Solitonlike excitations in a one-dimensional atomic chain with a nonlinear deformable substrate potential[J].Phys.Rev.B,1982,26:2886-2899.
    [24]Remoissenet M,Peyrard M.Soliton dynamics in new models with parametrized periodic double-well and asymmetric substrate potentials[J].Phys.Rev.B,1984,29:3153-3166.
    [25]Costantini G,Marchesoni F.Asymmetric Kinks:Stabilization by Entropic Forces[J].Phys.Rev.Lett.,2001,87:114102.
    [26]Cao F J,Dinis L,Parrondo J M R.Feedback Control in a Collective Flashing Ratchet[J].Phys.Rev.Lett.,2004,93:040603.
    [27]Feito M,Cao F J.Information and maximum power in a feedback controlled Brownian ratchet[J].Eur.Phys.J.B,2007,59:63-68.
    [28]Dinis L,Parrondo J M R,Cao F J.Closed-loop control strategy with improved current for a flashing ratchet[J].Europhys.Lett.,2005,71:536-541.
    [29]Feito M,Cao F J.Threshold feedback control for a collective flashing ratchet:Threshold dependence[J].Phys.Rev.E,2006,74:041109.
    [30]Feito M,Cao F J.Time-delayed feedback control of a flashing ratchet[J].Phys.Rev.E,2007,76:061113.
    [31]Craig E M,Long B R,Parrondo J M R,Linke H.Effect of time delay on feedback control of a flashing ratchet[J].Europhys.Lett,2008,81:10002
    [32]Feito M,Cao F J.Transport reversal in a delayed feedback ratchet[J].Physica A,2008,387:4553-4559.
    [33]Craig E M,Kuwada N J,Lopez B J,Linke H.Feedback control in flashing ratchets [J].Ann.Phys.,2008,17:115-129.
    [34]Freund J A,Schimanasky-Geier L.Diffusion in discrete ratchets[J].Phys.Rev.E,1999,60:1304-1309.
    [35]Lindner B,Schimanasky-Geier L.Noise-Induced Transport with Low Randomness[J].Phys.Rev.Lett.,2002,89:230602.
    [36]Wang H Y,Bao J D.Transport coherence in coupled Brownian ratchet[J].Physica A,2007,374:33-40.
    [37]Mannella R,Palleschi V.On the mean first passage time in a bistable system:Some recently computed data[J].Phys.Lett.A,1988,129:317-320.
    [38]Mannella R,Palleschi V.Mean first-passage time in a bistable system driven by strongly correlated noise:Introduction of a fluctuating potential[J].Phys.Rev.A,1989,39:3751-3753.
    [39]Mannella R,Palleschi V.Fast and precise algorithm for computer simulation of stochastic differential equations[J].Phys.Rev.A,1989,40:3381-3386.
    [40]Honeycutt R L.Stochastic Runge-Kutta algorithms.I.White noise[J].Phys.Rev.A,1992,45:600-603.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700