用户名: 密码: 验证码:
仿水黾机器人机构及性能分析研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
水黾可以在水面上停留并具有快速滑行和跳跃的活动机能。受水黾启发,人们对在水面这一非结构环境下能快速移动的仿水黾机器人的研究产生了浓厚兴趣。仿水黾机器人以其效率高、机动性好、噪音低、对环境扰动小的优势将在军事侦察、环境监测、水体检测、地下管网检测等军事和民用等方面得到广泛应用。因此,开展仿水黾机器人的研究将具有重要的理论意义和实际应用价值。本文基于功能仿生原理,提出一种新型具有一定负载能力的仿水黾机器人新构型,从运动学和动力学建模与分析、水力学建模与分析、运动仿真分析和模态分析、刚-柔耦合驱动系统动力学建模与仿真、样机研制与控制系统设计以及实验等进行了系统的分析与研究,取得了一定创新性的研究成果。
     1.在研究仿生原型水黾结构及运动特性基础上,提出一种三自由度输入并联解耦划水驱动仿水黾机器人新构型,建立驱动机构运动学与动力学模型、划水运动平衡性条件及机构参数综合条件,为机器人样机设计制作提供理论基础。该机器人以三个电磁铁作为驱动通过解耦控制两驱动腿实现划水运动控制,两驱动腿以差动方式实现零半径转弯运动,与电机方案相比,该机器人以电磁铁二元逻辑控制替代电机复杂伺服驱动,其具有驱动数量少、结构简单、易微小型化、机动性好、转弯灵活、划水效率高、控制简单等特点。
     2.考虑仿水黾机器人仿生原形特点,提出仿水黾机器人结构设计原则,建立机器人虚拟样机仿真模型,进行驱动机构运动学仿真分析和各旋转副受力情况及机构运动能量曲线分析,验证机构设计合理性,指出结构设计的薄弱环节,为物理样机结构设计和改进提供理论依据。
     3.考虑仿水黾机器人划水频率与共振问题,研究机器人的仿真模态特性,重点分析机器人划水腿、驱动机构、整机的固有频率及相对位移云图和相对应力云图,分析虚拟样机结构设计中的薄弱环节,指出机器人运动应避开的工作频率,为机器人的结构改进设计和控制提供理论依据。
     4.考虑仿水黾机器人在水面环境工作这一特征,研究水对机器人运动的作用规律,建立仿水黾机器人漂浮平衡稳定性条件、机器人划水腿流场表达式、驱动机构水动力学表达式和机器人划水运动的水动力学表达式,为机器人结构设计和实际控制提供理论依据。
     5.考虑仿水黾机器人驱动系统中轻型薄壁材料构件引起的小幅度柔性变形问题,本文提出将机器人驱动系统视为为刚-柔耦合多体机器人驱动系统的处理方法,建立考虑水接触力约束函数的机器人刚-柔耦合驱动系统动力学模型并进行仿真分析研究,结果表明划水腿小幅度柔性变形将影响机器人划水板的划水轨迹,该研究成果将为机器人今后实现高速运动控制和精确运行轨迹路线奠定理论基础。
     6.在上述理论研究基础上,研制仿水黾机器人样机,在实验室环境下对仿水黾机器人进行水面前进、转弯、负重实验,实验结果验证了本文提出的仿水黾机器人三自由度输入并联解耦划水驱动机构的有效性和本文理论分析的正确性,该机器人具有良好的速度响应特性、运动灵活性,划水效率高、控制简单方便。
Water strider is a kind of insect that has the active function of staying, sliding and leaping on water surface. Enlightened by this kind of insect, people become more and more interest on the water strider robot, which can move fast on the unstructured water surface. With the advantages such as high efficiency, good mobility, lower noise and little disturb to the environment, water strider robot will applies to military and civil area such as military reconnaissance, environmental monitoring and water examination. Therefore, the research of water strider robot has theoretical significance and practical value. Based on the bionic function principle, this paper proposed a kind of new floating type of water strider robot structure that has a certain load capacity, and carried on systematic analysis and research on several perspectives: the prototyped analysis of modeling, kinematics, and the hydraulics, virtual prototypical robot movement simulation and the model analysis, the rigid-flexible coupling driving system dynamics question the modeling and simulation, the prototypical manufacture and the design and experiment of the control system and so on. Therefore, certain innovative research results have been obtained.
     1. Based on the research of structure and motion characteristic of water strider, this paper proposed a new kind of water strider robot parallel driving mechanism, namely three degrees of freedom inputs parallel decoupling water movement of driving mechanism, established kinematics and dynamics model of the parallel driving mechanisms ,the balance conditions of rowing and the most optimization parameters comprehensive conditions of robot’s driving mechanism, and thus provided the theory fundamentals for the final manufacture of the robot prototype.
     2. Considering the bionic original shape characteristics of bionic water stride robot, this paper proposed the structure design principle of water stride robot, established virtual prototype simulation model of the robot, analyzed the driving mechanism kinematics simulation, condition of every rotating side force and curve of the mechanism kinematics energy, verified rationality of mechanism design, pointed out weak links of structure design, and finally offered theoretical basis of the structure design and improvement of the robot.
     3. Considering bionic water stride robot’s frequency of rowing and resonance problem, this paper studied simulation model characteristics of the robot, emphasized on robot’s rowing legs, driving mechanism, the whole machine natural frequency and displacement and stress cloud pictureare, analyzed weakness of the fictitious prototype structure, pointed out working frequency that should be avoided, and therefore offered theoretical basis of structure design and control of the robot.
     4. Considering the characteristic that the bionic water strider robot is working on water surface, the paper researched the water effects on the action regularity of the robot and the relationship between the shape of rowing leg and the rowing performance. The paper also established the stability condition for the floating water strider robot, the flow field expression of the rowing leg, and the hydrodynamic expression of the driving mechanism and the rowing action of the robot. In the end, the theoretical basis of structure design and control of the dynamic expression of the water stride robot has been offered.
     5. Considering the small amplitude flexible vibration caused by the light and thin components in the drive system of the bionic water strider robot, this paper put forward that the drive system of the robot is regarded as a flexible driving system of a rigid-flexible coupling multi-body robot, established dynamic model of the rigid-flexible coupled driving system which considers the constraint function of the contact force with water. The results showed that the small amplitude flexible vibration of the rowing board would influence the motion trajectory of the rowing board. This research result will provide a theoretical foundation for the high speed motion controlling and the accurate operational path controlling of the robot in the future.
     6. Based on above theories,the paper developed a physical prototype of water strider robot, did experiments on the water strider robot while moving forward, turning and withstanding some load of work on the water surface under the circumstance of the laboratory. The experiments results verified the effectiveness of the three degrees freedom input of parallel decoupling rowing driving mechanism and the correctness of the theory analysis about water strider robot in this paper. At last, it appeared that the water stride robot in this paper has good velocity response characteristics, motion flexibility, high rowing efficiency and convenient control.
引文
[1].迟冬祥,颜国正.仿生机器人的研究状况及其未来发展.机器人,2001,23(5):476-480
    [2].许宏岩,付宜利,王树国,刘建国.仿生机器人的研究.机器人,2004,26(3):283-288
    [3]. J.E. Clark, J.G Cham, S.A. Bailey, E.M. Froehlich, P.K. Nahata, R.J. Full, and M.R. Cutkosky,“Biomimetic design and fabrication of a hexapedal running robot,”Proceedings of IEEE International Conference on Robotics and Automation, vol.4, 2001,3643-3649
    [4]. N. Kagawa and H. Kazerooni,“Biomimetic Small Walking Machine,”Proceedings of the IEEE/ASME International Conference on Advanced Intelligent Mechatronics, 2001,971-979
    [5]. A.S. Boxerbaum, P. Werk, R. D. Quinn, and R. Vaidyanathan,“Design of an autonomous amphibious robot for surf zone operation: Part I mechanical design for multi-mode mobility,”in Proc. IEEE/ASME International Conference on Advanced Intelligent Mechatronics, 2005, 1460–1464
    [6]. C. Menon, M. Murphy, and M. Sitti,“Gecko Inspired Surface Climbing Robots,”Proceedings of the IEEE International Conference on Robotics and Biomimetics, Shenyang, China, 2004
    [7]. F. Chiu, J. Guo, J. Chen, and Y. Lin,“Dynamic characteristic of a biomimetic underwater vehicle;”Proceedings of the IEEE International Symposium on Underwater Technology, 2002,172-177
    [8]. S. Guo, Y. Hasegaw, T. Fukuda, and K. Asaka,“Fish-like Underwater Microrobot with Multi DOF,”Proceedings of IEEE International Symposium on Micromechatronics and Human Science,2001,63-68
    [9].梁建宏,王田苗,魏宏兴.仿生机器鱼技术研究进展及关键问题探讨.机器人技术与应用,2003(3):14-19
    [10].喻俊志,陈尔奎,王硕,谭民.仿生机器鱼研究的进展和分析.控制理论和应用,2003,20(4):38-41
    [11]. S. Floyd, T. Keegan, and M. Sitti, A novel water running robot inspired by basilisk lizards Proc. of the IEEE/RSJ Intelligent Robot Systems Conference, Beijing, China, Oct. 2006, 5430–5436
    [12].王立权,孙磊,陈东良,等.仿生机器蟹样机研究.哈尔滨工程大学学报, 2005, 26(5): 591–595
    [13].孙安,高雪官,吴斌.四足两栖仿生机器龟的研究.机械, 2004, 31(5): 12–16
    [14].李斌,马书根,王越超,等.一种具有三维运动能力的蛇形机器人的研究.机器人, 2004, 26(6): 506–509
    [15].卢振利,马书根,李斌,等.基于循环抑制CPG模型控制的蛇形机器人蜿蜒控制.机器人, 2006, 32(1): 133–139
    [16]. T. Toshio, and H. Shigeo,“Amphibious 3D active cord mechanism‘HELIX’with helical swimming motion,”in Proc. of the IEEE/RSJ Int. Conference on Intelligent Robots and Systems, 2002, 775–780
    [17]. Y. Hiroya, C. Shuntaro, M. Makoto, T. Kensuke, O. Kazunori, H. Shigeo,“Development of amphibious snake-like robot ACM-R5,”in Proc. of 36th Int. Symposium on Robotics,Japan, 2005, 433–440
    [18].王龙,喻俊志,胡永辉,等.机器海豚的机构设计与运动控制.北京大学学报(自然科学版), 42(3),2006, 294-301
    [19]. J. Ayers,“Underwater walking,”Arthropod Structure & Development, 2004, 33: 347–360
    [20].侯宇,方宗德.仿生微扑翼机构的设计与机电耦合特性研究.中国机械工程. 16( 7), 2005,570-573
    [21]. Bush, John W.M. David L. Hu. Brian Chan. The hydrodynamics of water strider locomotion. Nature, 2003(424): 663–666
    [22]. Mark W., Denny. Summary commentary paradox lost: answers and questions about walking on water. The Journal of Experimental Biology, 2004(207):1601-1606
    [23]. Dickinson, M.How to walk on water. Nature, 2003(424): 326-331
    [24]. Takashi Yabe , Kazuya Chinda, Tomohiro Hiraishi. Computation of surface tension and contact angle and its application to water strider. Computers & Fluids 2007, 36: 184–190
    [25].髙信英明,小平圭佑,竹田ひとみ.アメンボの脚構造をモデルとしたロボットの基礎研究. http://kiko.mech.kogakuin.ac.jp
    [26]. Hideaki TAKANOBU, Jun YAMANAKA,Kenichi MASUDA,Yoshiaki YANO. Analysis of Water Strider’s Motion. http://kiko.mech.kogakuin.ac.jp
    [27]. X.Gao, L. Jiang. Water-repellent legs of water striders. Nature, 2004(432): 36
    [28].高雪峰,江雷.天然超疏水生物表面研究的新进展.物理.35卷(2006年)7期559-564
    [29]. http://www.nosta.gov.cn/2005jldh/zr/Z-103-2-05.htm
    [30]. S. H. Suhr, Y. S. Song, S. J. Lee, and M. Sitti. Biologically inspired minature water strider robot. Proceedings of the Robotics: Science and Systems I, 2005:319-325
    [31]. Yun Seong Song, Metin Sitti. Surface-Tension-Driven Biologically Inspired Water Strider Robots: Theory and Experiments. IEEE Transactions on Robotics, Vol. 23, No. 3, 578-589, June 2007
    [32]. Yun Seong Song, Steve H. Suhr, Metin Sitti. Modeling of the Supporting Legs for Designing Biomimetic Water Strider Robots .Proceedings of the 2006 IEEE International Conference on Robotics and Automation Orlando, Florida , May 2006,2303-2310
    [33]. Yun Seong Song and Metin Sitti. STRIDE: A Highly Maneuverable and Non-Tethered Water Strider Robot. 2007 IEEE International Conference on Robotics and Automation. Roma, Italy, April 2007,10-14
    [34]. J. Bush and D. Hu,“Walking on Water: Biolocomotion at the Interface,”Annu. Rev. of Fluid Mech., 38, 2006, 339-369
    [35]. David L. Hu, Brian Chan, John W.M. Bush. The design and construction of a mechanical water strider. Elsevier Science, 2005.6:256-263
    [36]. Girard.Design review #1: water strider. Columbia University,2005.2
    [37]. Girard.Design review #2: revision engineering design. Columbia University,2005.4
    [38]. Basso, B., Fong, A., Hurst, A., Knapp, M. Robot using surface tension (R.U.S.T.Y)[Undergraduate thesis].Columbia: Columbia U, 2005
    [39]. http://www.me.cmu.edu/faculty1/sitti/nano/projects/waterrunner/
    [40]. Hideaki TAKANOBU, *Jun YAMANAKA, Kenichi MASUDA.Development of Robot Based on Water strider . http://kiko.mech.kogakuin.ac.jp
    [41].吴立成;丁樑;郭栋;姚磊;付海宁http://www.patent-cn.com/
    [42]. M. Sitti. D, Campolo, J. Yan, R. Fearing T. Su, D. Taylor, and 'T. Sands. Development of' PZT and PZN-PT based unimorph actutators for micromechanical mechanisms. [J]in Pro. of the IEEE Int.Conf. on Robotics and Automation, Korea, 2001
    [43].程光明,杨志刚,曾平,等.压电式移动机构的研究.压电与声光,2003,25(2):106-108
    [44].程光明,杨志刚,曾平,等.新型压电驱动机构[J] .压电与声光,2000,22(3):168-172
    [45].王金辉,徐峰,阎绍泽,等.SMA弹簧驱动器驱动机理及实验.清华大学学报(自然科学版),2003,43(2):188-191
    [46].李明东,马培荪,储金荻,等.适用于有限空间的微型形状记忆合金丝驱动器.上海交通大学学报,2000,34(3):366-369
    [47].李明东,马培荪,马建旭,等.形状记忆合金驱动器驱动方式研究.机械设计与研究,1999(3):27-29
    [48].宫峰飞.微驱动器的原理与应用.电子元件与材料,2003(6):33-36
    [49].王忠,李小凡,姚辰,等.微小移动机器人驱动原理研究.仪器仪表学报,2003,24(5):530-532
    [50].刘文耀,杜君文,应济.MEMS的概念及其国内外的研究状况.机械工程师,2001(2):8-10
    [51].于靖军,毕树生,宗光华.全柔性微位移放大机构的设计技术研究.航空学报,2004,25(1):74-78
    [52].陈幼松.仿生动力新进展.科学之友,1992,(9):4-5
    [53]. Ider S K. Finite element based recursive formulation for real time dynamic simulation of flexible multibody systems [J]. Computers & Structures,1991,40:939-945
    [54]. Wu S C, Haug E J.Geometric non-linear substructuring for dynamics of flexible mechanical system [J].International Journal for Numerical Methods in Engineering,1988,26:2211-2226
    [55]. Yang Z J,Sadler J P. Large-displacement finite element analysis of flexible linkages. ASME Journal of Mechanical Desigin,1990;112:175—182
    [56]. Tokhi M.O., Mohamed Z. Finite difference and finite element approaches to dynamic modeling of a flexible manipulator. Proceedings of the Institution of Mechanical Engineers. Part I, Journal of systems & control Engineering,1997,211(2):145-156
    [57]. Fattah A., Angles J., Dynamics of two cooperating flexible-link manipulators-planar case. Transactions of the Canadian Society for Mechanical Engineering,1997,21(1):1-17
    [58]. Ge S. S., Lee T.H., Nonlinear feedback controller for a single-link flexible manipulator based finite element model. Journal of robotic Systems,1997,14(3):165-178
    [59].崔玲丽,张建宇,高立新,等.柔性机械臂系统动力学建模的研究.系统仿真学报.Vol.19,No.6,Mar.2007,1205-1208
    [60]. Li Chang-jin, Sankar T.S., Systemic methods foe efficient modeling and dynamics computation of flexible robotic manipulators, IEEE Transactions on Systems, Man and Cybernetics,1993,23(1):77-94
    [61]. Chen Wen, Dynamic modeling of multi-link flexible robotic manipulators, Computers and Structures 2001,79(2):183-195
    [62]. Zhao Hongchao,Chen Degang, Exact and stable tip trajectory tracking for multi-link flexible manipulator, Proceedings of the IEEE Conference on Decision and Control,1993,2:1372-1376
    [63]. Theodore R.J.,Ghosal A., Comparison of the assumed modes and finite element models for flexible multi-link manipulators, International Journal of Robotics Research,1995,14(2):91-111
    [64].刘才山,王建明,阎绍泽,等.滑模变结构控制在柔性机械臂中的应用,天津大学学报,1999,32(2):244-247
    [65].王大龙,陆佑方,郭九大.单连杆柔性机械臂动力学模型分析,吉林工业大学学报, 1998,28(2):51-56
    [66].王大龙,陆佑方,陈塑寰,等.双连杆柔性机械臂的非线性轨迹跟踪控制,吉林工业大学学报, 1996,26(2):53-58
    [67].边宇枢,陆震.柔性机器人动力学建模的一种方法.北京航空航天大学学报, Vol.25,No.14, August 1999,486-490
    [68].张大钧.柔性多体系统动力学理论方法与实验研究:[博士学位论文].天津:天津大学,1991
    [69]. R. L. Huston,刘又午.多体系统动力学(下册).天津:天津大学出版社,1987.11
    [70]. Wu S C,Haug E. Geometric non-linear substructuring for dynamics of flexible mechanical systems. International Journal for Numerical Methods in Engineering,1988;26:2211—2226
    [71].蒋铁英.柔性机械臂建模、仿真及实验研究. [博士学位论文].天津:天津大学,1996
    [72].张铁民.柔性机械臂振动控制理论与实验研究. [博士学位论文].天津:天津大学,1996
    [73]. Gamarra-Rosado V.O., Yuhara E.A.O., Dynamic modeling and simulation of a flexible robotic manipulator, Robotica,1999,17(5):523-528
    [74]. Dai Y.Q., Loukianov A.A., Uchiyama M. A., Hybrid numerical method for solving the inverse kinematics of a class of spatial flexible manipulators,Proceedings of the IEEE International Conference on Robotics and Automation,1997
    [75]. Eric H.K. Fung, Cedric K.M. Lee., Variable structure tracking control of a single-link flexible arm using time-varing sliding surface. Journal of Robotic Systems, 1999,16(12):715-726
    [76]. Bruno Siciliano, Closed-loop inverse kinematics algorithm for constrained flexible manipulators under gravity, Journal of Robotic Systems,1999,16(6):353-362
    [77]. Fung R.F., Chang H.C., Dynamic modeling of a non-linearly constrained flexible manipulator with a tip mass by Hamilton’s Principle,Journal of Sound and Vibration,1998,216(5):751-769
    [78]. Ge S. S., Lee T.H., Nonlinear feedback controller for a single-link flexible manipulator based finite element model. Journal of robotic Systems,1997,14(3):165-178
    [79]. Eftychios G., Christoforou, The Control of flexible-link robots manipulating large payloads: Theory and Experiments, Journal of Robotic Systems, 2000,17(5):255-271
    [80].丁希仑,陈伟海,张启先.空间机器人柔性臂动力学模糊控制的研究.北京航空航天大学学报,1999,25(1):104-107
    [81]. Kane T R,Ryan R R,Banerjee A K.Dynamics of a cantilever beam attached to a moving base[J].J.Guid.Contr.And Dyn.,1987,(10):139-151
    [82].王建明,洪嘉振,刘又午.刚柔耦合系统动力学建模新方法.振动工程学报.Vol.16.No.2Jun.2003.1-4
    [83].张大钧.柔性多体系统动力学理论方法与实验研究:[博士学位论文],天津:天津大学,1991
    [84].蒋铁英.柔性机械臂建模、仿真及实验研究. [博士学位论文],天津:天津大学,1996
    [85].贠超.柔性机械臂的主动控制研究.[博士学位论文],天津:天津大学,1993
    [86].薛克宗,赵平.挠性机械臂三维动力建模与音挠性臂数值模拟.清华大学学报,1993,33(5):73-81
    [87].贠今天.未确知环境下刚-柔机械臂主动柔顺控制理论与实验研究.[博士学位论文],天津:天津大学,2003
    [88].黄真,孔令富,方跃法.并联机器人机构学理论及控制.北京:机械工业出版社1997.12
    [89].黄真,赵永生,赵铁石.高等空间机构学.北京:高等教育出版社. 2006.6
    [90].陈新荣,余跃庆,姜春福,等.基于虚拟样机的机器人仿真.北京工业大学学报,2004.3:132-136
    [91].祖旭,黄洪钟,张旭.虚拟样机技术及其发展.农业机械学报,2004(2):173-176
    [92].姜士湖,闰相祯.虚拟样机技术及其在国内的应用前景.机械.2003.2:7-9
    [93].熊光楞,李伯虎,柴旭东.虚拟样机技术[[J].系统仿真学报,2001. Vo1.13(1):114-117
    [94].李伯虎,柴旭东.复杂产品虚拟样机工程[[J].计算机集成制造系统-CIMS .2002 8(9):678-683
    [95].李伯虎,柴旭东,熊光楞,等.复杂产品虚拟样机工程的研究与初步实践[J].系统仿真学报,2002 14(3):336-341
    [96]. (德)施普尔,克劳舍著,宁汝新等译.虚拟产品开发技术[M].北京:机械工业出版社,2000.5
    [97]. Zeigler B.P, et al. The DEVS environment for high-performance modeling and simulation[J]. IEEE CS&E, 1997 Vo1.4(3):61-71
    [98]. Richard Z.. New and developing areas in modeling and simulation from a European perspective [J].System Simulation and Scientific Computing. 1999, 10(19)21): 10-14
    [99]. Ron M.. Virtual prototyping: The practical solution [J]. Inventor' Digest, 1998,6
    [100]. C.Selcimoto, Mashisa Yano. Development of conceptual design CAD system[C]. Proceedings of International ADAMS Users' Conference, 1998
    [101].李粤,张永波.虚拟样机技术的内涵及其在机械产品开发中的实现[J].华南热带农业大学学报,2006 Vo 1.12(1):6568
    [102].李瑞涛,方媚,张文明.虚拟样机技术的概念及应用[J].机电一体化,2000(5):17-19
    [103]. Joseph S.L., Edward M., Osborne R.. Collaborative virtual prototyping [J]. Johns Hopkins APL Technical Digest, 1996 Vo1.17(3):295-304
    [104]. Bipin C., John W.. Next-generation architecture for virtual prototyping [M]. Lockheed Martin, 1998
    [105].李亚军,黄浩.虚拟样机技术及其应用.科技科技成果学术论文,2002(2): 3638
    [106].王成,王效岳.虚拟样机技术及ADAMS[J].机械工程与自动化,2004 No.6/127,12:66-68
    [107].王小东,刘英林,张建亭.虚拟样机的未来前景[[J].机械管理开发,2004 No.6/81,12:81 -82
    [108].陈涛,吴宝贵,张旭.基于ADAMS的曲柄滑块机构虚拟样机设计[[J].重庆工学院学报,2005 Vo1.19(8):30-33
    [109].于珊珊,徐尚德,雷君相.多连杆机构分析和虚拟样机技术的发展[[J].机械设计与制造,2004 No.5:118-121
    [110].刘新胜,庆华.Pro-ENGINEER和ADAMS在机构设计仿真中的应用[[J].机械制造与自动化,2005 Vo1.34(6):127-129
    [111].沈红斌.内燃机气缸盖强度和可靠性的有限元法研究[D].天津:天津大学,2003,1
    [112].郭乙木,陶伟明,庄茁,等.线性与非线性有限元及其应用[M].北京:机械工业出版社, 2003.10
    [113]. B uchanan G R.著,董文军,谢伟松译.有限元分析网.北京:科学出版社,2002
    [114].江见鲸,何放龙,何益斌.有限元法及其应用[M].北京:机械工业出版社,2006
    [115]. Lin Q.. Finite element methods: accuracy and improvement [M]. Beijing: Science Press,2006
    [116].张文志,韩清凯,刘亚忠,等.机械结构有限元分析[M].哈尔滨:哈尔滨工业大学出版社,2006
    [117].王建平,朱建公,周宪珠.三维强化抛光振动台的有限元模态分析.《装备制造技术》,2007年第1期:3-4
    [118].骆圆圆,钱瑞明,朱宏陪.基于ANSYS的水平定向钻机大梁的模态分析与改进设计.现代设计技术,2006,第35卷15期:34-36
    [119].李云江,袁文生,李兆东.喷浆机器人大臂的模态分析.矿业研究与开发, 2007,第27卷第1期:46-48

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700