用户名: 密码: 验证码:
印太暖池区域海气相互作用的年际变化及其与低纬高原夏季降水异常的关系研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
低纬高原位于我国西南地区,是诸多河流的水源地,山洪、滑坡泥石流、干旱等自然灾害发生频繁,降水的时空分布极为不均。2009年以来,又发生了有气象记录以来未见的特大连年干旱,对人民的生产生活造成了很大的影响。提高低纬高原地区降水的预测水平,对于减灾防灾和加强水资源的利用具有非常重要的现实意义。本文在总结前人研究工作的基础上,利用欧洲气象中心ERA-interim再分析资料、Hadley环流中心Hadlsst海温资料、低纬高原降水观测等资料,综合应用相关分析、功率谱分析、扩展奇异值分解(ESVD)、合成分析等统计诊断方法,对印度洋暖池和西太平洋暖池区域的海气相互作用及低纬高原降水的基本特征、年际变化和相互关系进行了分析诊断,研究了暖池区域海气相互作用年际异常变化与大气环流和低纬高原降水异常之间的关系及其物理过程,并用COSMOS1.2.1数值模式对分析结果进行了进一步的分析和验证。
     (1)利用合成分析、相关分析与功率谱分析的方法,分析了印太暖池区域海气相互作用的基本特征。分析结果表明,印太暖池区夏季各月潜热通量和感热通量都为正值,海洋对大气有正的加热效应。感热通量平均值及其年际变化的距平值均比潜热通量的要小一个量级。印太暖池地区6、7、8月间潜热通量和感热通量的变化具有显著的一致性。从夏季的平均值上看,印度洋暖池的潜热通量较西太平洋暖池高约20W/m2;西太平洋暖池的感热通量比印度洋暖池高约2W/m2。实况资料分析和数值模拟的结果均表明,暖池区域海气相互作用存在比较明显的年际和年代际周期变化,年际变化周期以准2年和4—-6年周期为主,年代际变化周期以准11年和16年周期为主。
     (2)利用ESVD方法,将潜热通量和感热通量并联作为左场与低纬高原降水场进行ESVD分析,ESVD的分析效果较好。6、7和8月各自分解的第一奇异降水场都为符号一致型,其代表了低纬高原地区降水的一致偏多或偏少。针对各月分解的结果,定义了正负异常年,并据此对大气环流各要素进行了差值合成分析。分析结果较好的解释了热通量异常对低纬高原夏季降水影响的物理过程。6、7月热通量异常影响低纬高原降水的物理过程基本相同。当6、7月潜热通量在印度洋暖池中北部出现正异常、在西太平洋暖池西部出现正异常东北部出现负异常时,印度洋北部和西太平洋暖池西部大气增温、增湿,促使南海北部和孟加拉湾北部低压发展,季风环流加强,赤道辐合带(ITCZ)加强北伸,为低纬高原地区降水的增加提供了有利的水汽输送条件和动力辐合条件,因而使低纬高原6、7月降水增多,反之亦然。8月份影响的物理过程情况与6、7月差异较大,当8月份印度洋暖池东北部和西太平洋暖池西北部潜热通量为负异常时,海洋对该区域大气的热量、水汽输送减少,导致南海北部和孟加拉湾北部高压异常发展,高压外围气流对低纬高原的水汽输送加强。同时两个高压的异常发展,使低纬高原处于两高之间的辐合区中,低纬高原经度位置ITCZ加强北伸,对低纬高原降水的增加提供了有利的动力条件,使低纬高原地区降水增多,反之亦然。
     (3) ESVD分析和模拟结果发现,在印太暖池地区,潜热通量和大气环流的异常变化存在着明显的正反馈过程。低压扰动的发展将导致地面的风速增大,风速的增大将使得潜热通量增大,大气从海洋获得更多潜热加热与水汽输送,凝结潜热的释放又进一步导致低压和对流的发展,风速进一步加大,如此形成一个相互促进的正反馈过程。在潜热通量与大气相互作用的正反馈机制中,海温和感热通量的响应对这种正反馈过程起到一定的抑制作用。潜热输送和大气环流间存在的正反馈作用一定程度上解释了低纬高原区夏季降水异常的发生机制。印太暖池地区,潜热通量异常出现的位置与大气环流异常的位置间存在一定的规律性。相对于潜热通量异常和地面风速异常中心,垂直速度异常和降水异常的区域要偏北3—4个纬度,低层环流异常中心和地面气压异常中心要偏北7—9个纬度。
     (4)数值模式比较好的模拟了印太暖池区域海气相互作用基本特征。根据ESVD分析潜热通量奇异向量场,在数值模拟的结果中,分6、7和8月分别构建了潜热通量奇异场的时间系数,并分别进行了差值合成分析。数值模式比较好的再现了ESVD分析出的海气相互作用异常形态,模式分析的结果证明了分析得到的印太暖池区域海气相互作用影响低纬高原夏季降水的物理过程的正确。
     (5)综合全文的分析结果,建立了6、7月和8月海气相互作用异常影响低纬高原降水的物理模型。6、7月的模型主要为:当印度洋暖池中北部潜热通量正(负)异常、西太平洋暖池西部正(负)异常东北部负(正)异常时,海洋对印度洋北部和西太平洋暖池西部大气的热量、水汽输送多(少),导致南海北部至孟加拉湾北部一线对流层下部低压(高压)发展,ITCZ加强北仲(减弱南退),季风环流加强(减弱),引起对低纬高原地区的水汽输送加强(减弱),动力辐合作用加强(减弱),最终导致低纬高原降水偏多(少)。
     8月的模型主要为:当印度洋暖池中北部潜热通量负(正)异常、西太平洋暖池西部负(正)异常时,海洋对印度洋北部和西太平洋暖池西部大气的热量、水汽输送少(多),导致南海北部、孟加拉湾北部高压异常发展(减弱),引起高压外围气流对低纬高原水汽输送增强(减弱),易(不易)在低纬高原地区形成两高辐合,低纬高原至中南半岛地区地区,ITCZ加强北伸(减弱南退),有正(负)的季风环流异常,季风环流的异常上升(下沉)气流位于低纬高原地区,增强(减弱)了对低纬高原地区的水汽输送以及低纬高原地区的垂直上升运动,最终导致低纬高原降水偏多(少)。
Low-Latitude Plateau located at southwest China, is the water source of many rivers. Flash floods, landslides, mudslides, drought and other natural disasters were occurred frequently. The precipitation's temporal and spatial distribution is extremely uneven. Since2009, a drought successive years took place which not be seen since meteorological records, and had a great impact on the production and life of the people. It has a very important practical significance for disaster reduction and prevention, and strengthening the use of water resources to improve the precipitation forecast level in Latitude Plateau. In this paper, on the basis of previous studies, the ERA-interim reanalysis data of European Centre for Medium-Range Weather Forecasts, HadIsst sea temperature data set of the Met Office Hadley Centre, low-latitude plateau precipitation data, forecast results have been used by integrated application analysis, power spectrum analysis, extended singular value decomposition(ESVD) and other statistical diagnostic methods to study the basic features of the Indian Ocean warm pool, the western Pacific warm pool and Low-Latitude plateau precipitation, their interannual variability, their relationship, the atmosphere-ocean interaction and it's processes and physical mechanisms. The numerical model COSMOS1.2.1was used for further analysis and verification.
     (1) By using synthetic analysis, correlation analysis and power spectral analysis method, the basic characteristics of the air-sea interaction in the Indo-Pacific warm pool have been analyzed. The analyses results show that the Indo-Pacific warm pool latent heat flux and sensible heat fluxes positive, and have positive effect on the heating of the oceans to the atmosphere in summer. Average sensible heat flux and its interannual variations of anomalies are smaller an order of magnitude than that of the latent heat flux. The changes of latent heat flux and sensible heat flux have remarkable consistency in Indo-Pacific warm pool in June, July and August. In summer, the latent heat flux over Indian Ocean warm pool is about20W/m2more than that over the western Pacific warm pool and sensible heat flux over the western Pacific warm pool is about2W/m2more than that over the Indian Ocean warm pool. Live data analysis and numerical simulation results show that there is obvious inter annual and decadal cycle changes of air-sea interaction in the warm pool area. The Interannual changes have the cycles of quasi2yearsand4-6years, and quasi-decadal changes have the cycles of quasill yearsand16years.
     (2) By ESVD method, low-latitude plateau precipitation fields are analyzed with the left fields which are composed of latent heat flux and sensible heat flux. More and better results have been gotten. The three singular precipitation fields in June, July and August has the same symbols. It represents the precipitation of different stations is above normal or below normal in the same time. According to the Decomposition result of each month, after defining the positive and negative abnormal years, the difference of elements of the atmospheric circulation was been analyzed. Heat flux anomalies affecting the low-latitude plateau precipitation process has the same basic physical processes in June and July. In June and July, when latent heat flux in the middle and northern Indian Ocean warm pool is in positive anomaly and in the northeastern part of the Western Pacific Warm Pool is negative abnormal, The atmospheric becomes warmer and wetter in northern Indian Ocean and in western WPWP, to procure low pressure development to the northern part of the South China Sea and the northern part of the Bay of Bengal, strengthen the monsoon circulation, make the inter tropical convergence zone(ITCZ)enhanced and extended northward, and provides favorable conditions of moisture transport and power convergence, thus making the low latitude plateau precipitation increased in June and July. There are quite different physical processes between August and June, July. In August, when the Northeast IWP and northwest WPWP latent heat flux are in negative anomaly, the heat and water vapor transport reduce from marine to atmospheric in this region, leading to abnormal development of high in the northern South China Sea and the northern Bay of Bengal, and moisture transport in high-voltage peripheral air flow increased to low latitude plateau. Abnormal development of two high-pressure causes low latitude plateau located in the convergence zone between the two high, the ITCZ enhanced and extended northward, and provides favorable conditions for the power condition of precipitation in low latitude plateau, making low latitude plateau area precipitation increasing.
     (3)ESVD analysis and the simulation results show that there is an obvious positive feedback process between the latent heat flux and atmospheric circulation in IPWP. Low pressure disturbance will lead to the ground wind speed increases. The increase of wind speed will make latent heat flux increases. The atmosphere will get more latent heating and water vapor transport from the ocean. The release of the latent heat will lead the development of low pressure and convection. Wind speed will further increase so to form a mutual promotion of positive feedback process. The reaction of SST and sensible heat flux responding to abnormal latent heat flux curbs this positive feedback process. There is certain regularity in the latent heat flux anomalies location and atmospheric circulation anomalies in Indo-Pacific warm pool region. Vertical velocity anomalies and precipitation anomalies are north to heat flux anomalies and surface wind speed anomaly centers3-4latitude degree. The Lower circulation anomalies center and surface pressure anomalies center are north to7-9latitude degree.
     (4) Numerical model has simulated the basic characteristics of air-sea interaction over the Indo-Pacific warm pool area well. According to ESVD singular vectors of latent heat flux field, the simulation time coefficients were constructed. Difference synthesis analysis is executed. By ESVD analysis, the numerical model reproduced the abnormal morphology of the air-sea interaction. Mode analysis results show that the physical processes of air-sea interaction affecting the Low Latitude Plateau summer precipitation is correct.
     (5) Integrated full-text analysis results, the physical model in June and July and August, of air-sea interaction anomaly is established. The June and July's model:when the latent heat flux in the north Indian Ocean warm pool has positive (negative) anomalies, the western Pacific warm pool west has positive (negative) anomalies and northeast has negative (positive) anomalies, heat and water vapor transport are more(less) in the oceans of the northern IWP and western WPWP, Leading to the development of low (high) from north South China Sea to north Bay of Bengal, strengthening (weakening) water vapor transport to low-latitude plateau region, strengthening (weakening) the power convergence, and finally causing more(less) precipitation in Low Latitude Plateau. The model of August:When the latent heat flux over middle and north IWP and west WPWP is negative(positive) abnormal, there are more (less) heating to atmosphere and water vapor transport, leading to the high pressure anomaly development (weakened) over north of South China Sea, north of the Bay of Bengal, causing high-voltage peripheral air flow to Low Latitude Plateau water vapor transported enhanced (weakened), easy (not easy) to forming two high convergence in the low-latitude plateau region, then resulting in more (less) precipitation in low latitude plateau.
引文
[1]Alan K. Betts, Martin Kohler, and Yuanchong Zhang, Comparison of river basin hydrometeorology in ERA-Interim and ERA-40 reanalyses with observations[J],JOURNAL OF GEOPHYSICAL RESEARCH, VOL.114, D02101, doi:10.1029/2008JD010761,2009
    [2]Angell J K, Compariison of variation in atmospheric quantities with sea surface temperature variations in the equatorias estern Pacific[J]. Mon. Wea. Rev.,1981, 109:230-243.
    [3]Barnett T P, Interaction of the monsoon and Pacific trade wind system at interannual time scaleslPart I:theequatorial zone[J], MonlWealRevl,1983,111:756-7731
    [4]Berry D I, and E C Kent, A new air-sea interaction gridded dataset from ICOADS with uncertainty estimates [J]. Bull. Amer. Meteor. Soc.,2009,90:645-656
    [5]Berry D I, and E C Kent, Air-sea fluxes from ICOADS:The construction of a new gridded dataset with uncertainty estimates [J], J. Climate,2011,31:255-270
    [6]Bjerkness J, Atmospheric teleconnections from the equatorial Pacific [J], Mon. Wea. Rev.,1969,97:163-172.
    [7]Bosilovich M G, F R Robertson, and J Chen, Global energy and water budgets in MERRA[J]. J. Climate,2011,24:5721-5739.
    [8]Bourassa M A, S T Gille, D L Jackson, J B Roberts, and G A Wick, Ocean winds and turbulent air-sea fluxes inferred from remote sensing[J]. Oceanography,2010,23: 36-51.
    [9]Brunke M A, Z Wang, X Zeng, M Bosilovich, and C L Shie, An assessment of the uncertainties in ocean surface turbulent fluxes in 11 reanalysis, satellite-derived, and combined global datasets[J], J. Climate,2011,24:619-636.
    [10]Dee D P, Coauthors, The ERA-Interim reanalysis Configuration and performance of the data assimilation system[J],ECMWF ERA Rep.2011,9:75pp
    [11]Dee, D. P., with 35 co-authors,2011:The ERA-Interim reanalysis:configuration and performance of the data assimilation system [J]. Quart. J. R. Meteorol. Soc.,137, 553-597.
    [12]Dee, D. P., S. Uppala,2009:Variational bias correction of satellite radiance data in the ERA-Interim reanalysis[J]. Quart. J. R. Meteorol. Soc.,135,1830-1841.
    [13]Graham N E, Barnett T P. Sea surface temperature, surface wind divergence, and convection over tropical oceans[J]. Science,1987,238:657-659
    [14]Huang Ronghui, Wu Y F, The influence of the ENSO on the summer climate change in China and its mechanism[R]. Japan-U. S. Workshop on the El Nino Southern Oscillations phenomenon, Tokyo, Japan, November 3-7,1987,10-15
    [15]I Moon, I Ginis, T Hara, B Thomas, Physics-based parameterization of air sea momentum flux at high wind speeds and its impact on hurricane intensity predictions[J]. Mon. Wea. Rev.,2007,135:2869-2878
    [16]J. Brent Roberts, Franklin R. Robertson, carol A. Clayson, Characterization of Turbulent Latent and Sensible Heat Flux Exchange between the Atmosphere and Ocean in MERRA[J], J. Climate,2012,25:821-838
    [17]Jin F F, An S I, Thermo cline and zonal advective feedbacks within the equatorial ocean recharge oscillator model for ENSO[J]. Geophys Res. Lett,1999,26:2989-2992
    [18]Jin Xiangze, Zhang Xuehong. Zhou Tianjun. Fundamental framework and experiments of the Third Generation of IAP/LASG World Ocean General Circulation Model[J], Adv. Atmos. Sci.,1999,16:197-215
    [19]Kemball Cooks, Wang B. Equatorial waves and air-s ea interact ion in the boreal summer intrapersonal oscillation[J], J. Climate,2001,14:2923-2942.
    [20]K. I. HODGES, R. W. LEE, AND L. BENGTSSON, A Comparison of Extratropical Cyclones in Recent Reanalyses ERA-Interim,NASA MERRA, NCEP CFSR, and JRA-25[J], JOURNAL OF CLIMATE VOLUME 24,2011,4888-4906
    [21]Kobayashi, S., M. Matricardi, D. P. Dee, and S. Uppala,2009:Toward a consistent reanalysis of the upper stratosphere based on radiance measurements from SSU and AMSU-A[J]. Quart. J. R. Meteorol. Soc.,135,2086-2099.
    [22]Lau V C, Nath M J, Impact of ENSO on the variability of the Asian-Australian monsoons as simulated in GCM experiments[J]. J. Climate,2000,13:4287-4309
    [23]Lau N C, Nath M J, The role of the "Atmospheric Bridge" in linking tropical Pacific ENSO events to extra-tropical SST anomalies[J]. J. Climate,1996,9:2036-2057
    [24]Li Y B, GAO Z Q, Lenschow D H etal, An improved approach for parameterizing surlace-layer turbulent transler coefficients in numerical models[J]. Bound.-Layer Meteor,2010,137(1):153-165.
    [25]Li Gen, Ren BaoHua, Zheng Jianqiu, Yang Chengyun. Trend singular value decomposition analysis and its application to the global ocean surface latent heat flux and SST anomalies[J]. J. Climate,2011,24:2931-2948
    [26]Lolis C J, A Bartzokas, and B D Katsoulis, Relation between sensible and latent heat fluxes in the Mediterranean and precipitation in the Greek area during winter [J], International Journal of Climatology,2004,24:1803-1816.
    [27]McCreary J, Pland D L T, Anderson, An overview of coupled ocean-atmosphere models of El Nino and the Southern Oscillation[J], J. Geo. Res.,1991,96:3125-3150.
    [28]Meehl G A, The annual cycle and inter annual variability in the tropical Indian and Pacific Ocean regions[J], Mon. Wea. Rev.,1987,115:27-50.
    [29]Neelin J D et al., Tropical air-sea interaction in general circulation models [J], Climate Dynamics,1992,7:73-104.
    [30]Overland, J E, and R W Preisendorfer, A significance test for principal components applied to a cyclone climatology[J]. Mon. Wea. Rev.,1982,110,1-4.
    [31]P. A. Mooney, F. J. Mulligan, and R. Fealy, Comparison of ERA-40, ERA-Interim and NCEP/NCAR reanalysis data with observed surface air temperatures over Ireland [J], Int. J. Climatol.2011,31:545-557
    [32]Philander S G H, El Nino, La Nina and the Southern Oscillation[C], Academic, San Diego, Calif.,1990,287pp.
    [33]Poli, P., S. B. Healy, and D. P. Dee,2010:Assimilation of Global Positioning System Radio Occultation data in the ECMWF ERA-Interim reanalysis[J]. Quart. J. R. Meteorol. Soc.,136,1972-1990.
    [34]Prokaska J A, Technique for analyzing the linear relationships between two meteorologieal fields[J]. Mon Wea Rev,1976,104:1345-1353
    [35]Rasmusson E M and T H Carpenter, Variations in tropical sea surface temperature and surface wind fields associated with the Southern Oscillation/El Nino[J], Mon. Wea. Rev.,1982,110:354-384.
    [36]Ren F M, Bai L N, Wu G X, et al. A Possible Mechanism of the Impact of Atmosphere-Ocean Interaction on the Activity of Tropical Cyclones Affecting[J], Adv. Atmos. Sci.,2012,29 (4):661-674.
    [37]R W Preisendorfer and T P Barnett. Significance Tests for Empiriaal Orthogonal Funetion.Fifth Conference on Probability and Statistics in Atmospheric Scienees[J],Las Vegas,1977:169-172
    [38]Sengupta D, Oswami B N, Senan R. Coherent intrapersonal oscill at ions of ocean and atmosphere during Asian summer monsoon[J]. Geophys Res Lett,2001,28:4127 41301.
    [39]Sengupta D, Ravich Andran M. Oscillations of Bay of Bengal s ea surf ace t temperature during the 1998 summer monsoon[J]. Geophys Res Lett,2001,28:2033-2036.
    [40]Shie C L, and Coauthors, A note on reviving the Goddard Satellite-based Surface Turbulent Fluxes (GSSTF) dataset[J], Adv. Atmos. Sci.,2009,26: 1071-1080, doi:10.1007/s00376-009-8138-z.
    [41]Simmons, A. J., K. M. Willett, P. D. Jones, P. W. Thorne, and D. P. Dee,2010: Low-frequency variations in surface atmospheric humidity, temperature and precipitation:Inferences from reanalyses and monthly gridded observational datasets[J]. J. Geophys. Res.,115, D01110, doi:10.1029/2009JD012442.
    [42]Suhung Shen, K.-M Lau, Biennial Oscillation Associated with the East Asian Summer Monsoon and Tropical Sea Surface Temperatures[J],J. Metror. Soc. Japan,1995,73(1):105-124
    [43]Sun H, and W Li, Characteristics of air-sea latent heat flux during cold and warm ENSO events (in Chinese) [J], J. Trop. Oceanogr.,2008,27:59-65
    [44]Tourre Y M and W B White 1995, ENSO signals in global upper-ocean temperature, J. Phys. Oceanogr.,25,1317-13321
    [45]Tourre Y M and W B White,1997, Evolution of the ENSO signal over the Indo-Pacific domain[J], J. Phys. Oceanogr.,27,683-696.
    [46]Trenberth K E, J T Fasullo, and J. Mackaro, Atmospheric moisture transports from ocean to land and global energy flows in reanalyses[J]. J. Climate,2011,24:4907-4924
    [47]Uppala, S., et al.,2005:The ERA-40 re-analysis [J]. Quart. J. R. Meteorol. Soc., 131,2961-3012.
    [48]Vecchi G, Harrison D E, Monsoon breaks and sub seasonal sea surface t temperature variability in the Bay of Bengal[J]. J Climate,2002(15):1485-1493.
    [49]Villwock, Aland MILatif, Indian Ocean response to ENSO, Internationl Conflon Monsoon Variability and Prediction[J]. Vol.Ⅱ, WCRP-841 Geneva, Switzerland. 1994,530-537
    [50]Walker G T and E W Bliss, World Weather, V, Mem. R. Meteor. Soc.,1932,4,53-84. Wallace J M, Jiang Q, On the observed structure of the inter annual variability of the atmosphere ocean climate system[C]. In:Cattle H. Atmospheric and Oceanic Variability. Royal Meteorological Society,1987,17-43
    [51]Wang B, Wu R, Ii T, Atmosphere-warm ocean interaction and its impacts on the Asian-Australian monsoon variation[J].2003. J Climate,16:1195-1211
    [52]Wang C, Enfield D B. The tropical Western Hem-isphere warm pool[J]. Geophysical Research letters,2001,28:1635-1638
    [53]Weare B C. Interannual moisture vanations near the surface of the tropical Pacific Ocean[J]. Quart J Roy Meteor Soc,1984.110:489-504
    [54]Webster P J. Mechanisms of monsoon low-frequency variability:surf ace hydrological effects[J], J Atmos. Sci.,1983,40:2110-2124
    [55]Webster, P.T. and S. Yang, Monsoon and ENSO:Selectively interactive systems [J], Quart. J. Roy. Meteor. Soc,1992,118,877-926.
    [56]William M Drennan, Jun A Z, Jeffrey R. French, Turbulent Fluxes in the Hurricane Boundary Layer. Part II:Latent Heat Flux[J], Jul. Atm. Sic.,2007,64:1103-1115
    [57]Wyrtki K. Some thoughts about the West Pacific Warm Pool. Proceedings of the Western Pacific international meetingand workshop on TOGA-COARE[C],1989,99-109.
    [58]Wu R, B P Kirtman, and K Pegion, Surface latent heat flux and its relationship with sea surface temperature in the National Centers for Environmental Prediction Climate Forecast System simulations and retrospective forecasts[J]. Geophys. Res. Lett.,2007:34, L17712, doi:10.1029/2007GL030751.
    [59]Yasunari T, Impact of Indian Monsoon on the coupled atmosphere/ocean stem in the tropical Pacific[J]. Meteor Atmos. Phys.,1990,44:29-41
    [60]Yasunari T, Impact of Indian monsoon on the coupled atmosphere/ocean system in the tropical Pacific[J], Meteor. Atmos. Phys.,1990,44,29-41.
    [61]Zhou T, Yu R, ENSO-dependent and ENSO-independent variability over the mid-latitude North Pacific:Observation and air-sea coupled model simulation [J]. Adv. Atmos. sci,2002,19:1127-1147.
    [62]巢纪平,1993,厄尔尼诺和南方涛动动力学[M],北京:气象出版社,309pp.
    [63]陈世荣.西北太平洋的热带风暴源地[J].气象,1988,16(2):23—26
    [64]狄万宝,姜达雍.1990年初夏西太平洋暖水池区海面热量收支特征分析[J].热带气象学报,1991,7(4):365—371
    [65]丁裕国,江志红. SVD方法在气象场诊断分析中的普适性[J]. 气象学报,1996,54(3):3365—371
    [66]丁一汇,高等天气学,气象出版社[M],2005,212—249,494—510
    [67]段旭,尤卫红,郑建萌.云南旱涝特征[J].高原气象,2000,19(1):84-90
    [68]方茸,杨修群. 中国夏季高温与北极海冰的联系特征[J],2009, 气象,35(3):81—86
    [68]国家气候中心,月气候检测测公报[R].1997, 1,47pp
    [69]何有海,关翠华.南海上层海洋热力结构年际和年代际变化的研究[J],地球科学进展,2000,15(4)
    [70]黄荣辉,孙凤英.热带西太平洋暖池的热状态及其上空的对流活动对东亚夏季异常的影响[J].大气科学,1994,18(2):141—151
    [71]黄荣辉,孙凤英.热带西太平洋暖池上空对流活动对东亚夏季风季节内变化的影响[J].大气科学,1994,18(4):456—465
    [72]江志红, 丁裕国. 我国夏半年降水距平与北太平洋海温异常的奇异值分解法分析[J]. 热带气象学报,1995, 11(2):133—141
    [73]李茜,魏凤英,李栋梁.近159年东亚夏季风年代际变化与中国东部旱涝分布[J].地理学报,2011,66(1):25—37
    [73]李博,周天军,林鹏飞,包庆,冬季北太平洋海表面热通量异常和海气相互作用的耦合模式模拟[J],气象学报,2011,69(1),0577-6619
    [74]李克让,周春平,沙万英.西太平洋暖池基本特征及其对气候的影响[J].地理学报,,1998.53(6):511—519
    [75]李丽平,靳莉莉, 管兆勇.2010.北太平洋次表层海温异常对中国夏季降水影响的可能途径[J],大气科学,34(5):34—40.
    [76]李万彪,周春平,1998.热带西太平洋暖池和副热带高压之间的关系[J].气象学报,56:619—626
    [77]李万彪,周春平,.热带西太平洋暖池对中国降水和沿海自然灾害的影响[J].1999,北京大学学报,35:675—681
    [78]李永华,卢楚翰,徐海明,等. 热带太平洋—印度洋海表温度变化及其对西南地区东部夏季旱涝的影响[J]. 热带气象学报,2012,28(2):145—156.
    [79]李忠贤,周天军,孙照渤,等.GAMIL模式海气湍流通量参数化方案的改进及其对大气环流年际变率模拟效果的影响[J],大气科学,2011,35(2):311-325
    [80]刘娜,于卫东,陈红霞等. 印度洋—太平洋暖池年代际变化及其大气响应[J], 海洋科学进展,2005,23(3)249:255
    [81]刘志雄,肖莺,长江上游旱涝指标及其变化特征分析[J],长江流域资源与环境,2012,21(3):310—314
    [82]吕俊梅,琚建华,任菊章,甘薇薇. 热带大气MJO活动异常对2009—2010年云南极端干旱的影响[J],中国科学(地球科学辑),2012,42(4):599—613
    [83]马丽萍,王盘兴,吴洪宝,热带海洋海气相互作用的区域差异[J],气象科学,2001,21(3):260-270
    [84]倪东鸿, 孙照渤, 李忠贤, 等. 冬季中东急流与中国气候异常的联系[J]. 气象科学,2010,30(3):301—307.
    [85]彭贵芬,张一平,赵宁坤. 基于信息分配理论的云南干旱风险评估[J].气象,2009,35(7):40—44
    [86]彭贵芬,赵尔旭,周国莲. 云南春夏连旱气候变化趋势及致灾成因分析[J].云南大学 学报(自然科学版),2010,32(4):443—-448
    [87]邱东晓, 黄菲, 杨宇星,东印度洋西太平洋暖池的年代际变化特征研究[J],中国海洋大学学报,2007,37(4):525—532
    [88]邱云,李燕初,李立.印度洋—太平洋暖池海域表层水温分析[J],台湾海峡,2010,29(4):547—554
    [89]陶诗言,朱文妹,赵卫.论梅雨的年际变异[J].大气科学,1988,(特刊):13—21
    [90]王斌,,李跃清.2010年秋冬季西南地区严重干旱与南支槽关系分析[J],2010,高原山地气象研究,30(4):26—35
    [91]王凡,胡敦欣,穆穆,等. 热带太平洋海洋环流与暖池的结构特征、变异机理和气候效应[J]. 地球科学进展,2012,27(6):595-602.
    [92]王盘兴,何金海,张苏平.热带西太平洋海表温度长期变化的特殊性[J].南京气象学院学报,1999,22(2):189—195
    [93]王绍武,龚道溢.近百年来的ENSO事件及其强度[J].气象,1999,25(1):9—14.
    [94]王同美,吴国雄,应明,NCEP/NCAR(Ⅰ、Ⅱ)和ERA40再分析加热资料比较[J],中山大学学报(自然科学版),2011,50(5):128—134
    [95]王宇.云南气候变化概论[M].气象出版社,1996,43—88.
    [96]魏凤英, 曹鸿兴. 奇异值分解及其在北美陆地气温与我国降水遥相关中的应用[J],高原气象,1997,16(2):174—183
    [97]翁学传, 张启龙, 颜廷壮.热带西太平洋暖池及其与南方涛动和副热带高压的关系[J].海洋科学集刊,1998,40:35—-40
    [98]翁学传,赵永平,何有海.太平洋热状况与我国旱涝关系研究综述[J].海洋科学,1994,(1):22—26
    [99]吴迪生,周水华,张娟等.太平洋—印度洋暖池次表层水温与南海夏季风爆发海洋预报[J],2009,26(4):1—10
    [101]吴国雄,孟文,赤道印度洋—太平洋地区海气系统的齿轮式祸合和ENSO事件II.数值模拟[J],大气科学,2000,24(1),16—25.
    [102]吴国雄、孟文,赤道印度洋—太平洋地区海气系统的齿轮式耦合和ENSO事件I.资料分析[J],大气科学,1998,22(4),470—-480.
    [103]吴国雄、孙凤英、王晓春,降水对热带海表温度异常的邻域响应,Ⅱ.资料分析,大 气科学[J],1995,19(6),663—676.
    [104]徐建军,王东晓,印度洋一太平洋海温的年际、年代际异常及其对亚洲季风的影响[J],海洋学报,2000,22(3):34—43
    [105]晏红明,琚建华,肖子牛,E NSO循环的两个不同位相期印度洋海表温度异常的特征分析[J],南京气象学院学报,2001,24(2):242—249.
    [106]晏红明,李崇银. 赤道印度洋纬向海温梯度模及其气候影响[J].大气科学.2007,31(1):64—76
    [107]杨明珠,丁一汇. 中国夏季降水对南印度洋偶极子的响应研究[J],大气科学,2007,1(14):685-693
    [108]尤卫红,张玲,赵付竹.低纬高原地区降水量资源年际变化的特征时间尺度及其时空演变[J],2006,山地学报,24(4):395—402.
    [109]张启龙,翁学传.热带西太平洋暖池的某些海洋学特征分析[J].海洋科学集刊,1997,38:31—38.
    [110]张学洪,俞永强,刘辉,冬季北太平洋海表热通量异常和海气相互作用--基于一个全球海气藕合模式长期积分的诊断分析[J],大气科学,1998,22(4):511-5217
    [111]章名立.西太平洋云量变化与中国东部的降水[J].大气科学.1993,17(5):576—583
    [112]赵天保,符淙斌,中国区域ERA-40、NCEP-2再分析资料与观测资料的初步比较与分析[J],气候与环境研究,2006,11(1):14—32
    [113]赵永平,吴爱明, 陈永利等. 西太平洋暖池的跃变及其气候效应[J]. 热带气象学报,2002,18(4):317—326
    [114]周春平, 大洋暖池特征变化和成因的研究[J]. 北京大学学报(自然科学版),1998,34(1):40—49
    [115]周国莲,晏红明.云南近40年降水量的时空分布特征[J].云南大学学报(自然科学版).2007,29(1):55-61
    [116]周连童,比较NCEP/NCAR和ERA-40再分析资料与观测资料计算得到的感热资料的差异[J],气候与环境研究,2009,14(1):9-20.
    [117]周天军,张学洪.印度洋海气热通量交换研究[J],大气科学,2002,26(2):161-170

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700