用户名: 密码: 验证码:
机载相控阵雷达STAP算法研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
空时自适应处理(STAP)是新一代机载相控阵雷达杂波抑制与目标检测的关键技术。在推进STAP工程化进程中,运算量巨大是其面临的首要问题,除了传统的降维处理外,开发具有并行运算结构能在硬件系统中以高度并行流水方式实现的权矢量递推求解算法,是解决该问题的另一条有效途径。有鉴于此,本文第三~五章对此进行了详细的研究,所得递推算法可用于全空时处理和固定结构降维处理的权矢量快速求解。
     此外,实际杂波环境的非均匀特性是其面临的另一问题,这将导致杂波协方差矩阵难以准确估计。为此,第六章研究了方向矢量失配情况下的稳健的干扰目标非均匀检测方法,第七章探讨了前向阵近程杂波多普勒频移补偿的新方法。本论文的主要贡献和创新之处包括:
     1)研究了杂波协方差矩阵估计后的权矢量递推求解问题。根据协方差矩阵为正定Hermitian矩阵和顺序主子式均非零的性质,首先提出了基于Hermitian矩阵求逆引理的权矢量递推求解算法,并解决了迭代计算中的数值稳健性问题;推导了顺序主子式均非零矩阵的递推求逆算法,给出了基于该算法的权矢量递推求解过程。这两种权矢量递推算法中的主要计算为矩阵矢量积、矢量内积、矢量外积,均可并行实现,迭代计算所需次数等于协方差矩阵的维数。
     2)通过重新构建协方差矩阵的递推形式,提出了基于协方差矩阵逆更新的对角加载采样矩阵求逆(LSMI)递推算法,该算法无需采样协方差矩阵的估计且迭代计算总次数为训练样本数,主要计算为矩阵矢量积、矢量内积、矢量外积,算法的迭代步骤经优化后有效降低了计算复杂度。
     3)研究了利用QR和逆QR分解实现LSMI算法的问题。递推算法中的对角加载通过设置QR或逆QR递推分解的初始矩阵即可实现,无需增加额外的计算。
     4)推导了一种仅利用多级维纳滤波器(MWF)前向分解结构实现的采样矩阵求逆(SMI)递推算法,消除了传统方法中后向合成滤波过程,减少了时延。并详细分析了MWF结构中实现对角加载的各种方法。
     5)分析了非均匀杂波环境中干扰目标方向矢量与期望导向矢量失配时,传统自适应功率剩余(APR)非均匀检测法性能下降甚至失效的原理。提出了利用强对角加载先剔除强干扰目标,再利用传统APR反复检测法检出剩余的干扰目标的改进方案,改进后的方法对方向矢量失配有着很强的稳健性。此外研究了有限训练样本集中干扰目标非均匀检测的方法。
     6)对于机载前向阵的近程杂波频移补偿,根据向量(矩阵)相似度准则,提出了一种从杂波数据本身中估计频移补偿量的频移算法。该算法降低了雷达参数误差对补偿估值的影响,并且能在脉冲域和多普勒域中实现,具有计算量低能并行实现的优点。
     7)第八章介绍了一种以ADSP_TS101芯片为核心设计的振幅和差式单脉冲雷达信号处理机。
     本论文有关自适应权值递推求解算法和杂波非均匀性问题解决方法方面的研究将为STAP技术的工程应用提供理论和技术支持。
Space-time adaptive processing (STAP) is a crucial technique applied to clutter suppression and target detection for new generation airborne phase-array radar. However, the tremendous computational complexity poses a primary challenge to implement STAP in practical engineering. Apart from traditional reduced-rank processing, an attractive suggestion for the computational problem is to develop the recursive algorithms of calculating weight vectors, which is computationally efficient and can be laid out in a highly parallel/pipeline structure in hardware. Thus, Chapter 3 to Chapter 5 make a detailed investigation of this, and the proposed fast algorithms can be exploited to solve adaptive weights associated with full-rank processing or fixed reduced-rank processing..
     Another major challenge for STAP application stems from the nonhomogeneity of practical clutter environments, which can significantly skew the clutter covariance matrix estimate. Therefore, a robust nonhomogeneous detection methodology for censoring the interference-targets with mismatched steering vectors is proposed in Chapter 6. Chapter 7 achieves a new technique of Doppler compensation in airborne forward-looking radar for ground short range clutter. The main contributions of this dissertation are as follows.
     1) The problem of weight vectors calculations in the case of estimated covariance matrix is investigated. Due to the fact that the covariance matrix is positive-definite Hermitian and its leading principal minors are all nonzero, a recursive algorithm of computing weights with numerical stability property is first developed on the basis of the Hermitian matrix inversion lemma, and then derives a fast algorithm of inversion for such a matrix whose leading principal minors are all nonzero thereby presenting a new approach for computing weights. The implementations for above algorithms involve matrix-vector multiplications, vector inner products and vector outer products, these operations are highly parallelizable, where the number of the iterations required is equal to the dimension of covariance matrix.
     2) The derivation of a loaded sample-matrix inverse (LSMI) algorithm based on updating the inverse of the sample covariance matrix is conducted by reconstructing the recursive formulation of covariance matrix. The new algorithm removes the necessity of a covariance matrix estimation and needs the number of samples iterations, where the dominant operations come from matrix-vector multiplications, vector inner products and vector outer products. In addition, an improved iterative process is presented, resulting in significant computational savings.
     3) The computationally efficient implementation of LSMI algorithm employing the QR decomposition or inverse QR decomposition is introduced. In which the diagonal loading can be inserted by setting only initial Cholesky or inverse Cholesky factor without any addition of computation.
     4) A recursive sample-matrix inversion (SMI) algorithm realized only by means of a forward analysis stage of multistage Wiener filter (MWF) is developed, which reduces the time-delay by eliminating the backward synthesis stage. Furthermore, several approaches for adding diagonal loading to MWF are presented.
     5) The effect of a mismatch between the actual steering vector and the assumed desired one for the interference-targets signals in nonhomogeneous clutter environments is analyzed, which results in significant performance degradation or even complete failure for traditional adaptive power residue (APR) method. An enhanced methodology which first performs a strong interference-targets censoring via diagonal loading of covariance matrix with a large constant followed by a remaining weak interference-targets censoring using traditional APR method is presented here, it is robust to the steering vector mismatch of interference-targets. Additionally, an efficient methodology to eliminate the interference-targets from a limited training-sample set is developed.
     6) A method for Doppler compensation for ground short range clutter of airborne forward-looking radar is proposed by using the vector (matrix) similarity criteria, whereby the compensation values can be evaluated from the received clutter data. The method significantly reduces the sensitivity of compensation values estimations against radar parameter errors and can be performed both in pulse domain and Doppler domain. Moreover, it has the advantage of low complexity and parallel implementation.
     7) Chapter 8 introduces a signal processing system design associated with sum and difference patterns of amplitude monopulse radar based on ADSP_TS101 chips.
     The research on the recursive algorithms of computing adaptive weights and the solutions to the clutter nonhomogeneity problem will provide the theory and technique supports for STAP technique application in practical engineering.
引文
[1]J.G.Proakis,Digital Communications,3~(rd) ed,McGraw-Hill Inc.,1995.
    [2]A.F.Molisch,Wideband Wireless Digital Communications,Pearson Education,Inc.,2001.
    [3]佟学俭,罗涛;OFDM移动通信技术原理与应用,北京:人民邮电出版社,2003.
    [4]张贤达,保铮,通信信号处理,北京:国防工业出版社,2000.
    [5]郭梯云,杨家玮,李建东;数字移动通信,北京:人民邮电出版社,2001.
    [6]Ahmad R.S.Bahai,B.R.Saltzberg,Multi-Carrier Digital Communication Theory and Application of OFDM,Kluwer Academic/Plenum Publisher,New York,1999.
    [7]T.S.Rappaport,A.Annarnalai,R.M.Tranter,et al;Wireless communications:past events and a future perspective,IEEE Communication.Magazine,May 2002,Pages:148-161.
    [8]R.F.Ormondroyd;J.J.Maxey;E.Alsusa;COFDM:An alternative strategy for future-generation mobile communications,Mobile Communications Towards the Next Millenium and Beyond,lEE Colloquium on,17 May 1996,Pages:8/1-8/6.
    [9]Mignone,V.;Morello,A.;Visintin,M.;CD3-OFDM:a new channel estimation method to improve the spectrum efficiency in digital terrestrial television systems,Broadcasting Convention,IBC 95.,International,14-18 Sep 1995,Pages:122-128
    [10]Said,F.;Aghvami,A.H.;Two dimensional pilot assisted channel estimation for turbo coded OFDM systems,Turbo Codes in Digital Broadcasting - Could It Double Capacity?(Ref.No.1999/165),IEE Colloquium on,22 Nov.1999,Pages:19/1-19/6.
    [11]Che-Shen Yeh;Yinyi Lin;Yiyan Wu;OFDM system channel estimation using time-domain training sequence for mobile reception of digital terrestrial broadcasting,Broadcasting,IEEE Transactions on,Volume:46,Issue:3,Sept.2000,Pages:215-220.
    [12]Shu,E;Lee,J.;Wu,L.-N.;Zhao,G.-L.;Time-frequency channel estimation for digital amplitude modulation broadcasting systems based on OFDM,Communications,IEE Proceedings-,Volume:150,Issue:4,12 Aug.2003,Pages:259-264.
    [13]Hyunsoo Cheon;Daesik Hong;Effect of channel estimation error in OFDM-based WLAN,Communications Letters,IEEE,Volume:6,Issue:5,May 2002,Pages:190-192.
    [17]李真芳,保铮,王彤.分布式小卫星SAR系统地面运动目标检测方法,电子学报 2005,33(9):1664-1666
    [18]云日升,张云华,江碧涛,康雪艳.星载GMTI雷达系统及其空时自适应信号处理.遥感技术与应用,2006,21(1):55-60
    [19]Dawidowicz B,Kulpa K S,Misiurewicz J.Detection of slow moving targets in SAR images using STAP processing with two-channel sigma-Delta Antenna.Radar conference,2005,125-128
    [20]Li Z F,Wang H Y,Su T,et al.Generation of wide-swath and high-resolution SAR images from multichannel small spaceborne SAR systems.IEEE Geoscience and Remote Sensing Letters,2005,2(1):82-86
    [21]谢俊好,许荣庆,袁业术等.高频地波舰载超视距雷达中的空时处理.系统工程与电子技术,1998,20(2):30-36
    [22]Pillai S U,Guerci J R,Pillai S R.Wideband STAP(WB-STAP) for passive sonar.Oceans 2003.Proceeding,5:2814-2818
    [23]Varadarajan V,Krolik J.Model-based space-time adaptive processing for active sonar.Signals,Systems and Computers,2004.Conference record of the 38~(th) Asilomar conference,2004,2:1431-1435
    [24]Jin Y W,Friedlander B.Reduced-rank adaptive detection of distributed sources using subarray.IEEE on Trans.SP,2005,53(1):13-25
    [25]孙晓昶,张忠华,皇甫堪.基于循环平稳性的级联空时GPS抗干扰技术.航天电子对抗,2004,3:45-48
    [26]Kim S J,Iltis R A.STAP for GPS receiver synchronization.IEEE Trans.on AES,2004,40(1):132-144
    [27]汤子跃,王永良,蒋兴舟.机载共形相控阵雷达二维杂波建模与分析.系统工程与电子技术,2001,23(2):42-47
    [28]Jaffer A G,Ho P T,Himed B.Adaptive compensation for conformal array STAP by configuration parameter estimation.2006 IEEE Conference on Radar,2006,731-736
    [29]Fdedlander B.A subspace method for space time adaptive processing.IEEE Trans.On SP,2005,53(1):74-82
    [30]Zhang Y H,Kim K,Hajjari A.Beamspace space-time adaptive processing for conformal array radars.2006 IEEE Conference on Radar,2006
    [31]鲁远耀,李国春,张平.双基STAP雷达杂波非平稳特性消除的新方法.现代雷达,2006, 28(4):38-41
    [32]Colone F,Labriola M,Poli E A pre-Doppler approach for reduced loss bistatic STAP.International conference on radar,2006,1-4
    [33]Page D A,Himed B,Davis M E.Improving STAP performance in bistatic space-based radar systems using an efficient expectation-maximization technique.2005 IEEE international Radar conference,2005,109-114
    [34]Page D A,Himed B,Davis M E.Higher order clutter mitigation in bistatic space-based radar systems using a knowledge-aided STAP approach.Radar,2006 IEEE conference on,2006,459-464
    [35]Varadarajan V,Krolik J L.Joint space-time interpolation for distorted linear and bistatic array geometries.IEEE Trans.On signal Processing,2006,54(3):848-860
    [36]Ries P,Lapierre F D,Verly J G,RANSAC-based flight parameter estimation for registration-based range-dependence compensation in airborne bistatic STAP radar with conformal antenna arrays.Proceedings of the 3~(rd) European Radar Conference,2006,1-4
    [37]Lim C H,Mulgrew B.Prediction of inverse covariance matrix(PICM) sequences for STAP.IEEE Signal Processing Letters,2006,13(4):236-239
    [38]Reed I S,Mailer J D,Brennan L E.Theory of adaptive radar.IEEE Trans.on Aerospace and Electronic Systems,1973,9(2):237-251
    [39]Reed I S,Mallett J D,Brennan L E.Rapid convergence rate in adaptive arrays.IEEE Trans.on Aerospace and Electronic Systems,1974,10(6):853-863
    [40]Klemm R.Suboptimum clutter suppression for airborne phased array radar.Proc.of IEE Int.Conf.on Radar'82,1982:473-476
    [41]Klemm R.Optimum clutter suppression in airborne phased array radars.Proc.of IEEE-ICASSP82,1982:1509-1512
    [42]Klemm R.Adaptive clutter suppression for airborne phased array radars.IEE Proc.F,1983,130(1):125-132
    [43]Klemm R.Some properties of space-time covariance matrices.Int.Conf.on Radar,1986,357-362
    [44]Klemm R.Adaptive airborne MTI:An auxiliary channel approach,IEE Proc.F,1987,134(3):269-276
    [45]Ender J,Klemm R.Airborne MTI via digital filtering.IEE Proc.F,1989,136(1):22-28
    [46]Klemm R.Airborne MTI via subgroup processing.Proe.oflntel.Conf.on Radar'89,1989, 43-48
    [47]Klemm R,Ender J.New aspects of airborne MTI.Proc.of IEEE int.Conf.on Radar'90,1990,335-340
    [48]Klemm R,Ender J.Two-dimensional filters for radar and sonar applications.Proc.of IASTED-90,1990,2023-2026
    [49]Klemm R.Adaptive airborne MTI with two dimensional motion compensation.IEE Proc.F,1991,138(6):551-558
    [50]Klemm R.Antenna design for airborne MTI.Proc.of IEEE int.Conf.on Radar'92,1992,296-299
    [51]Klemm R.Adaptive air and spacebome MTI under jamming conditions.Proc.of 1993 IEEE National Radar Conf.1993,167-172
    [52]Klemm R.Effect of multiple-time around clutter on adaptive spaceborne MTI radar.Proc.of Int.on Radar'94,.1994,121-126
    [53]Klemm R.Adaptive airborne MTI:comparison of sideways and forward looking radar.Proc.of 1995 IEEE Int.Radar Conf.,1995,614-618
    [54]Klemm R.Forward looking radar/SAR:clutter and jammer rejection with STAP.Proc.of EUSAR'96,1996,485-488
    [55]Klemm R.Real-time adaptive airborne MTI,Part Ⅰ:space-time processing.Proc.of 1996 CIE Int.Conf.on Radar,1996,755-760
    [56]Klemm R.Real-time adaptive airborne MTI,Part Ⅱ:space-time processing.Proc.of 1996CIE Int.Conf.on Radar,1996,430-433
    [57]Liu Q G,Peng Y N.Analysis of array errors and a short-time processor in airborne phased array radars.IEEE Trans.AES,1996,32(2):587-597
    [58]Wang H,Cai L.On adaptive spatial-temporal processing for airborne surveillance radar systems.IEEE Trans.on Aerospace and Electronic Systems,1994 30(3):660-669
    [59]保铮.廖桂生.吴仁彪等.相控阵机载雷达杂波抑制的时空二维自适应滤波.电子学报,1993,21(9):1-7
    [60]保铮,张玉洪,廖桂生等.机载雷达空时二维信号处理(1).现代雷达,1994,16(1):38-48
    [61]保铮,张玉洪,廖桂生等.机载雷达空时二维信号处理(2).现代雷达,1994,16(2):17-27
    [62]Dipietro R.Extended factored space-time processing for airborne radar systems.Proceedings of the 26~# Asilomar conference on Signals,Systems,and Computing,1992,425-430
    [63]Brennan L E,Piwinski D J,Standaher F M.Comparison of space-time adaptive processing approaches using experimental airborne radar data.The record of 1993 IEEE national radar conference,1993,176-181
    [64]刘青光,彭应宁,孙欣等.机载雷达自适应杂波抑制的联合通道变换方法.电子学报,1994,22(6):1-8
    [65]王永良,吴志文,彭应宁.适于非均匀杂波环境的空时自适应处理方法.电子学报,1999,27(9):56-58
    [66]范西昆,王永良.稳健的局域STAP处理器.电子学报,2006,34(12):2195-2199
    [67]王永良,彭应宁.空时自适应信号处理.北京:清华大学出版社,2000
    [68]Haimovich A M,Ness Y B.An eigenanalysis interference canceller.IEEE Trans.SP,1991,9(1):76-84
    [69]Zulch P A,Guerci J R,Goldstein J S,et al.Comparison of reduced-rank signal processing techniques.Conference record of the 32 Asilomar conference on Signals,Systems &Computers,1998,1:421-425
    [70]Peckham C D,Haimovich A M,Ayoub T F,et al.Reduced-rank STAP performance analysis.IEEE Trans.AES,2000,36(2):664-676
    [71]Goldstein J S,Kogon S M,Reed I S,et al.Partially adaptive radar signal processing:The cross-spectral approach.Proc.of the 29~(th) Asilomar Conf.on Signals,Systems and Computers,2,1995,1383-1387
    [72]Goldstein J S,Zulch P A,Reed I S.Reduced rank space-time adaptive radar processing.Conference Proceedings of IEEE International Conference on Acoustics,Speech,and Signal Processing,1996,2:1173-1176
    [73]Goldstein J S,Reed I S.Reduced rank adaptive filtering.IEEE Trans.SP,1997,45(2):493-496
    [74]Goldstein J S,Reed I S.Subspace selection for partially adaptive sensor array processing.IEEE Trans.AES,1997,33(2):539-554
    [75]Goldstein J S,Reed I S.Theory of partially adaptive radar.IEEE Trans.AES,1997,33(4):1309-1325
    [76]Goldstein J S,Reed I S,Scharf L L.A multistage representation of the Wiener filter based on orthogonal projections.IEEE Trans.IT,1998,44(7):2943-2959
    [77]Goldstein J S,Reed I S,Zulch P A,et al.A multistage STAP CFAR detection technique.Proceedings of the 1998 IEEE radar conference,1998,111-116
    [78]Zulch P A,Goldstein J S,Guerci J R,et al.Comparison of reduced-rank signal processing techniques.Conference record of the thirty-second asilomar conference on Signals,Systems&Computers,1998,1:421-425
    [79]Goldstein J S,Reed I S,Zulch P A.Multistage partially adaptive STAP CFAR detection algorithm.IEEE Trans.1999,AES,35(2):645-661
    [80]Goldstein J S,Reed I S,Yu X,et al.Multidisciplinary perspective on adaptive sensor array processing.IEE Proc.Radar,Sonar and Navigation,1999,146(5):221-234
    [81]Honig M L,Xiao W.Performance of reduced-rank linear interference suppression.IEEE Trans.Inform.Theory,2001,47(5):1928-1946
    [82]Guerci J R,Goldstein J S,Reed I S.Optimal and adaptive reduced-rank STAP.IEEE Trans.AES,2000,36(2):647-663
    [83]张良.机载相控阵雷达降维STAP研究.西安电子科技大学博士学位论文,1999
    [84]王玮,李少洪,毛士艺.降维STAP方法的两种基本形式的比较研究.电子与信息学报,2002,24(9):1225-1232
    [85]Kelly E J.An adaptive detection algorithm.IEEE Trans.AES,1986,22(1):115-127
    [86]Robey F C,Fuhrmann D R,Kelly E J,et al.A CFAR adaptive matched filter detector.IEEE Trans.AES,1992,28(1) 208-216
    [87]McWholter L T,Scharf L U Adaptive matched subspace detectors and adaptive coherence.In Proceedings of 30~(th) Asilomar conference on Signals Systems,1996,2:1114-1117
    [88]Pulsone N B,Zatman M A.A computational efficient two-step implementation of the GLRT.IEEE Trans.on Signal Processing,2000,48(3):609-616
    [89]Carlson B D.Covariance matrix estimation errors and diagonal loading in adaptive arrays.IEEE Trans.on Aerospace and Electronic Systems,1988,24(4):397-401
    [90]Harmanci K,Tabrikian J,Krolik J L.Relationships between adaptive minimum variance beamforming and optimal source localization.IEEE Trans.on Signal Processing,2000,48(1):1-12
    [91]Kogon S M.Eigenvectors,diagonal loading and white noise gain constraints for robust adaptive benmforming.Signals,Systems and Computers,2003,1853-1857
    [92]Nadakuditi R R,Edelman A.The Bias of the MVDR Beamformer Outputs under Diagonal Loading.Acoustics,Speech,and Signal Processing,2005,4:793-796
    [93]Biao Jiang,Ye Zhu,Changyu Sun.Robust beamforming with array shape distortion dependent diagonal loading.10~(th) Asia-Pacific conference on Communications and 5~(th)International Symposium on Multi-dimensional Mobile Communications,2004,305-308
    [94]Vincent F,Besson O.Steering vector errors and diagonal loading.Radar,Sonar and Navigation,IEE Proceedings,2004,151(6):337-343
    [95]Jian Li.Doubly constrained robust Capon beamformer.IEEE Trans.on SP,2004,52(9):2407-2423
    [96]Jian Li,Petre S,Zhisong W.On robust Capon beamforming and diagonal loading.IEEE Trans.on SP,2003,51(7):1702-1715
    [97]Ning Ma,Joo Thiam Goh.Efficient method to determine diagonal loading value.Acoustics,Speech,and Signal Processing,2003,(5):341-344
    [98]Wang H.Cai L.On adaptive spatial-temporal processing for airborne surveillance radar systems.IEEE Trans.1994,AES,30(3):660-670
    [99]Ward J.Space-time adaptive processing for airborne radar.MIT Lincoln Laboratory Technical Rept.ESC-TR,1994,94-109
    [100]Richmond C D.Statistical performance analysis of the adaptive sidelobe blanker detection algorithm.Proc.31~(st) Annu.Asilomar Conf.Signals,Systems and Computers,1997,1:872-876
    [101]Rabideau D J,Steinhardt A O.Improved adaptive clutter cancellation through data-adaptive training.IEEE Trans.AES,1999,35(3):879-891
    [102]Melvin W L.Eigenbased modeling of nonhomogeneous airborne radar environments.Proc.of the 1998 IEEE national radar conference 1998,171-176
    [103]Rabideau D J,Steinhardt A O.Improving the performance of adaptive arrays in nostationary environments through data-adaptive training.Proc.30~(th) Asilomar Conf.on Signals,Systems and Computers,1996,3-6
    [104]Melvin W L,Wicks M C.Improving practical space-time adaptive radar.Proc.of the 1997IEEE national radar conference,1997,48-53
    [105]董瑞军.机载雷达非均匀STAP方法及其研究.西安电子科技大学,2002
    [106]Adve R S,Wicks M C,Hale T B,ct al.Ground moving target indication using knowledge based space time adaptive processing.Proc.of the IEEE Int.Radar Conf.,2000,735-740
    [107]Adve R S,Hale T B,Wicks M C.Transform domain localized processing using measured steering vectors and non-homogeneity detection.Proc.of the 1999 IEEE national Radar Conf.,1999,285-290
    [108]Chen P.On testing the equality of covariance matrices under singularity.Report for AFOSR Summer Faculty Research Program,Rome Laboratory,Rome,NY,1994
    [109]Chen P.Partitioning procedure in radar signal processing probleras.Final Report for AFOSR Summer Faculty Research Program,Rome Laboratory,Rome,NY,1995
    [110]王彤,保铮.空时二维自适应处理的目标污染样本挑选方法.电子学报,2001,29(12):1840-1844
    [111]Advo R S,Hale T B,Wicks M C.Practical joint domain localized adaptive processing homogeneous and nonhomogeneous environment,Part 2:Nohomogeneous environments.IEE Proceedings,Radar,Sonar,Navigation,2000,147(2):66-74
    [112]Blunt S D,Gerlach K.Efficient robust AMF using the FRACTA algorithm.IEEE Trans.on Aerospace and Electronic Systems,2005,41(2):537-548
    [113]Blunt S D,Gerlach K.Efficient reiterative censoring of robust STAP using the FRACTA algorithm.Proceedings of the IEEE International Conference on Radar,2003,57-61
    [114]Gerlach K,Blunt S D,Picciolo M L.Robust adaptive matched filtering using the FRACTA algorithm.IEEE Transactions on Aerospace and Electronic Systems,2004,40(3):929-945
    [115]Gerlach K.Outlier resistant adaptive matched filtering.IEEE Trans.on AES,2000,38(3):885-901
    [116]Sarkar T K,Sangruji N.An adaptive nulling system for a narrow-band signal with a look-direction constraint utilizing the conjugate gradient method.IEEE Trans.AP.,1989,37(7):940-944
    [117]Sarkar T K,Park S,Koh J,et al.A deterministic least square approach to adaptive antennas.Digital Signal Processing,-Rev.1996,6:185-194
    [118]Sarkar T K,Adve R S,Wicks M C.Effects of mutual coupling and channel mismatched on space-time adaptive processing algorithms.Proc.of IEEE Int.Conf.on phased array systems and technology,2000,545-548
    [119]Sarkar T K,Koh J,Adve R S,et al.A pragmatic approach to adaptive antennas.IEEE Antennas Propagation Mag.,2000,42(2):39-55
    [120]Sarkar T K,Wang H,Park S,et al.A deterministic least square approach to space-time adaptive processing(STAP).IEEE Trans.AP.,2001,49(1):91-103
    [121]王万林,廖桂生,张光斌.相控阵AEW雷达杂波抑制的非均匀处理方法研究.电波科学学报,2004,19(3):348-353
    [122]王万林,廖桂生,张光斌.一种新的相控阵机载预警雷达孤立干扰抑制方法.电子与信息学报,2005,27(2):278-282
    [123]Borsari G K.Mitigation effects on STAP processing caused by an inclined array.Proc.Of the 1998 IEEE national radar conference,1998,135-140
    [124]Braham H,Michels J H,Zhang Y.Bistatic STAP performance analysis in radar applications.Proc.of the IEEE radar conf.,2001,198-203
    [125]Klemm R.Ambiguities in bistatic STAP radar.Proc.of IEEE international Geoscience and Remote Sensing Symposium,2000,1009-1011
    [126]Kogon S M,Zatman M A.Bistatic STAP for airborne radar systems.ASAP workshop,MIT Lincoln Laboratory,2001
    [127]Kreyenkamp O,Klemm R.Doppler compensation in forward-looking STAP radar.IEE Proc.Radar,Sonar,Navig.,2001,148(5):253-258
    [128]Lapierre F D,Droogenbroeck M V,Verly J G.New methods for handling the range dependence of the clutter spectrum in non-sidelooking monostatic STAP radars.ICASSP,2003,73-76
    [129]Lapierre F D,Verly J G,Droogenbroeck M V.New solutions to the problem of range dependence in bistatic STAP radars.Proc.of the 2003 IEEE Radar Conf.,2003,452-459
    [130]Melvin W L,Himed B,Davis M.Doubly adaptive bistatic clutter filtering.Proc.of the 2003IEEE Radar Conf.,2003,171-178
    [131]Zatman M.Circular array STAP.Proc.of the IEEE National Radar Conf.,1999,108-113
    [132]王彤.机载雷达简易STAP方法及其应用.西安电子科技大学,2001
    [133]Wang Y L,Bao Z,Peng Y N.STAP with medium PRF mode for non-side-looking airborne radar.IEEE Trans.AES,2000,36(2):609-620
    [134]G Joseph R.Theory and application of covariance matrix tapers for robust adaptive beamforming.IEEE Trans.SP,1999,47(4):977-985
    [135]Chin H,Lim B.Modified JDL with Doppler compensation for airborne bistatic radar.Radar Conference.2005 IEEE international.2005,854-858
    [136]Wang Y L,Peng Y L,Bao Z.Three typical configurations and their unified algorithm of space-time joint processing for airborne radar.1995 URSI Int.Conf.on Radio Science,1995,291-295
    [137]王永良,保铮,彭应宁等.空时二维自适应信号处理的统一理论与局域方法研究.电子学报,1996,24(9):73-78
    [138]Wang Y L,Peng Y L.Configurations and performance analysis of space-time adaptive signal processor for airborne radar.IEEE national radar conference 1997,1997 343-348
    [139]Brennan L E,Mallett J D,Reed I S.Adaptive arrays in airborne MTI radar.IEEE Trans.on Antennas and Propagation,1976,24(5):607-615
    [140]Xiong J,Liao L S,Wu S J.Recursive algorithm of adaptive weight extraction of space-time signal processing for airborne radar.CIE Int.Conf.on Radar,1996,86-90
    [141]Monzingo RA,et al.Introduction to adaptive array.New York:Wiley,1980
    [142]谷荻隆嗣.快速算法与并行信号处理.北京:科学出版社,2003
    [143]龚耀寰.自适应滤波.北京:电子工业出版社,2003,233-234
    [144]苏涛.并行处理技术在雷达信号处理中的应用研究.西安电子科技大学,1996
    [145]Teitelbaum K A.Flexible processor for a digital adaptive array radar.IEEE Trans on AES Systems Magazine,1991,18-22
    [146]Alexander S T,Ghimikar A L.A method for recursive least squares filtering based upon an inverse QR decomposition.IEEE Transactions on Signal Processing,1993,41(1):20 -30
    [147]欧阳缮,保铮,廖桂生.基于逆QR分解的机载雷达空时二维自适应处理算法.电子学报,1999,27(9):94-96
    [148]Chen J W,Ni J L,Wang Y L.Inverse QR iterative algorithm for space-time adaptive processing.IEEE ICSP'02 Proceedings,2002,1429-1432
    [149]Bollini P,Chisci L,Farina A,et al.QR versus IQR algorithms for adaptive signal processing:performance evaluation for radar applications.Proc.of IEE on Radar,Sonar and Navigation,1996,143(5):328-340
    [150]Farina,R.Graziano,F.Lee,et al.Adaptive space-time processing with systolic algorithm:experimental results using recorded live data.Proc.of 1995 IEEE Int.Radar Conf.,1995,8(11):595-602
    [151]Farina,A.Saverione A,Timmoneri L.The MVDR vectorial lattice applied to space-time processing for AEW radar with large instanoueous bandwidth,lEE.Proc.Radar,Sonar and Navigation,1996,143(1 ):41-46
    [152]Mansur H.Space/Time adaptive processing architecture implementations using a high performance scalable computer.1997,IEEE national radar conference,1997,325-330
    [153]Brown R.Linderman R W.Algorithm development for an airborne real-time STAP demonstration.1997,IEEE national radar conference,1997,331-336
    [154]Linderman M H,Linderman R W.Real-time STAP demonstration embedded high performance computer.IEEE AES Systems Magazine,1998,15-21
    [155]Wang K H,Xu Z,Arakawa M.Benchmark evaluation of the IBM SP2 for parallel signal processing.IEEE Trans.Parallel and Distributed Systems,1996,7(5):522-535
    [156]Farina A,Timmoneri L.Real-time STAP techniques.Electmics & Communication Engineering Journal,1999,11(1):13-22
    [157]Lebak J M,Bojanczyk A W.Design and performance evaluation of a portable parallel library for space-time adaptive processing.IEEE Trans.Parallel and Distributed Systems,2000,11(3):287-298
    [158]Rajan K,Patnik L M.Implementation of STAP algorithms on IBM SP2 and on ADSP 21062dual digital signal processor systems.Microprocessors and Microsystems,2003,27(4):221-227
    [159]范西昆,王永良,陈辉等.并行实现空时自适应算法.电子学报,2005,33(12):2222-2225
    [160]邵银波,王永良,李强,陈辉,肖奚安.一种用于空时自适应处理的并行计算模型.电子学报,2006,34(3):450-453
    [161]范西昆,王永良,陈辉.机载雷达空时自适应处理的实时实现.电子与信息学报,2006,28(12):2224-2227
    [162]邵银波,李强,王永良,陈辉,肖奚安.空时自适应处理的通用平台设计与实现.电子与信息学报,2006,28(2):317-321
    [163]Shao Y B,Wang Y L,Dend Y.The Universal implementation of space-time adaptive processing.2006 International conference on Radar,2006,1-3
    [164]Klemm R.Space-time adaptive processing:principles and applications.IEE Radar,Sonar,Navigation and Avionics 9,London:IEE Press,1998
    [165]Klemm R.Principles of space-time adaptive processing.IEE Radar,Sonar,Navigation and Avionics 12,London:IEE Press,2002
    [166]张良,保铮,廖桂生.基于空时自适应处理的恒虚警检测算法研究.西安电子科技大学学报,2000,27(3):265-269
    [167]Reed I S,Gau YL,Truong T K.CFAR Detection and Estimation for STAP Radar.IEEE Trans AES,1998,34(3):722-735
    [168]张贤达.矩阵分析与应用.北京:清华大学出版社,2004
    [169]线性代数.北京:高等教育出版社,1992
    [170]McWhirter J G.Recursive least-squares minimization using systolic arrays.Proc.SPIE,Realtime Signal Processing,1983,8:105-112
    [171]McWhirter J G,Shepherd T G.Systolic array processor for MVDR beamforming.IEE Proceeding,Radar and Signal Processing,1989,136(2):75-80
    [172]Ward C R,Hargrave P J,McWhirter J G.A Novel algorithm and architecture for adaptive digital beamforming.IEEE Trans.on Antennas and Propagation,1986,34(3):338-346
    [173]Myrick W L,Goldstein J S,Zoltowski M D.Low complexity anti-jam space-time processing for GPS.IEEE International Conference on Acoustics,Speech,and Signal Processing,2001,4:2233-2236
    [174]Myrick W L,Zoltowski M D,Goldstein J S.Low-sample performance of reduced-rank power minimization based jammer suppression for GPS.IEEE 6~(th) International symposium on Spread Spetrum Techniques and applications,2000,1:93-97
    [175]Lin Z W,Premkumar A B,Madhkumar A S.Applying multistage wiener filter to UWB multipath channel equalization under limited training sample support.Fifh international conference on Information,Communications and Signal Processing,2005,821-825
    [176]Lin Z W,Premkumar A B,Madhkumar A S.Diagonally loaded linear MMSE equalization for UWB multipath channel under limited training sample support.IEEE 63~(rd) Vehicular Technology Conference,2006,5:2359-2363
    [177]Wizgall H E,Goldstein J S.Detection Performance of reduced-rank linear predictor ROCKET.IEEE Trans.On Signal Processing,2003,51(7):1731-1738
    [178]Hiemstra J D,Weippert M E,Nguyen H N,et al.Insertion of diagonal loading into the multistage wiener filter.Sensor Array and Multichannel Signal Processing Workshop Proceedings 2002,379-382.
    [179]Schoenig G N,Picciolo M L,Mili L.Improved detection of strong nonhomogeneities for STAP via projection statistics.IEEE international Radar Conference,2005,720-725
    [180]丁鹭飞,耿富录.雷达原理.西安:西安电子科技大学出版社,1995
    [181]贺知明,黄巍,张剑.基于ADSP-21160的雷达脉冲压缩并行处理机的设计.信号处理,2002(10):473-476
    [182]贺知明,黄巍,向敬成.数字脉压时域与频域处理方法的对比研究.电子科技大学学报,2002(4);120-124
    [183]彭燕,史林.基于ADSP的分段脉冲压缩应用.现代电子技术,2003,(148):38-40
    [184]ADSP-TS101 TigerSHARC(?) Processor Hardware Reference.U.S.A:Analog Devices,Inc,2003
    [185]ADSP-TS101 TigerSHARC(?) Processor Programming Reference.U.S.A:Analog Devices,Inc,2003
    [186]林茂庸,柯有安.雷达信号理论.国防工业出版社,1984
    [187]徐玲,吴增辉.相参积累后雷达参数的自动录取.现代雷达,2000,22(2):32-38
    [188]Gandhi P P,Kassam S K.Analysis of CFAR processors in nonhomogeneous background.IEEE Trans.on AES,1988,24(2):427-445
    [189]Hansen V G,Sawyers J H.Detectability loss due to "greastest of" selection in a cell-averaging CFAR.IEEE Trans.on AES,1980,16(1):115-118
    [190]胡广书.数字信号处理.北京:清华大学出版社,1997

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700