用户名: 密码: 验证码:
上海市室内氡浓度水平与建材氡析出率的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
【目的】氡是人类所受天然辐射照射的最主要来源,居住环境中的氡诱发肺癌被认为是全球负担疾病之一。近些年的研究表明国内一些大中城市居室内氡浓度呈上升趋势,上海尤为明显。为更加全面了解上海市室内氡浓度水平及其上升的主要原因,本课题对上海市不同类型房屋室内氡浓度水平进行了测量和分析,并进一步对上海市常用建筑材料的氡析出率进行了测量研究,分析了建材氡析出率对上海市室内氡浓度水平的影响。
     【方法】本研究首先根据上海市2006统计年鉴中的区县人口比例、房屋类型、建筑年代等,对测量房屋进行分类选择。采用固体核径迹法和热释光剂量计对所选择房屋的室内氡浓度和γ辐射水平进行测量,并对测量结果进行统计与分析。最后采用UNSCEAR的2000年报告所推荐的剂量学评价方法对吸入氡内照射和γ辐射外照射所致上海市居民有效剂量进行估算。
     采用静态累积法对上海市几种建筑材料中的氡析出率进行测量,并对其影响因素进行了探讨。基于测量值对上海市室内氡浓度水平进行估算,并与实测的上海市室内氡浓度水平进行比较,分析建筑材料对上海市室内氡浓度的影响。
     【结果】共211户居民住宅的调查结果显示:上海市居室环境中氡浓度的年均最高值为95 Bq·m~(-3),最低值为6 Bq·m~(-3),算术平均值为(25.3±14.7)Bq·m~(-3);几何平均值为(22.3±1.6)Bq·m~(-3),中位数为21 Bq·m~(-3)。对各类型房屋的统计分析发现,不同类型房屋的室内氡浓度水平有显著差异。上海市室内γ辐射水平均值为0.13μGy·h~(-1),与室内氡浓度无明显相关。上海市民因室内的氡吸入和γ辐射照射所致的年均有效剂量的总和约为1.28 mSv。
     氡析出率的测量和研究结果表明:加气混凝土砌块和混凝土的氡析出率水平要明显高于烧结多孔砖。基于测量值进行估算的结果显示:用加气混凝土砌块和混凝土建造的房屋内氡浓度要明显高于用烧结多孔砖修建的房屋。
     【结论】本次调查未发现上海市有室内氡浓度超过国家推荐限值的房屋,但其均值与20世纪80年代的比较,有明显升高。上海市室内氡主要来源于建筑材料,2000年前和2000年后建造房屋所使用建材的差别是引起上海市室内氡浓度水平上升的主要原因之一。
Purpose Radon is the main source of natural radiation exposure to public,the lung cancer caused by radon exposure in the living environment is considered as one of the global burden of diseases.Recent studies reveal that indoor radon concentrations have increased in some large and medium-sized cities in China, particularly in Shanghai.For more comprehensive understanding of the leveI of indoor radon and the reason of increasing in Shanghai,measurements and analysis of indoor radon concentrations were carried out in different types of houses in this study. Moreover,the radon exhalation rates of some typical building materials were also studied to explore their influence on indoor radon level in Shanghai.
     Methods Based on Shanghai Statistical Yearbook 2006,a total of 211 dwellings were selected for measurements according to the proportion of the population in different districts,building types,building ages and so on.The passive radon/thoron discriminative monitors and the thermoluminescent dosimeter were used to measure the levels of indoor radon and gamma radiation,respectively. Measurements of radon lasted for one year in a consecutive period of three months, and the gamma radiation were only measured in one period.Having statistically processed and analyzed the measured results,the annual effective doses from indoor radon exposure and gamma radiation were estimated by the methods recommended by UNSCEAR in 2000.
     The radon exhalation rates of the commonly used building materials were measured with the static accumulation method for estimating indoor radon concentration in Shanghai.And some influencing factors were also analyzed for studying their influence on radon exhalation.The impact of building materials on indoor radon concentration was analyzed by comparing the estimated results with the measured values.
     Results The annual indoor radon concentrations in Shanghai were observed in a range from 6 to 95 Bq·m~(-3),with an arithmetic,a geometric and a median values of (25.3±14.7),(22.3±1.6) and 21 Bq·m~(-3),respectively.The averaged indoor gamma radiation in Shanghai was found to be 0.13μGy·h~(-1).Statistical analyses showed that the differences of indoor radon concentrations in different types of buildings were significant,however,no significant correlation was found between the radon concentration and the gamma radiation.The total annual effective dose estimated for the resident in Shanghai from indoor radon exposure and gamma radiation was 1.28 mSv.
     The exhalation rate of aerated concrete blocks was higher than the concrete blocks or fired perforated bricks.The estimated results with the measured values show that radon concentration in the building constructed with aerated concrete blocks and the concrete blocks was higher than those constructed with fired perforated bricks.
     Conclusion None of the dwellings in this study was observed with indoor radon concentration exceeded the national recommended action level.However,the annual average of indoor radon concentrations was significantly higher than that observed 1980s.The main contributor of indoor radon in Shanghai is building materials.The difference of building materials used before and after the year of 2000 is one of the main reasons for the increase of indoor radon concentration in Shanghai.
引文
[1]S.Darby,D.Hill,A.Auvinen,et al.Radon in homes and risk of lung cancer:collaborative analysis of individual data from 13 European case-control studies[J],Bri.Med.J,2004,330:223 228.
    [2]WHO.The 1~(st) meeting of national experts for WHO's international radon project[R].Geneva:WHO,2005:
    [3]UNSCEAR.Sources and effects of ionizing radiation[R].Sweden:UNSCEAR,2000:
    [4]陈英民,李福生,杨珂,等.残工业废渣新型墙体材料建筑室内~(222)Rn浓度的研究[J].中国辐射卫生.2006,15(3):334-335.
    [5]陈英民,许家昂,李福生,等.山东省掺工业废渣新型墙体材料天然放射性水平调查[J].辐射防护.2006,26(5):314-318.
    [6]葛黎明,陈英民,李福生,等.掺工业废渣新型墙体材料氡析出率的测量[J].中国辐射卫生.2007,16(4):390-391.
    [7]关祖杰,余君岳,杨健明,等.香港室内氡水平及其与建筑物表面氡析出率的关系[J].中山大学学报(自然科学版).1991,30(4):51-55.
    [8]P.A.Colgan,J.Gutierrez.National approaches to controlling exposure to radon[J].Environment Internaitonal,1996,22(1):s1083-s1092.
    [9]GB18871-2002.电离辐射防护与辐射源安全基本标准[S].北京:中国标准出版社,2003.
    [10]曹杰.室内氡的危害及控制措施[J].山西建筑,2002,28(4):154-155.
    [11]G.A.Swedjemark,L.Mjones.Radon and radon daughter concentrations in Swedish homes[J].Radiation Protection Dosimetry.1984,7(1):341-345.
    [12]F.Medici,L.Rybach.Measurements of indoor radon concentrations and assessment of radiation exposure[J].Journal of applied geophysics.1994,31:153-163.
    [13]W.J.Angell.The US radon problem,policy,program and industry:achievements,challenges and strategys[J].Radiation Protection Dosimetry.2008,130(1):8-13.
    [14]F.Marcinowski.Nationwide survey of residential radon levels in the US[J].Radiation Protection Dosimetry.1992,45(1):419-424.
    [15]F.Bochicchio,G.Campos Venuti,C.Nuccetelli,etl.The Italian survey as the basis of the national radon policy[J].Radiation Protection Dosimetry,1994,56(1):1-4.
    [16]G.M.Kendall,B.M.R.Green,J.C.H.Miles,etl.The development of the Uk radon programme[J].Journal of Radiological Protection.2005,25:475-492.
    [17]尚兵.我国室内氡浓度水平及分布[A].见:徐东群.居住环境空气污染与健康[M].北京:化学工业出版社,2005:210.
    [18]徐东群,尚兵,曹兆进.中国部分城市住宅室内空气中重要污染物的调查研究[J].卫生研究,2007,36(4):473-476.
    [19]张浩然,陈佩华,文颍,等.上海市环境中氡水平及所致居民剂量[J].中华放射医学与防护杂志.1992,12(6):387-390.
    [20]戈立新,汪名侠,李传琛,等.上海市地区空气中氡水平调查[J].辐射防护.2002,22(4):246-251.
    [21]金益和,饭田孝夫,池边幸正,等.用累积法对中国部分城市室内外~(222)Rn浓度的调查[J].中华放射医学与防护杂志,1996,16(6):363-368.
    [22]W.Zhuo,S.Tokonami,H.Yonehara,etl.A simple passive monitor for integrating measurements of indoor thoron concentrations[J].Rev.Sci.instrum.2002,73(8):2877-2881.
    [23]上海市卫生防疫站.上海市环境电离辐射水平及居民受照剂量[J].中国环境电离辐射水平及居民受照剂量.北京:中华人民共和国卫生部,1986:203-214.
    [24]杨鹤鸣,眭光凯.上海市土壤中天然放射性核素含量调查研究[J].辐射防护,1994,14(2):123-126.
    [25]尚兵,贺清华,王作元,等.中国室内氡行动水平的研究[J].中华放射医学与防护杂志.2003,23(6):462-465.
    [26]GB/T16146-1995.住房内氡浓度的控制标准[S].北京:中国标准出版社,1995.
    [27]A.F.Maged,E.Borham.A study of the radon emitted from various building materials using alpha track detedtors[J].Radiation measurements.1997,28:613-617.
    [28]Yonehara H,Tokonami S,Zhuo W.Thoron in the living environments of Japan[J].International Congress Series.2005,1276:58-61.
    [29]K.Kovler,A.Perevalov,A.Levit,et al.Radon exhalation of cementitious materials made with coal fly ash:Part 2-testing hardened cement-fly ash pastes[J].Journal of Environmental Radioactivity.2005,82:335-350.
    [30]G.Carrera,M.Garavaglia,S.Magnoni,et al.Natural radioactivity and radon exhalation in stony materials[J].J.Environ.Radioactivity.1997,34(2):149-159.
    [31]张哲.氡的析出与排氡通风.北京:原子能出版社,1982.
    [32]L.Morawska.C.R.Phillips.Criteria for closed chamber measurements of radon emanation rate[A].In:G.Kay.Jack,E.Keller.George,F.Miller.Jay,et al.Indoor air pollution:radon,bioaerosols & VOCs[M].US:CRC Press,1991:201-215.
    [33]N.Jonassen.The determination of radon exhalation rates[J].Health physics.1983,45(2):369-376.
    [34]C.Y.H.Chao,T.C.W.Tung,D.W.T.Chan,et al.Determination of radon emanation and back diffusion characteristics of building materials in small chamber tests[J].Build.Environ.1997.32(4):355 362.
    [35]GB 6566-2001.建筑材料放射性核素限量[S].北京:中国标准出版社,2001.
    [36]S.Stoulos,M.Manolopoulou,C.Papastefanou.Assessment of natural radiation exposure and radon exhalation from building materials in Greece[J].J.Enviro.Radioactivity.2003,69:225-240.
    [37]A.F.Saad.Radium activity and radon exhalation rates from phosphate ores using CR-39 on-line with an electronoic radon gas analyzer "Alpha GUARD"[J].Radiation Measurements.2008,43:463-466.
    [38]B.k.Sahoo,D.Nathwani,K.P.Eappen,etl.Estimation of radon emanation factor in Indian building materials[J].Radiation Measurements.2007,42:1422-1425
    [39]S.Righi,L.Bruzzi.Natural radioactivity and radon exhalation in building materials used in Italian dwellings[J].J.Enviro.Radioactivity.2006,88:158-170.
    [40]P.de Jong,W.van Dijk,E.R.van der Graaf,etl.National survey on the natural radioactivity and ~(222)Rn exhalation rate of building materials in the Netherlands[J].Health Physics,2006,91(3):200-210.
    [41]Samuelsson C,Petterson H.Exhalation of 222Rn from porous materials[J].Radiat Prot Dosimetry.1984,7(1-4):95-100.
    [42]Samulsson C.The closed-can exhalation method for measuring radon[J],J Res National Institute Stand Technol.1990,95(2):167-169.
    [43]谢斐,童纯菡,刘晓辉.几种建筑材料的氡射气系数研究.广东微量元素科学[J],2008,15(1):61-65.
    [44]W.Zhuo,T.Iida,J.Moriizumit,T.Aoyagij,etl.Simulation of the concentrations and distributions of indoor radon and thoron,Radialion Protection Dosimetry[J].2001,93(4):357-368.
    [45]我国几种房屋建筑材料1983年产量[J].建筑节能.1985.1:44.
    [46]1984-1985年上海主要建筑材料产量[J].中国建材.1986.7:36.
    [47]尚建宁.迁徙建筑材料发展动态[J].山西建筑,2003,29(7):121-122.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700