用户名: 密码: 验证码:
无线通信中平面微波滤波器的结构与性能研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
随着无线通信技术的高速发展,使用不同频段、实现不同功能的各种通信协议不断被提出,使得频谱资源的有限性和通信频段的多样性之间的矛盾成为制约无线通信技术进一步发展的瓶颈。因此,可以有效缓解这一矛盾的高性能微波滤波器受到了越来越多的关注。同时,移动通信系统,尤其是便携式终端的快速发展对无线通信设备的小型化提出越来越高的要求,极大地促进了平面微波滤波器的发展,小型化高性能平面滤波器成为滤波器研究的热门领域之一。本论文针对于平面微波滤波器设计中的双模谐振器结构、多通带滤波器的实现形式、多谐振器滤波器快速优化等关键问题进行了深入的研究,主要工作如下:
     首先,通过与微带结构双模谐振器的比较提出新型双模缺陷地面结构谐振器,并对其谐振模式及其谐振频率的变化规律进行了深入分析。系统地分析了馈线位置与新型谐振器两种谐振模式外部品质因数的关系,并使用源和负载无耦合及源和负载具有容性耦合的外部耦合方式实现了具有宽阻带的带通滤波器。引入绕线结构缩小谐振器尺寸,并基于含绕线结构的双模缺陷地面结构谐振器实现了小型化带通滤波器。
     其次,将新型双模缺陷地面结构谐振器应用于多通带滤波器设计,使用两个双模缺陷地面结构谐振器级联和并联的方式分别实现了双通带滤波器。使用嵌套形式的双模缺陷地面结构谐振器实现了小型化双通带、三通带、四通带滤波器。将绕线结构引入嵌套双模缺陷地面结构谐振器当中,实现结构更为紧凑双通带滤波器。进一步缩小尺寸,使用多层绕线结构设计的小型化双模缺陷地面结构谐振器实现了只含一个谐振器的双通带滤波器。
     再次,将新型双模缺陷地面结构谐振器和常规微带结构谐振器混合使用设计多通带滤波器,基于并联双模谐振器结构实现了具有二到五个通带的多通带滤波器。采用新型耦合方式实现了具有感性源和负载耦合的高选择性双通带滤波器及具有容性源和负载耦合的小型化高选择性三通带滤波器。
     最后,深入分析了主动空间映射、隐式空间映射、调谐空间映射等优化方法的思想及其具体使用方法,分别使用三种优化方法对具有相同设计指标要求的高温超导滤波器进行仿真设计,并且对三种优化方法收敛性进行比较进而提出新型的优化方法-混合空间映射优化方法。使用该方法进行了具有20个谐振器的高温超导滤波器的仿真设计并且通过该实例验证了混合空间映射优化方法对于复杂结构平面微波滤波器设计的有效性。
With the rapid development of the wireless communication technology, many newcommunication protocols, which are using different frequency bands and working fordifferent purposes, have been proposed. The contradiction between the limit of thefrequency spectrum and the diversity of the communication bands became thebottleneck of the further development of the communication technology. Therefore,high performance microwave filters, which can solve the problem, have attracted muchmore attentions. At the same time, the development of the mobile communicationsystems, especially the development of the portable handsets, have created everincreasing demand for miniaturized wireless communication equipments, andstimulated the development of the planar microwave filters which became the one of themost attractive research areas. The dissertation makes deeply insight into the importantissues concern the design of planar microwave filters, such as the structure of thedual-mode resonators, the realization of the multi-band bandpass filters and rapidoptimization of the filters which has many resonators, and it is summarized as follows.
     Firstly, based on the comparison with the microstrip dual-mode resonators, noveldual-mode defected ground structure resonator (DDGSR) is developed, and its resonantcharacteristics and the regulation of the variation of the resonant frequencies are deeplyanalyzed. The relations between the external quality factors of the two modes of theDDGSR and the position of the feed lines are systematically analyzed. Bandpass filterswitch have wide stopband with or without capacitive source-load couplings aredesigned. Meander structures are introduced to the DDGSR to reduce the size of theresonator. Based on the DDGSR with meander structures, compact bandpass filter isrealized.
     Secondly, use the DDGSRs in the multi-band bandpass filter design. Two DDGSRsare used in series or parallel to realize dual-band bandpass filters respectively. Thenested DDGSRs are used to design compact multi-band bandpass filters which have two,three even four passbands. More compact dual-band bandpass filter is realized byintroducing meander structures in the nested DDGSRs. To reduce the size of the filtersfurthurly, a single DDGSR with multi-level meander lines inside is used to realize adual-band bandpass filter.
     Thirdly, use DDGSR and traditional microstrip structure resonators to constructhybrid type multi-band bandpass filters. Based on transversal filters which have different types of dual-mode resonators placed in parallel, multi-band bandpass filterswhich have two to five passbands are achieved. Using novel coupling schemes, such asinductive or capacitive source-load couplings, compact and high performance dual-bandand tri-band bandpass filters are realized.
     Fourthly, deeply analysis is performed on the thoughts and particular executionmethods about the aggressive, implicit and tuning space mapping optimization methods.Using these three types of space mapping methods optimize high temperaturesuperconductor filters with same design targets, respectively. Novel hybrid spacemapping optimization method is developed based on the comparison of theconvergences of the results above. Using the novel optimization method, a hightemperature superconductor filter which has20resonators is successfully designed. Andthis design example verifies the validity of this optimization method for optimization ofthe planar microwave filters with complicated structures.
引文
[1]李仲贤,我国无线通信技术的现状和发展前景,信息与电脑,2011,7:101-103.
    [2]王建宙,胡国华,3G向4G的演化及4G的研究进展,科技信息,2009,35:873-874.
    [3]刘长军,黄卡玛,闫丽萍,射频通信电路设计,北京:科学出版社,2005.
    [4] J. Crols and M. Steyaert, CMOS wireless transceiver design, Kluwer AcademicPublishers,1stedition,1997
    [5] U. L. Rohde and D. P. Newkirk, RF/microwave circuit design for wirelessapplications. New York: John Wiley&Sons,2000.
    [6] R. Ludwiq and P. Bretchko, RF circuit design: theory and application. New Jersey:Prentice Hall,2000.
    [7] Q. Gu, RF system design of transceivers for wireless communications. New York:Springer,2005
    [8]吴万春,甘本祓,现代微波滤波器的结构与设计,北京:科学出版社,1973.
    [9] R. R. Mansour, Filter technologies for wireless base stations, IEEE MicrowaveMagazine,2004,5(1):68-74.
    [10]森荣二,LC滤波器设计与制作,北京:科学出版社,2006.
    [11] K.-Y. Wong, W.-Y. Tam, Analysis of the Frequency response of SAW filters usingfinite-difference time-domain method, IEEE Trans. Microw. Theory Tech.,2005,53(11):3364-3370.
    [12] J. S. Hong and M. J. Lancaster, Cross-coupled microstrip hairpin-resonator filters,IEEE Trans. Microw. Theory Tech.,1998,46(1):118–122.
    [13] J. T. Kuo, M. J. Maa, and P. H. Lu, A microstrip elliptic function filter withcompact miniaturized hairpin resonators, IEEE Microw. Guided Wave Lett.,2000,10(3):94–95.
    [14] C. M. Tsai, S. Y. Lee, and C. C. Tsai, Performance of a planar filter using a0feedstructure, IEEE Trans. Microw. Theory Tech.,2002,50(10):2362–2367.
    [15] G. L. Matthaei, Interdigital bandpass filters, IEEE Trans. Microw. Theory Tech.,1962,10(11):479–491.
    [16] E. G. Cristal, Tapped-line coupled transmission lines with applications tointerdigital and combline filter, IEEE Trans. Microw. Theory Tech.,1975,23(12):1007–1012.
    [17] Y.-C. Zhang, K. A. Zaki, A. J. Piloto, and J. Tallo, Miniature broadband bandpassfilters using double-layer coupled stripline resonators, IEEE Trans. Microw.Theory Tech.,2006,54(8):3370-3377.
    [18] J.-T. Kuo, and M. Jiang, Enhanced microstrip filter design with a uniformdielectric overlay for suppressing the second harmonic response, IEEE Microw.Wirel. Compon. Lett.,2004,14(9):419-421.
    [19]吴振金,六腔螺旋滤波器设计,中国有线电视,1998,4:35-37.
    [20] Peter Vizmuller, Filters with helical and folded helical resonators, Artech Hose,Inc. Norwood, MA,1987.
    [21] J. K. A. Everard, K. K. M. Cheng, Dallas, P.A., High-Q helical resonator foroscillators and filters in mobile communications systems, Electronics Letters,1989,25(23):1648-1650.
    [22] S. J. Fiedziuszko, R. S Kwok, Novel helical resonator filter structures, IEEEMTT-S Int. Microw. Symp. Dig.,1998,1323-326.
    [23] R. S. Kwok, S. J. Fiedziuszko, Dual-mode helical resonators, IEEE Trans.Microw. Theory Tech.,2000,48(3):474-477.
    [24]钱云福,特高频通信设备中带通滤波器──螺旋谐振腔滤波器的设计与制作,常州技术师范学院学报,1995,1:10-14.
    [25]徐鸿飞,朱成枉,刘坚,孙忠良,同轴腔带通滤波器的一种设计方法,微波学报,2004,20(2):5-8.
    [26] N. Coetzee, Asymmetrical S-band coupled resonator filters, Thesis for the Masterdegree at the University of Stellenbosch, Dec.2005.
    [27] J. B. Thomas, Cross-coupling in coaxial cavity filters—a tutorial overview, IEEETrans. Microw. Theory Tech.,2003,51(4):1368–1376.
    [28]李彦霏,李增瑞,梳状线带通滤波器的设计与仿真,北京广播学院学报(自然科学版),2004,11(4):65-70.
    [29] S. Sun, and L. Zhu, Capacitive-ended interdigital coupled lines for UWBbandpass filters with improved out-of-band performances, IEEE Microw. Wirel.Compon. Lett.,2006,16(8):440-442.
    [30] G. I. Panaitov, R. Ott, and N. Klein, Dielectric resonator with discreteelectromechanical frequency tuning, IEEE Trans. Microw. Theory Tech.,2005,53(11):1-7.
    [31] D. Kajfez, P. Guillon, and Eds. Dedham, Dielectric Resonators, MA: ArtechHouse,1998.
    [32] N. Marcuvitz. Waveguide Handbook, McGraw-Hill, New York,1951.
    [33] A. Wexler, Solution of waveguide discontinuities by modal analysis, IEEE Trans.Microw. Theory Tech.,1967,15(7):508-517.
    [34] R. Mittra, S. W. Lee, Analytic techniques in the theory of guided waves, NewYork: Macmillan,1971.
    [35] J. Bornemann. A new class of E-plane integrated millimeter-wave filters, IEEEMTT-S Int. Microw. Symp. Dig.,1989,599-602.
    [36] J. Bornemann, S. Amari, J. Uher and R.Vahldieck, Analysis and design of circularridged waveguide components, IEEE Trans. Microw. Theory Tech.,1999,47(3):330-335.
    [37] D. Budimir, Optimized E-plane bandpass filters with improved stopbandperformance, IEEE Trans. Microw. Theory Tech.,1997,45(2):212-220.
    [38] M. Morelli, I. Hunter, R. Parry, and V. Postoyalko, Stopband performanceimprovement of rectangular waveguide filters using stepped-impedanceresonators, IEEE Trans. Microw. Theory Tech.,2002,50(7):1657-1664.
    [39]李胜先,傅君眉,吴须大,星载高功率微波波导低通滤波器的精确设计,西安交通大学学报,2006,40(2):195-202.
    [40]杨小明,模式匹配法在微波波导器件中的应用,西安电子科技大学硕士学位论文,2007.
    [41] M. Makimoto,S. Yamashita著,赵宏锦译,无线通信中的微波谐振器与滤波器,北京:国防工业出版社,2002.
    [42] S.-F.R. Chang, W.-L. Chen, S.-C. Chang, et al. A dual-band RF transceiver formultistandard WLAN applications, IEEE Trans. Microw. Theory Tech.,2005,53(3):1048-1055.
    [43] Y.-S. Lin, C.-C. Liu, K.-M. Li, et al. Design of an LTCC tri-band transceivermodule for GPRS mobile applications, IEEE Trans. Microw. Theory Tech.,2004,52(1):2718-2724.
    [44] http://www.ansoft.com.
    [45] http://www.cst-china.cn.
    [46] http://www.sonnetsoftware.com/
    [47] http://www.zeland.com/
    [48] Y.-P. Zhao, T.-J. Liu, Y. Ye, et al.8th-order cavity filter design with co-simulationby HFSS and Designer, ICECC,2011,2401-2403.
    [49] S. Koziel, Q.-S. Cheng, J. Bandler, Space mapping, IEEE Microwave Magazine,2008,9(6):105-122.
    [50] J. S. Hong and M. J. Lancaster, Microstrip filters for RF/microwave applications.New York: Wiley,2001.
    [51] J. Hirokawa, and M. Ando, Single-layer feed waveguide consisting of posts forplane TEM wave excitation in parallel plates, IEEE Trans. Antennas Propag.,1998,46(5):625-630.
    [52] H. Uchimura, T. Takenoshita, and M. Fujii, Development of a laminatedwaveguide, IEEE Trans. Microw. Theory Tech.,1998,46(12):2438-2443.
    [53] K.-S. Yang, S. Pinel, I.-K. Kim, and J. Laskar, Low-loss integrated-waveguidepassive circuits using liquid-crystal polymer system-on-Package (SoP)technology for millimeter-wave applications, IEEE Trans. Microw. Theroy Tech.,2006,54(12):4572-4579.
    [54] M. Ito, K. Maruhashi, K. Ikuina, et al. A60-GHz-band planar dielectricwaveguide filter for flip-chip modules, IEEE Trans. Microw. Theroy Tech.,2001,49(12):2431-2436.
    [55] C.-Y. Chang, and W.-C. Hsu, Novel planar, square-shaped, dielectric-waveguide,single-, and dual-mode filters, IEEE Trans. Microw. Theroy Tech.,2002,50(11):2527-2536.
    [56] D. Deslandes, and K. Wu, Single-substrate integration technique of planar circuitsand waveguide filters, IEEE Trans. Microw. Theory Tech.,2003,51(2):593-596.
    [57] X.-P. Chen, and K. Wu, Substrate integrated waveguide cross-coupled filter withnegative coupling structure, IEEE Trans. Microw. Theroy Tech.,2008,56(1):142-149.
    [58] B. Liu, W. Hong, Y.-Q. Wang, et al. Half mode substrate integrated waveguide(HMSIW)3-dB coupler, IEEE Microw. Wireless Compon. Lett.,2007,17(1):22-24.
    [59] Y. Rong, K. A. Zaki, J. Gipprich, et al. LTCC wide-band ridge-waveguidebandpass filters, IEEE Trans. Microw. Theory Tech.,1999,47(9):1836–1840.
    [60] N. Grigoropoulos, and P. R. Young, Compact folded waveguides, in Proc.34thEur. Microw. Conf., Amsterdam, Netherlands,2004,973-976.
    [61] G. Anthony, G. Y. Eleftheriades, Growing evanescent waves in negative-refractive-index transmission-line media. Journal of Applied Physics,2003,82(12):1815-1817.
    [62] A. Sanada, C. Caloz, T. Itoh. Characteristics of the composite right/left-handedtransmission lines. IEEE Microw. Wireless Compon. Lett.,2004,14(2):68-70.
    [63]杨涛,基于复合左右手传输线结构的小型化微波无源元件研究,电子科技大学博士学位论文,2011.
    [64] C. Caloz, A. Sanada, T. Itoh, A novel composite right-/left-handed coupled-linedirectionalcoupler with arbitrary coupling level and broad bandwidth, IEEE Trans.Microw. Theory Tech.,2004,52(3):980-992.
    [65] I.-H. Lin, M. Devincentis, C. Caloz, et al. Arbitrary dual-band components usingcomposite right/left-handed transmission lines, IEEE Trans. Microw. TheoryTech.,2004,52(4):1142-1149.
    [66] M. A. Antoniades, G. Y. Eleftheriades, A broadband wilkinson balun usingmicrostrip metamaterial lines, IEEE Antennas and Wireless Propag. lett.,2005,4:209-212.
    [67] T. Yang, M. Tamura, T. Itoh, Compact hybrid resonator with series and shuntresonances using in miniaturized filters and balun filters, IEEE Trans. Microw.Theory Tech.,2010,58(2):390-402.
    [68] T. Yang, M. Tamura, T. Itoh, Super compact low-temperature co-fired ceramicbandpass filters using the hybrid resonator, IEEE Trans. Microw. Theory Tech.,2010,58(11):2896-2907.
    [69] H.-X. Xu, G.-M. Wang, J.-G. Liang, Novel designed CSRRs and its application intunable tri-band bandpass filter based on fractal geometry, Radioengineering,2011,20(1):312-316.
    [70] J. I. Park, C. S. Kim, J. Kim, et al. Modeling of a photonic bandgap and itsapplication for the low-pass filter design, Asia Pacific Microwave Conference,Singapore,1999,2:331-334.
    [71] Y. C. Jeong, and J. S. Lim, A novel frequency doubler using feedforwardtechnique and defected ground structure, IEEE Microw. Wireless Compon. Lett.,2004,14(12),557-559.
    [72] J. S. Lim, C. S. Kim, J. S. Park, et al. Design of10dB90" branch line couplerusing microstrip line with defected ground structure, Electronics letters,2000,36(21),1784-1785.
    [73] C. S. Kim, J. I. Park, A. Dal, et al, A novel1-D periodic defected ground structurefor planar circuits, IEEE Microwave Guided Wave Lett.,2000,10(4):131–133.
    [74] H. B. El-Shaarawy, F. Coccetti, R. Plana, et al. Compact bandpass ring resonatorfilter with enhanced wide-band rejection characteristics using defected groundstructures, IEEE Microw. Wireless Compon. Lett.,2008,18(8):500-502.
    [75] A. Abdel-Rahman, A. R. Ali, S. Amari, et al. Compact bandpass flters usingdefected ground structure (DGS) coupled resonators, Proc. IEEE MTT-S Int. Dig.,2005,1479–1482.
    [76] A. Boutejdar, A. Batmanov, M. H. Awida, et al. Design of a new bandpass filterwith sharp transition band using multilayer-technique and U-defected groundstructure, IET Microw., Antennas&Propag.,2010,4(9):1415-1420.
    [77] P. Vagner, M. Kasal, Bandpass filter design using an open-loop defected groundstructure resonator,15th International Conference on Microwave Techniques,2010,77-80.
    [78] B. Wu, C.-H. Liang, P.-Y. Qin, Q. Li, Compact dual-band filter using defectedstepped impedance resonator, IEEE Microw. Wireless Compon. Lett.,2008,18(10):674-676.
    [79] X. Lai, C.-H. Liang, T. Su, B. Wu, Novel dual-band microstrip filter usingcomplementary split-ring resonators, Microwave and Optical Technology Letters,2008,50(1):7-10.
    [80] A. B. Abdel-Rahman, and A. S. Omar, Miniaturized bandpass flters usingcapacitor loaded folded slot coupled resonators, IEEE Middle East Conference onAntennas and Propagation (MECAP),2010,1–4.
    [81] J.-X. Chen, J. Shi, Z.-H. Bao, Q. Xue, Tunable and switchable bandpass filtersusing slot-line resonators, Progress in Electromagnetics Research,2011,111:25-41.
    [82] I. Wolf, Microstrip bandpass flter using degenerate modes of a microstrip ringresonator, Electron. Letters,1972,8(12):302–303.
    [83] R. R. Mansour, Design of superconductive multiplexers using single-mode anddual-mode filters, IEEE Trans. Microw. Theory Tech.,1994,42(7):1411-1418.
    [84] J. A. Curtis, and S. J. Fiedziuszko, Miniature dual mode microstip filters, IEEEMTT-S Int. Microw. Symp. Dig.,1991,2,443-446.
    [85] L. Zhu, P. M. Wecowski, and K. Wu, New planar dual-mode filter usingcross-slotted patch resonator for simultaneous size and loss reduction, IEEETrans. Microw. Theory Tech.,1999,47(5):650-654.
    [86] J.-S. Hong, and M. J. Lancaster, Microstrip bandpass filter using degeneratemodes of a novel meander loop resonator, IEEE Microwave and Guided WaveLetters,1995,5(11):371-372.
    [87] W. Kang, W. Hong, and J.-Y. Zhou, Performance improvement and size reductionof microstrip dual-mode bandpass filter, Electron. Letters,2008,44(6):421-422.
    [88] A. Gorur, A novel dual-mode bandpass filter with wide stopband using theproperties of microstip open-loop resonator, IEEE Microw. Wireless Compon.Lett.,2002,12(10):386-388.
    [89] C.-K. Liao, P.-L. Chi, and C.-Y. Chang, Microstrip realization of generalizedChebyshev filters with box-like coupling schemes, IEEE Trans. Microw. TheoryTech.,2007,55(1):147-153.
    [90] L. Athukorala, and D. Budimir, Compact dual-mode open loop microstripresonators and filters, IEEE Microw. Wireless Compon. Lett.,2009,19(11):698-700.
    [91] L.-C. Tsai, C.-W. Hsue, Dual-band bandpass filters using equal-lengthcoupled-serial-shunted lines and Z-transform technique, IEEE Trans. Microw.Theory Tech.,2004,52(4):1111-1117.
    [92] L.-Y. Ren, Tri-Band Bandpass Filters Based on Dual-plane microstrip/DGS slotstructure, IEEE Microw. Wireless Compon. Lett.,2010,20(8):429-431.
    [93] S. Sun, L. Zhu, Compact dual-band microstrip bandpass filter without externalfeeds, IEEE Microw. Wireless Compon. Lett.,2005,15(10):644-646.
    [94] Q.-X. Chu, X.-M. Lin, Advanced triple-band bandpass filter using tri-section SIR,Electronics letters,2008,44(4):295-296.
    [95] J.-Y. Wu, W.-H. Tu, Design of quad-band bandpass filter with multipletransmission zeros, Electronics letters,2011,47(8):502-503.
    [96] C. I. G. Hsu, C.-H. Lee, Y.-H. Hsieh, Tri-Band bandpass filter with sharppassband skirts designed using tri-section SIRs, IEEE Microw. Wireless Compon.Lett.,2008,18(1):19-21.
    [97] M.-Q. Zhou, X.-H. Tang, F. Xiao, Compact dual band bandpass filter using novelE-type resonators with controllable bandwidths, IEEE Microw. Wireless Compon.Lett.,2008,18(12):779-781.
    [98] J.-S. Hong, W.-X. Tang, Dual-band filter based on non-degenerate dual-modeslow-wave open-loop resonators, IEEE MTT-S Int. Microw. Symp. Dig.,2009,861-864.
    [99] X. Luo, H.-Z. Qian, J.-G. Ma, et al. Compact dual-band bandpass filters usingnovel embedded spiral resonator (ESR), IEEE Microw. Wireless Compon. Lett.,2010,20(8):435-437.
    [100] H. Miyake, S. Kitazawa, T. Ishizaki, et al. A miniaturized monolithic dual bandfilter using ceramic lamination technique for dual mode portable telephones,IEEE MTT-S Int. Microw. Symp. Dig.,1997,2,789-792.
    [101] C.-Y. Chen, C.-Y. Hsu, A simple and effective method for microstrip dual-bandfilters design, IEEE Microw. Wireless Compon. Lett.,2006,16(5):246-248.
    [102] X. Lai, C.-H. Liang, H. Di, B. Wu, Design of tri-band filter based on stub loadedresonator and DGS resonator, IEEE Microw. Wireless Compon. Lett.,2010,20(5):265-267.
    [103] H.-W. Wu, R.-Y. Yang, A new quad-band bandpass filter using asymmetricstepped impedance resonators, IEEE Microw. Wireless Compon. Lett.,2011,21(4):203-205.
    [104] X.-H. Wang, Q. Xue, K. F. Man, New dual-band bandpass filter design based onslotted ground structures, Microwave and Optical Technology Letters,2011,53(7):1505-1511.
    [105] S. Luo, L. Zhu, A novel dual-mode dual-band bandpass filter based on a singlering resonator, IEEE Microw. Wireless Compon. Lett.,2009,19(8):497-499.
    [106] Y.-C. Chiou, C.-Y. Wu, J.-T, Kuo, New miniaturized dual-mode dual-band ringresonator bandpass filter with microwave C-sections, IEEE Microw. WirelessCompon. Lett.,2010,20(2):67-69.
    [107] S. Sun, A dual-band bandpass filter using a single dual-mode ring resonator, IEEEMicrow. Wireless Compon. Lett.,2011,21(6):298-300.
    [108] S. Luo, L. Zhu, S. Sun, Compact dual-mode triple-band bandpass filters usingthree pairs of degenerate modes in a ring resonator, IEEE Trans. Microw. TheoryTech.,2011,59(5):1222-1229.
    [109] H.-W. Deng, Y.-J. Zhao, X.-S. Zhang, et al. Compact and high selectivitydual-band dual-mode microstrip BPF with single stepped-impedance resonator,Electronics letters,2011,47(5),326-327.
    [110] Y.-L. Zhang, W. Hong, F. Xu, et al, Analysis of guided-wave problems insubstrate integrated waveguides numerical simulations and experimental results,IEEE MTT-S Int. Microw. Symp. Dig.,2003,2049-2052.
    [111] R. J. Cameron, M. Yu, and Y. Wang, Direct-coupled microwave filters with singleand dual stopbands, IEEE Trans. Microw. Theory and Tech.,2005,53(11):3288-3279.
    [112] X.-H. Guan, Z. Ma, P. Cai, et al. Synthesis ofdual-band bandpass filters usingsuccessive frequency transformations and circuit conversions, IEEE Microw.Wireless Compon. Lett.,2006,16(3),110–112.
    [113]欧阳炜霞,张永华,王超,郭兴龙,赖宗声,基MEMS技术的微波滤波器研究进展,MEMS器件与技术,2008,45:214-218.
    [114]郭伟光,MEMS技术的现状与应用,合肥学院学报(自然科学版),2005,15:53-55.
    [115] K. Entesari, G. M. Rebeiz, A differential4-bit6.5-10GHz RF MEMS tunablefilter, IEEE Trans. Microw. Theory Tech.,2005,53(3):1103-1110.
    [116]崔学民,周济等,低温共烧陶瓷(LTCC)材料的应用和发展现状,材料导报,2005,19(4):1-4.
    [117]魏启甫,基于LTCC的多层基片集成波导滤波器的研究,上海:上海交通大学博士学位论文,2008.12.
    [118]古健,基于基片集成波导的LTCC电路研究,成都:电子科技大学博士学位论文,2010.9.
    [119]季来运,陈勤文,等. CDMA移动通信系统用高温超导滤波器的研制,低温物理学报,2005,27(4):365-370.
    [120]金建勋,郑陆海,高温超导材料与技术的发展及应用,电子科技大学学报,2006,35(4):612-627.
    [121] J.-F. Zhou, M. J. Lancaster, F. Huang, et al. HTS narrow band filters at UHF bandfor radio astronomy applications, IEEE Trans. Applied Superconductivity,2005,15(2):1004-1007.
    [122] A. M. Abu-Hudrouss, A. B. Jayyousi, M. J. Lancaster, Triple-band HTS filterusing dual spiral resonators with capacitive-loading, IEEE Trans. AppliedSuperconductivity,2008,18(3):1728-1732.
    [123]黄席椿,高顺泉,滤波器综合法设计原理,北京:人民邮电出版社,1977.
    [124]徐锐敏,王锡良,等.微波网络及其应用,北京:科学出版社,2010.
    [125] D. M. Pozar,微波工程(第三版),北京:电子工业出版社,2006.
    [126] P. Jarry, J. Beneat, Advanced design techniques and realizations of microwaveand RF filters. New York: John Wiley&Sons,2007.
    [127] A. E. Williams. A four-cavity elliptic waveguide filters. IEEE Trans. Microw.Theory Tech.,1970,18(12),1109-1114.
    [128] A. Corona-Chavez, I. Llamas-Garro, M. J. Lancaster, A high temperaturesuperconducting quasi-elliptic notch filter for radioastronomy, Microwave andOptical Technology Letters,2010,52(1):88-90.
    [129] A. E. Atia, A. E. Williamsand, R. W. Newcomb, Narrow-band multiple-coupledcavity synthesis, IEEE Trans. Circuits and Systems,1974,21(5):649-655.
    [130] S. Amari, Synthesis of cross-coupled resonator filters using an analyticalgradient-based optimization technique, IEEE Trans. Microw. Theory Tech.,2000,48(9):1559-1564.
    [131] S. Amari, U. Rosenberg, J. Bornemann, Adaptive synthesis and design ofresonator filters with source/load-multi resonator coupling, IEEE Trans. Microw.Theory Tech.,2002,50(8):1969-1978.
    [132] R. J. Cameron, General coupling matric synthesis methods for Chebyshevfiltering function, IEEE Trans. Microw. Theory and Tech.,1999,47(4):433-442.
    [133] R. J. Cameron, Advanced coupling matrix synthesis techniques for microwavefilters, IEEE Trans. Microw. Theory and Tech.,2003,51(1):1-10.
    [134] R. J. Cameron, C. M. Kudsia, P. R. Mansour, Microwave filters forcommunication systems: fundamentals, design, and applications. New York: JohnWiley&Sons,2007.
    [135] J.-S. Hong, and M. J. Lancaster, Bandpass characteristics of new dual-modemicrostrip square loop resonators, Electron. Letters,1995,31(11):891-892.
    [136] Y.-X. Wang, B.-Z. Wang, and J. Wang, A compact square loop dual-modebandpass filter with wide stop-band, Progress In Electromagnetics Research,2007,77:67-73.
    [137] J. Bonache, F. Martin, F. Falcone, et al, Application of complementary split-ringresonators to the design of compact narrow band-pass structures in microstriptechnology, Microwave and Optical Technology Letters,2005,46(5):508–512.
    [138] J.-S. Hong, H. Shaman, Y.-H. Chun, Dual-mode microstrip open-loop resonatorsand filters, IEEE Trans. Microw. Theory and Tech.,2007,55(8):1764-1770.
    [139] X.-C. Zhang, Z.-Y. Yu, J. Xu, Design of microstrip dual-mode filters based onsource-load coupling, IEEE Microw. Wireless Compon. Lett.,2008,18(10):677-679.
    [140] M.-Q. Zhou, X.-H. Tang, F. Xiao, Compact transversal bandpass filterincorporating microstrip dual-mode open-loop resonator and slot line resonatorwith source-load coupling, Microwave and Optical Technology Letters,2009,51(12):2927-2929.
    [141] L. Li, Z.-F. Li, Application of inductive source-load coupling in microstripdual-mode filter design, Electronics letters,2010,46(2),141-142.
    [142] U. Rosenberg, and S. Amari, Novel coupling schemes for microwave resonatorfilters, IEEE Trans. Microw. Theory and Tech.,2002,50(12):2896-2902.
    [143] C.-L. Wei, B.-F. Jia, Z.-J. Zhu, Design of different selectivity dual-mode filterswith E-shaped resonator, Progress in Electromagnetics Research,2011,116:517-532.
    [144] X.-Y. Zhang, Q. Xue, Novel dual-mode dual-band filters usingcoplanar-waveguide-fed ring resonators, IEEE Trans. Microw. Theory and Tech.,2007,55(10):2183-2190.
    [145] J. Wang, L. Ge, K. Wang, et al. Compact microstrip dual-mode dual-bandbandpass filter with wide stopband, Electronics letters,2011,47(4),263-264.
    [146] H.-W. Deng, B. Liu, Y.-J. Zhao, et al. Compact and high selectivity triple-banddual-mode microstrip BPF with two short-circuited stub-loaded SIRs, Microwaveand Optical Technology Letters,2012,54(3):719-721.
    [147] C.-L. Yang, M.-C. Chiang, H.-C. Chiu, et al. Design and analysis of a tri-banddual-mode chip filter for60-,77-, and100-GHz applications, IEEE Trans.Microw. Theory and Tech.,2012,60(4):989-997.
    [148] Y.-T. Kuo, C.-Y. Chang, Analytical design of two-mode dual-band filters usingE-shaped resonators, IEEE Trans. Microw. Theory and Tech.,2012,60(2):250-260.
    [149] H.-W. Liu, L. Shen, Z.-C. Zhang, et al. Dual-mode dual-band bandpass filterusing defected ground waveguide, Electronics letters,2010,46(13),895-897.
    [150] B. Wu, C.-H. Liang, Q. Li, et al. Novel dual-band filter incorporating defectedSIR and microstrip SIR, IEEE Microw. Wireless Compon. Lett.,2008,18(6):392-394.
    [151] J. W. Bandler, R. M. Biernacki, S. H. Chen, et al. Yield-driven electromagneticoptimization via multilevel multi-dimensional models, IEEE Trans. Microw.Theory and Tech.,1993,41(12):2269–2278.
    [152] J. W. Bandler, R. M. Biernacki, S. H. Chen, et al, Space mapping technique forelectromagnetic optimization. IEEE Trans. Microw. Theory and Tech.,1994,42(12):2536–2544.
    [153] J. W. Bandler, R. M. Biernacki, S. H. Chen, et al. Electromagnetic optimizationexploiting aggressive space mapping. IEEE Trans. Microw. Theory and Tech.,1995,43(12):2874-2882.
    [154] J. W. Bandler, R. M. Biernacki, S. H. Chen, Fully automated space mappingoptimization of3D structures, IEEE MTT-S Int. Microw. Symp. Dig.,1996,753-756.
    [155] M. H. Bakr, J. W. Bandler, and N. Georgieva, An aggressive approach toparameter extraction, IEEE Trans. Microw. Theory and Tech.,1999,47(12):2428-2439.
    [156] J. W. Bandler, R. M. Biernacki, S. H. Chen, et al. Design optimization ofinterdigital filters using aggressive space mapping and decomposition, IEEETrans. Microw. Theory and Tech.,1997,45(5):761-769.
    [157] J. W. Bandler, R. M. Biernacki, S. H. Chen, et al. Space mapping optimization ofwaveguide filters using finite element and mode-matching electromagneticsimulators, IEEE MTT-S Int. Microw. Symp. Dig.,1997,635-638.
    [158] J. W. Bandler, Q.-S. Cheng, N. K. Nikolova, et al, Implicit space mappingoptimization exploiting preassigned parameters, IEEE Trans. Microw. Theory andTech.,2004,52(1):378-385.
    [159] M. Jie, S. Koziel, J. W. Bandler, et al. Tuning space mapping: A novel techniquefor engineering design optimization, IEEE MTT-S Int. Microw. Symp. Dig.,2008,991-994.
    [160] J. W. Bandler, Q.-S. Cheng, Space mapping: the state of the art, IEEE Trans.Microw. Theory and Tech.,2004,52(1):337-361.
    [161] L. Zhang, J. J. Xu, M. C. E. Yagoub, et al. Neurospace mapping technique fornonlinear device modeling and large signal simulation, IEEE MTT-S Int. Microw.Symp. Dig.,2003,173-176.
    [162] H.-S. Choi, D. H. Kim, I. H. Park, et al. A new design technique of magneticsystems using space mapping algorithm, IEEE Trans. Magn,2001,37:3627-3630.
    [163] V. Devabhaktuni, B. Chattaraj, M. C. E. Yagoub, et al. Advanced microwavemodeling framework exploiting automatic model generation, neural networks andspace mapping, IEEE MTT-S Int. Microw. Symp. Dig.,2002,1097-1100.
    [164] S. Koziel, Q.-S. Cheng, J. W. Bandler, Comparative study of space-mapping-based techniques for microwave design optimization, IET Microw., Antennas&Propag.,2012,6(3):361-370.
    [165] Q.-S. Cheng, J. W. Bandler, S. Koziel, Space mapping design frameworkexploiting tuning elements, IEEE Trans. Microw. Theory and Tech.,2010,58(1):136-144.
    [166] S. Koziel, Q.-S. Cheng, J. W. Bandler, Rapid design optimisation of microwavestructures through automated tuning space mapping, IET Microw., Antennas&Propag.,2010,4(11):1892-1902.
    [167] S. Koziel, J. W. Bandler, Q.-S. Cheng, Tuning space mapping design frameworkexploiting reduced electromagnetic models, IET Microw., Antennas&Propag.,2011,5(10):1219-1226.
    [168] Q.-S. Cheng, J. C. Rautio, J. W. Bandler, et al. Progress in simulator-based tuningthe art of tuning space mapping, IEEE Microwave magazine,2010,11(4):96-110.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700