用户名: 密码: 验证码:
基于贝叶斯网络的突发事件应急决策信息分析方法研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
由于突发事件具有事发突然、事态复杂、高度不确定性、涉及范围广等特点,使其应急决策过程存在决策时间短、应急预案少、决策复杂度高等问题。明显地,传统的基于预案的应急决策方法无法很好地满足重大突发事件应急决策的需求。因此,如何基于突发事件发展过程中所获取的信息,对其进行充分有效的分析,用以研究和发现突发事件的演化趋势和规律,为应急方案的快速准确的建立提供技术支持,是当前突发事件应急决策管理领域面临的关键问题。
     在信息化理论和技术飞速发展的新时期,将人工智能理论和相关技术与突发事件应急决策支持方法相融合,在对事件数据进行处理和分析的基础之上,预测突发事件的演化趋势,评估突发事件的演化状态,是为突发事件应急决策提供有效支持的重要方法之一。贝叶斯网络作为人工智能研究领域的一个重要分支,结合了图论和统计学方面的知识,能够以一种自然的方法表示因果信息,具有丰富的概率表达能力、不确定性问题处理能力、多源信息表达与融合能力。因此,将贝叶斯网络与突发事件应急决策相融合,研究基于贝叶斯网络的突发事件应急决策信息分析方法具有十分重要的理论意义和现实意义。
     本文对国内外相关研究成果进行了梳理和总结,在此基础之上,以突发事件应急管理理论、系统动力学理论、贝叶斯网络理论、案例推理理论等作为理论基础,以相关技术为支持,综合运用定性分析和定量分析等研究方法,对基于贝叶斯网络的突发事件应急决策信息分析方法进行了深入的研究。
     首先,以突发事件演化系统结构作为对象,研究了面向突发事件应急决策支持的贝叶斯网络结构学习方法。针对突发事件应急决策所面临的先验知识和数据信息的不完备性、事件发展的不确定性以及数据量大等问题,通过研究分析已有的贝叶斯网络结构建模方法,融合K2和MCMC贝叶斯网络结构学习方法的优势,基于模型平均的思想,提出了基于模型平均的贝叶斯网络结构学习改进方法,以及可以有效提高贝叶斯网络计算效率的拓扑结构并联优化方法。
     其次,基于系统动力学理论以及贝叶斯网络理论和方法,研究了基于贝叶斯网络的突发事件灾情评估方法。基于系统动力学对突发事件演化的关键参数进行了分析,得到了不同子系统关键参数之间的因果反馈关系,进而,针对贝叶斯网络参数会随建模环境不断变化的问题,考虑到突发事件应急决策所需的实时更新能力,基于最大似然估计、最大后验概率和最大期望算法,提出了贝叶斯网络参数学习的改进方法——实时增量式最大期望参数学习方法,并且通过输电网络灾情评估仿真案例对其进行了验证。
     再次,针对突发事件应急决策的复杂性和时间敏感性,提出了基于贝叶斯网络的应急决策支持案例适配方法。将历史贝叶斯网络模型作为案例存储于案例库中,通过案例检索和匹配、案例修正等方法构建新的贝叶斯网络模型,以达到复用贝叶斯网络历史模型的目的。该方法没有庞大的搜索空间,也不需要样本数据,只需要提前收集历史案例模型,与传统贝叶斯网络建模方法相比具有更高的建模效率,可以作为突发事件应急决策支持贝叶斯网络建模方法的一个重要辅助方法。
     最后,对贝叶斯网络模型在洪涝灾害应急决策信息分析中的应用进行了研究。基于本文提出的面向突发事件应急决策信息分析的贝叶斯网络方法,对洪涝灾害进行了分析,从洪涝灾害演化和洪涝灾害应急决策支持两个方面进行了分析和研究,建立了相应的贝叶斯网络模型,从而为洪涝灾害应急决策提供参考依据。进而,验证了本文提出的基于贝叶斯网络的突发事件应急决策信息分析方法的有效性。
Emergent events are bursty, complex, extremly uncertain, and widely involved,which makes it a highly complicated problem and needs the decision makingprocess to be done within a short time with fewer pre-arranged plannings.Obviously, the traditional decision-making methods with pre-arranged plannings cannot well meet the needs of the emergency management.Therefore, how to fast andeffectively analyse the data and evolution laws of emergent events in order tosupport the decision making with referential information has become a key issue inthe field of emergent events decision-making and management.
     Under the circumstance of the industrial informationization, emergent eventsdecision-making support methods with artificial intelligence technology can forecastand assess the emergency tendency based on effectively analysis of emergent eventsdata, which shows a new way to support emergent events decision making. As animportant branch of artificial intelligence research, Bayesian networks is combinedwith the knowledge of graph theory and statistics, and can manage uncertaintyproblems, express and fuse multi-source information. Therefore, applying Bayesiannetworks into emergent events decision making, researching the emergent eventsdecision-making information analysis method based on Bayesian networks hasnotable theoretical and practical significance.
     The domestic and foreign research achievements are analyzed and summarized.Then, based on emergency management theory, system dynamics theory, Bayesiannetwork theory, case reasoning theory and accordingly techniques, the emergentevents decision-making information analysis method based on Bayesian networks isdeeply researched by qualitative and quantitative analysis.
     First, taking the system structure of emergent events evolution as the researchobject, the Bayesian network topology learning method for supporting emergentdecision making of emergent events is studied. In order to adapt to incompleteinformation, uncertain development and massive data, based on model average, animproved Bayesian network topology learning method which combined bothadvantages of K2and MCMC is proposed. A Bayesian Network topologyoptimization method is also proposed to improve the system efficiency.
     Second, based on system dynamics and Bayesian network theories, theemergency assessment method based on Bayesian network is studied. By analyzingthe key parameters of emergent events evolution, the causal feedbacks of keyparameters within different subsystems are obtained. And then, based on maximumlikelihood estimate, maximum a posteriori estimation and expectation maximization algorithm, an improved Bayesian network parameter learning method is proposed inorder to adapt to the changing modeling circumstance and the need of real-timeupdate ability. An example application to a power network disaster assessment ispresented to illustrate and test the proposed method.
     Third, in order to adapt to the complexity and time sensitive of the emergentevents decision making, a case adaptation method based on Bayesian network foremergent events decision making is proposed. The historical Bayesian networkmodels are stored in a case database, a new Bayesian network model can beobtained by case retrieve and case revision, which can enhance the reuse ofhistorical models. The proposed method do not have a huge search space or needsample data. Compared with the traditional Bayesian network modeling method, thismethod is more effcient and can be an important assistant to the Bayesian networkmodeling method for emergent events decision-making support model.
     Finally, an application of Bayesian network for emergency decision making inthe flood disaster is illustrated. With the analysis of the flood evolution andemergency decision making for flood, the Bayesian network models are built basedon the proposed Bayesian network method for emergent events decision makinginformation analysis, which shows the ability to support the flood disasteremergency decision making with referential information. Therefore, the proposedemergent events decision making information analysis method based on Bayesiannetwork is verified.
引文
[1]王天营.感受汶川地震中的统计数据[J].中国统计,2008,7:42-43.
    [2] M. F. Sherlock. Charitable contributions for Haiti's earthquakes victims.Report for Congress,2010.
    [3] D. K. Nanto, W. H. Cooper, J. M. Donnelly. Japan's2011earthquake andtsunami: economic effects and implications for the United States. Report forCongress,2011.
    [4]郑远攀,金保华,苏晓珂.面向省级应急平台的突发事件案例库系统设计[J].安全与环境学报,2012,12(3):248-251.
    [5] K. Khalil, M. Abdel-Aziz,T. Nazmy,A. Salem. The role of artificialintelligence technologies in crisis response[C].14th International Conferenceon Soft Computing, Czech Republic,2008:293-298.
    [6] W. Mitchell.911: Criticism and crisis[J]. Critical Inquiry,2002,28(2):567-572.
    [7]毛静馥,苏华.从应对SARS看公共卫生决策的影响因素.中国公共卫生管理,2004,20(2):102-104.
    [8] R. Tsay, T. Ando. Bayesian panel data analysis for exploring the impact ofsubprime financial crisis on the US stock market[J]. Computational Statistics&Data Analysis,2012,56(11):3345-3365.
    [9] A. Cirella, A. Piatanesi, E. Tinti, M. Chini, M. Cocco. Complexity of therupture process during the2009L'Aquila, Italy, earthquake[J]. GeophysicalJournal International,2012,190(1):607-621.
    [10]滕吉文,白登海,杨辉,闫雅芬,张洪双,张永谦,阮小敏.2008汶川M_s8.0地震发生的深层过程和动力学响应[J].地球物理学报,2008,51(5):1385-1402.
    [11] T. Woo, S. Lee. A dynamical study for earthquakes of seismic safetyassessment in nuclear power plants (NPPs) using the system dynamics (SD)method[J]. Energy Sources Part A-Recovery Utilization and EnvironmentalEffects,2012,34(10):948-958.
    [12] A. Moustafa, S. Mahadevan. Reliability analysis of uncertain structures usingearthquake response spectra[J]. Earthquakes and Structures,2011,2(3):279-295.
    [13] M. Horritt. A methodology for the validation of uncertain flood inundationmodels[J]. Journal of Hydrology,2006,326(1-4):153-165.
    [14]潘佳佳,曹志先,王协康,曹叔尤.暴雨山洪水动力学模型及其简化模型的比较研究[J].四川大学学报,2012,44(1):77-82.
    [15]魏一鸣.洪水灾害研究的复杂性理论[J].自然杂志,1999,21(3):139-142.
    [16]郭翔,佘廉.主体、基础及动力结构——突发事件的信息生成机理研究[J].情报杂志,2010,29(6):1-5.
    [17] M. Di Mauro, K. de Bruijn. Application and validation of mortality functionsto assess the consequences of flooding to people[J]. Journal of Flood RiskManagement,2012,5(2):92-110.
    [18] E. Krausmann, E. Renni, M. Campedel, V. Cozzani. Industrial accidentstriggered by earthquakes, floods and lightning: lessons learned from a databaseanalysis[J]. Natural Hazards,59(1):285-300.
    [19] B. Shi. Probabilistic risk and control analysis of self-circulation disaster crisisevolution chain[J]. Disaster Advances,2012,5(4):593-596.
    [20]季学伟,翁文国,赵前胜.突发事件链的定量风险分析方法[J].清华大学学报(自然科学版),2009,49(11):1749-1752.
    [21]李藐,陈建国,陈涛,袁宏永.突发事件的事件链概率模型[J].清华大学学报(自然科学版),2010,50(8):1173-1177.
    [22] X. Yang, Z. Wu, Y. Li. Difference between real-life escape panic and mimicexercises in simulated situation with implications to the statistical physicsmodels of emergency evacuation: the2008Wenchuan earthquake[J]. Physica A:Statistical Mechanics and Its Applications,2011,390(12):2375-2380.
    [23] A. Serra-Llobet, J. Tabara, D. Sauri. The Tous dam disaster of1982and theorigins of integrated flood risk management in Spain[J]. Natural Hazards,2013,65(3):1981-1998.
    [24] K. Nagatani, S. Kiribayashi, Y. Okada, et al. Emergency response to thenuclear accident at the Fukushima Daiichi Nuclear Power Plants using mobilerescue robots[J]. Journal of Field Robotics,2013,30(1):44-63.
    [25] L. Guo, Y. Li, G. Huang, et al. Development of an interval-based evacuationmanagement model in response to nuclear-power plant accident[J]. Journal ofEnvironmental Informatics,2012,20(2):58-66.
    [26] I. Kouadio, S. Aljunid. Enhancing the response outcome of infectious diseasetreatment following natural disasters[J]. Expert Review of Anti-infectiveTherapy,2012,10(5):531-532.
    [27] S. Stebbins, C. Vukotich. Preserving lessons learned in disease outbreaks andother emergency responses[J]. Journal of Public Health,2010,32(4):467-471.
    [28] F. Maestas, J. Smith, L. Young. Integrated anti-terrorism physics-basedmodeling part3: agent-based simulation of human movements duringemergency evacuations of facilities[J]. Safety and Security Engineering,2007,94:529-538.
    [29] M. Canel. Communicating strategically in the face of terrorism: The Spanishgovernment's response to the2004Madrid bombing attacks[J]. PublicRelations Review,2012,38(2):214-222.
    [30] M. Brundl, H. Romang, N. Bischof, C. Rheinberger. The risk concept and itsapplication in natural hazard risk management in Switzerland[J]. NaturalHazards and Earth System Sciences,2009,9(3):801-813.
    [31]范维澄,刘奕.城市公共安全体系架构分析[J].城市管理与科技,2009,5:38-41.
    [32]亓菁晶,陈安.突发事件与应急管理的机理体系[J].中国科学院院刊,2009,24(5):496-503.
    [33]李湖生.应急管理阶段理论新模型研究[J].中国安全生产科学技术,2010,6(5):18-22.
    [34] C. Tseng, C. Chen. Natural disaster management mechanisms for probabilisticearthquake loss[J]. Natural Hazards,2012,60(3):1055-1063.
    [35]胡颖廉.中国应急管理组织体系比较研究——以突发公共卫生事件为例[J].北京科技大学学报(社会科学版),2012,28(2):137-142.
    [36] A. Nicholson, M. Wilkinson, G. O'Donnell, P. Quinn. Runoff attenuationfeatures: a sustainable flood mitigation strategy in the Belford catchment,UK[J]. AREA,2012,44(4):463-469.
    [37]翁白莎,严登华.变化环境下我国干旱灾害的综合应对[J].中国水利,2010,7:4-7.
    [38] M. Najafi, K. Eshghi, W. Dullaert. A multi-objective robust optimizationmodel for logistics planning in the earthquake response phase[J].Transportation Research Part E: Logistics and Transportation Review,2013,49(1):217-249.
    [39] M. Ye, J. Wang, J. Huang, S. Xu, Z. Chen. Methodology and its application forcommunity-scale evacuation planning against earthquake disaster[J]. NaturalHazards,2012,61(3):881-892.
    [40]霍风霖,兰华林.黄河下游滩区洪水风险分析及减灾措施研究[J].水利科技与经济,2009,15(2):135-137.
    [41]周荣义,龚日朝.我国城市灾害风险应对现状及对策研究[J].中国安全科学学报,2009,19(11):139-145.
    [42] W. Hsu, W. Chiang, C. Chen. Earthquake risk assessment and optimal riskmanagement strategies for Hi-Tech Fabs in Taiwan[J]. Natural Hazards,2013,65(3):2063-2076.
    [43] S. Brink, R. Davidson, T. Tabucchi. Strategies to reduce durations ofpost-earthquake water service interruptions in Los Angeles[J]. Structure andInfrastructure Engineering,2012,8(2):199-210.
    [44]李伟超,张宏亮,姚刚.城市洪水灾害及人员撤离模型建立与仿真[J].计算机仿真,2012,29(8):405-408.
    [45]夏林丽,雷宏.多项目多任务选择计划模型及其智能决策[J].计算机应用,2012,32(5):1316-1319.
    [46]黄牧涛,田勇.组合智能决策支持系统研究及其应用[J].系统工程理论与实践,2007,4:114-119.
    [47] A. Rasekh, A. Vafaeinezhad. Developing a GIS based decision support systemfor resource allocation in earthquake search and rescue operation[J].Computational Science and Its Applications,2012,7334:275-285.
    [48] J. Wang, L. Feng, X. Zhai. A system dynamics model of flooding emergencycapability of coal mine[J]. Przeglad Elektro Techniczny,2012,88(9B):209-211.
    [49] R. Diaz, J. Behr, M. Tulpule. A system dynamics model for simulatingambulatory health care demands[J]. Simulation in Healthcare,2012,7(4):243-250.
    [50] A. Yazdani, M. Hadianfard, E. Salahinejad. A system dynamics model toestimate energy, temperature, and particle size in planetary ball milling[J].Journal of Alloys and Compounds,2013,555:108-111.
    [51] Y. Goh, P. Love. Methodological application of system dynamics forevaluating traffic safety policy[J]. Safety Science,2012,50(7):1594-1605.
    [52] S. Dai, L. Li, H. Xu, et al. A system dynamics approach for water resourcespolicy analysis in arid land: a model for Manas River Basin[J]. Journal of AridLand,2013,5(1):118-131.
    [53] G. Patroklos, V. Dimitrios, I. Eleftherios. A system dynamics modelingframework for the strategic supply chain management of food chains[J].Journal of Food Engineering,2005,70(3):351-364.
    [54]岳奎志,史建国.基于系统动力学的国家撤侨方案预测模型[J].物流工程与管理,2012,29(11):355-359.
    [55]成琼文,王皓,宋娟.氧化铝行业风险评估预测的系统动力学模型[J].中南大学学报,2013,19(1):18-23.
    [56]庄伟卿,刘震宇.信息能源危机与经济增长关联性分析——基于系统动力学方法[J].科学学与科学技术管理,2013,34(2):86-94.
    [57]何春阳,史培军,陈晋等人.基于系统动力学模型和元胞自动机模型的土地利用情景模型研究[J].中国科学(D辑:地球科学),2005,35(5):464-473.
    [58]张扬,李子富,宋英豪等.系统动力学在污水处理中的应用研究[J].环境工程,2012,30(5):5-8.
    [59] M. Boujelben, Y. De Smet, A. Frikha, H. Chabchoub. A ranking model inuncertain, imprecise and multi-experts contexts: The application of evidencetheory[J]. International Journal of Approximate Reasoning,2011,52(8):1171-1194.
    [60] Y. Peng, S. Zhang, R. Pan. Bayesian network reasoning with uncertainevidences[J]. International Journal of Uncertainty Fuzziness andKnowledge-based Systems,2010,18(5):539-564.
    [61] E. Xu, L. Fan, S. Li, et al. Research on preprocess approach for uncertainsystem based on rough set[C].1st International Conference on SwarmIntelligence, China,2010,6146:656-663.
    [62] F. Jensen, T. Nielsen. Bayesian networks and decision graphs [M]. SecondEdition. New York: Springer Science Business Media,2007:10-11.
    [63] J. Stolk. Complex systems simulation for risk assessment in flood incidentmanagement[C].18th Biennial Conference on Modeling and Simulation,Australia,2009:4339-4345.
    [64] M. Hanninen, P. Kujala. Influences of variables on ship collision probabilityin a Bayesian belief network model [J]. Reliability Engineering&SystemSafety.2012,102:27-40.
    [65] G. Cooper. Probabilistic inference using belief networks is NP-hard[R].Technical Report KSL-87-27, Stanford Knowledge Systems Laboratory,1987.
    [66] P. Dagum, M. Luby. Approximating probabilistic inference in Bayesian beliefnetwork is NP-hard[J]. Artificial Intelligence,1993,60(1):141-153.
    [67] M. Zaveri, D. Hammerstrom. DCMOL/CMOS Implementations of Bayesianpolytree inference: digital and mixed-signal architectures andperformance/price[J]. IEEE Transactions on Nanotechnology,2010,9(2):194-211.
    [68] H. Kozumi, G. Kobayashi. Gibbs sampling methods for Bayesian quantileregression[J]. Journal of Statistical Computation and Simulation,2011,81(11):1565-1578.
    [69] H. Park, S. Cho. A modular design of Bayesian networks using expertknowledge: Context-aware home service robot[J]. Expert Systems withApplications,2012,39(3):2629-2642.
    [70] K. Etminani, M. Naghibzadeh, A. Razavi. Globally optimal structure learningof Bayesian networks from data[C].20th International Conference on ArtificialNeural Networks, Greece,2010,6352:101-106.
    [71]王越,谭暑秋,刘亚辉.基于互信息的贝叶斯网络结构学习算法[J].计算机工程,2011,37(7):62-64.
    [72] D. Heckerman. Bayesian networks for data mining[J]. Data mining andknowledge discovery,1997,1(1):79-119.
    [73]师会超,梁永政.基于知识库的贝叶斯诊断网络模型构建与实现[J].煤炭技术,2010,29(9):28-30.
    [74] M. Wellman, J. Breese, R. Goldman. From knowledge bases to decisionmodels[J]. The Knowledge Engineering Review,1992,7(1):35-53.
    [75]李艳美,张卓奎.基于贝叶斯网络的数据挖掘方法[J].计算机仿真,2008,25(2):87-89.
    [76] R. Chen, C. Chang. Using Bayesian networks to build data miningapplications for a semiconductor cleaning process[J]. International Journal ofMaterials&Product Technology,2007,30(4):386-407.
    [77] A. Ouali, A. Cherif, M. Krebs. Data mining based Bayesian networks for bestclassification[J]. Computational Statistics&Data Analysis,2006,51(2):1278-1292.
    [78]王化琨,王珍珍,周影,马维军.利用贝叶斯网络分析基因表达数据[J].数学的实践与认识,2010,40(8):70-73.
    [79] J. Reeve, D. DeFreitas, J. Sellares. A Bayesian network for predictingdiagnoses and risk of failure in kidney transplant biopsies suggests inaccuracyin the Banff system[J]. AMERICAN JOURNAL OF TRANSPLANTATION,2011,11(2):271-271.
    [80]孙岩,唐一源.基于贝叶斯网络的轻度认知障碍诊断系统[J].电子科技大学学报,2012,41(3):336-341.
    [81]郭文强,张玉杰,侯勇严.基于贝叶斯网络模型构造的汽车故障诊断研究[J].计算机仿真,2011,28(11):315-318.
    [82] Q. Queen, C. Albers. Intervention and Causality: Forecasting Traffic FlowsUsing a Dynamic Bayesian Network[J]. Journal of the American StatisticalAssociation,104(486):669-681.
    [83]陆静,王捷.基于贝叶斯网络的商业银行全面风险预警系统[J].系统工程理论与实践,2012,32(2):225-235.
    [84] J. Molina, D. Pulido-Velazquez, J. Garcia-Arostegui, M. Pulido-Velazquez.Dynamic Bayesian networks as a decision support tool for assessing climatechange impacts on highly stressed groundwater systems[J]. Journal ofHydrology,2013,479:113-129.
    [85] M. Uhart, L. Bourguignon, P. Maire, M. Ducher. Bayesian networks asdecision-making tools to help pharmacists evaluate and optimise hospital drugsupply chain[J]. European Journal of Hospital Pharmacy-science and Practice,2012,19(6):519-524.
    [86] N. Glendining, C. Pollino. Development of Bayesian network decision supporttools to support river rehabilitation works in the lower snowy river[J]. Humanand Ecological Risk Assessment,2012,18(1):92-114.
    [87] L. Wang, M. Wang. Modeling of combined Bayesian networks and cognitiveframework for decision-making in C2[J]. Journal of Systems Engineering andElectronics,2010,21(5):812-820.
    [88]张立茂,陈虹宇,吴贤国.基于贝叶斯网络的复杂工程安全管理决策支持方法研究[J].中国安全科学学报,2011,21(6):141-146.
    [89] T. Bensi, D. Kiureghian, D. Straub. Bayesian Network Methodology forInfrastructure Seismic Risk Assessment and Decision Support[R]. NationalScience Foundation, PEER2011/02,2011.
    [90] M. Peng, L. Zhang. Analysis of human risks due to dam-break floods-part1: anew model based on Bayesian networks[J]. Natural Hazards,2012,64(1):903-933.
    [91]马祖军,谢自莉.基于贝叶斯网络的城市地震次生灾害演化机理分析[J].灾害学,2012,27(4):1-5.
    [92]何小聪,康玲,程晓君,丁毅.基于贝叶斯网络的南水北调中线工程暴雨洪水风险分析[J].南水北调与水利科技,2012,10(4):10-13.
    [93] D. Janjanam, S. Palivela, D. Nandyala. Building Bayesian networks forproblems of risk attributable to natural hazards[J]. Natural Hazards Review,2012,13(4):247-259.
    [94] D. Hanea, B Ale. Risk of human fatality in building fires: a decision tool usingBayesian networks[J]. Fire Safety Journal,2009,44(5):704-710.
    [95] M. Martins, M. Maturana. Application of Bayesian Belief networks to thehuman reliability analysis of an oil tanker operation focusing on collisionaccidents[J]. Reliability Engineering&System Safety,2013,110:89-109.
    [96]孙鹏程,陈吉宁.基于贝叶斯网络的河流突发性水质污染事故风险评估[J].环境科学,2009,30(1):47-51.
    [97]陈静,付敬奇.贝叶斯网络在火灾报警系统中的应用[J].仪表技术,2011,10:47-51.
    [98]谢洪涛,丁祖德.基于贝叶斯网络的隧道施工坍塌事故诊断方法[J].昆明理工大学学报,2013,38(1):38-44.
    [99] S. Chattopadhyay, S. Banerjee, F. Rabhi, U. Acharya. A case-based reasoningsystem for complex medical diagnosis[J]. Expert Systems,2013,30(1):12-20.
    [100]朱传敏,周润青,陈明,李营垒.故障树与案例推理在数控机床故障诊断专家系统中的应用研究[J].制造业自动化,2011,33(5):21-24.
    [101]王华,刘焕敏,段慧芬.基于案例推理方法在惯性导航故障诊断专家系统的应用[J].中国惯性技术学报,2009,17(5):614-617.
    [102] C. Chuang. Case-based reasoning support for liver disease diagnosis[J].Artificial Intelligence in Medicine,2011,53(1):15-23.
    [103] J. Cai, Y. Jia, C. Gu, W. Wu. Research of wartime equipment maintenanceintelligent decision-making based on case-based reasoning[C]. InternationalConference on Advanced in Control Engineering and Information Science(CEIS), China,2011,15.
    [104] T. Kuo. Combination of case-based reasoning and analytical hierarchyprocess for providing intelligent decision support for product recyclingstrategies[J]. Expert Systems with Applications,2010,37(8):5558-5563.
    [105]汪季玉,王金桃.基于案例推理的应急决策支持系统研究[J].管理科学,2003,16(6):46-50.
    [106]陈祥,洪福金,张贤坤.基于案例推理的网络舆情辅助决策系统研究[J].计算机与现代化,2012,6:13-16.
    [107] N. Lee, J. Bae, C. Koo. A case-based reasoning based multi-agentcognitive map inference mechanism: An application to sales opportunityassessment[J]. Information Systems Frontiers,2012,14(3):653-668.
    [108]王冰,周庆忠,刘岩,樊荣.油料保障预测系统中案例推理方法[J].计算机系统应用,2012,21(4):73-76.
    [109]王晓,庄亚明.基于案例推理的非常规突发事件资源需求预测[J].西安电子科技大学学报,2010,20(4):22-26.
    [110] P. Dagum,M. Luby. Approximating probabilistic inference in Bayesianbelief networks is NPhard [J]. Artificial Intelligence,1993,60:141-153.
    [111] A. Abdelbar, S. Hedetniemi. Approximating MAPs for belief Networks isNP-hard and other theorems [J]. Artificial Intelligence,1998,102:21-38.
    [112] G. Cooper, E. Herskovits. A Bayesian method for the induction ofprobabilistic networks from data[J]. Machine Learning,1992,9:309-348.
    [113] D. Heckerman, D. Geiger, D. Chickering. Learning Bayesian networks:the combination of knowledge and statistical data[J]. Machine Learning,1995,20:197-243.
    [114] W. Lam, F. Bacchus. Learning Bayesian belief networks: an approachbased on the MDL principle[J]. Computational Intelligence,1994,10:269-293.
    [115] J. Pearl, T. Verma. A theory of inferred causation[C]. Principles ofKnowledge Representation and Reasoning, USA,1991:441-452.
    [116] P. Giudici, R. Castelo. Improving Markov Chain Monte Carlo modelsearch for data mining[J]. Machine Learning,2003,50:127–158.
    [117] D. Madigan, S. Andersson, M. Perlman, C. Volinsky. Bayesian modelaveraging and model selection for Markov equivalence classes of acyclicdigraphs[J]. Communications in Statistics: Theory and Methods,1996.25(11):2493–2512.
    [118] Bertero B. Earthquake engineering-from engineering seismology toperformance-based engineering[J]. Earthquake Spectra,2005,21(2):609-611.
    [119] J. Berese. Construction of belief and decision networks[J]. ComputationalIntelligence,1992,8(4):624-647.
    [120] P. Haddawy. Generating Bayesian networks from probability logicknowledge bases[C]. Proceedings of the Tenth Conference on Uncertainty inArtificial Intelligence,1994:262-269.
    [121] N. Zhang, D. Poole. A simple approach to Bayesian networkcomputations[C]. Proceedings of the Tenth Biennial Canadian ArtificialIntelligence Conference, Banff,1994:171-178.
    [122] W. Luo, Q. Liu, B. Zhao. A comparative study of discretization methodsfor Bayesian network in software estimation[C]. Proceeding of the10thInternational Conference on Intelligent Technologies, China,2009:542-547.
    [123]魏一鸣,金菊良,杨存建等.洪水灾害风险管理理论[M].北京:科学出版社,2002.
    [124]苑希民,李鸿雁,刘树坤等.神经网络和遗传算法在水科学领域的应用.北京:中国水利水电出版社,2002.
    [125]水利部长江水利委员会水文局.1998年长江洪水及水文检测预报[M].北京:中国水利水电出版社,2000.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700