用户名: 密码: 验证码:
水稻苗期抗高温鉴定程序的建立及其基因定位
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
随着全球经济的快速发展和二氧化碳排放量的逐年增加,高温热害的发生频率日趋频繁,严重时导致农作物大面积减产和产品品质下降。面对这样的栽培逆境,如何稳定和提高作物产量,确保农业经济和粮食安全,已成为农业科技领域迫切需要解决的重大科研课题。水稻是最重要的粮食农作物,全球有一半以上的人口以水稻为主食。目前,人们就水稻对高温响应及其抗高温特性开展了广泛的研究,包括水稻受高温胁迫后的蛋白质表达谱变化、生理生化反应和QTL定位等,但迄今为止,还没有通过图位克隆发掘耐热基因的报道,所报导的耐热相关基因均为同源克隆法获得,且主要为热激蛋白。
     本研究以广东省农科院水稻所钟旭华研究员筛选并提供使用的水稻抗高温地方品种HT54和感高温品种HT13为材料,于不同生育期和不同栽培方式条件下对其进行不同温度处理,试图建立适宜的水稻抗高温鉴定程序和抗性分级标准,并在此基础上,对HT54中的抗高温性状进行遗传分析和基因定位以及生理生化指标测定。主要研究结果如下:
     1.抗高温鉴定程序及判别标准的建立:对抗感高温水稻品种HT54和HT13分别进行水培和土培种植,待秧苗生长至两叶一心和三叶一心期移入生长箱,进行42℃、45℃和48℃的高温处理,空气相对湿度和其它栽培条件保持在相同水平上,之后,每隔一定时间观察其对高温的反应。试验结果显示:两叶一心期48℃高温处理至84h,水培的秧苗恢复5d后呈现抗性品种秧苗完全存活和感性品种秧苗一致死亡的显著差异;而土培的秧苗处理至79h恢复相同天数后即可达到相同的效果。这些结果表明,土培和水培的方法都可用于抗高温材料的筛选鉴定,但后者比前者的鉴定用时短、效率高。分蘖期土培剥蘖秧苗抗感品种间达到存活与死亡差异效果的处理温度是45℃,处理时间是72h,但秧苗培养和剥蘖较费时费工,好处是取样不受材料死亡的限制。抽穗期由于抗高温特性的考察指标通常为结实率,当以平均温度为36℃的高温处理48h时,其抗感高温品种的差异达到了显著水平,但此时抗高温品种HT54的结实率和常温下相比也显著降低,因此,不是全生育期抗高温特性鉴定的最佳处理时期。据此,本研究最终确定的水稻全生育期抗高温特性苗期鉴定程序为:两叶一心的土培或水培苗,48℃高温、相对湿度75%处理至79h或84h,恢复5d后,以秧苗能否存活作为抗感鉴定指标。
     2.抗高温基因的遗传分析:以优化的抗高温鉴定程序对抗感高温亲本品种HT54和HT13、F1及F2群体进行高温处理,发现杂种F1秧苗经高温处理后的表现与抗高温品种HT54的表现一致,F2群体中抗感高温植株的分离符合3:1的分离比率。这些结果证实HT54在苗期鉴定的抗高温特性是受显性主效单基因控制,据此,我们将其命名为OsHTAS。
     3.抗高温基因的定位:应用隐性极端集团群体法从F2群体中挑选131株敏感植株构建了作图群体,同时,随机从相同的F2群体中分别挑选10株抗感高温极端单株构建了用于初步连锁群分析的两个DNA池,籍此对HT54中的抗高温基因OsHTAS进行了定位。试验结果显示:位于第9染色体上的一对SSR引物RM444在两个DNA池间具有多态性,之后,通过F2群体中61株感高温,验证了RM444和抗高温基因OsHTAS司的连锁关系。再先后以61株和群体扩大后的131株感高温单株为作图群体,围绕RM444扩增片段所在的位点进行了标记加密分析,结果显示OsHTAS是位于InDel5和RM7364之间,遗传上分别相距2.5cM/3.2cM和1.7cM/1.2cM,标记间的总物理距离为420kb;根据此区间候选基因功能分析及基因芯片表达数据的比较,筛选出两个候选基因并进行测序,结果发现只有其中一个基因的序列在两亲本之间存在两处差异;根据其中一处差异开发了一个CAPS标记,该标记和抗高温基因OsHTAS表现共分离。
     4.抗高温特性相关生理指标SOD和POD的测定:以已知抗高温的黄华占品种为对照,在两叶一心时期对抗感高温水稻品种HT54和HT13进行高温处理,然后与不同时间点分别取样测定高温处理过程中水稻幼苗的POD和SOD活性,结果显示:三个水稻品种黄华占、HT54和HT13在热胁迫处理过程中,各时间点测得的SOD和POD活性均受激增强,但就活性检测值大小而言,HT54在三个品种中居中。另外,该结果还显示:在热胁迫处理条件下,HT13和黄华占的POD和SOD活性大小变化的相对程度不一致,HT13的SOD活性一直是三个品种中最小的,但其POD的活性除在48℃处理24h时低于黄华占外,其它时间点的测定值均是三个品种最大的。因此,该结果说明不能简单的通过热胁迫处理后SOD和POD活性大小测定评价这三个材料对高温的抗性。
Hot disaster appears more and more frequently with the rapid development of global economy and the increasing of carbon dioxide emission year by year, leading to the decline of crop production and product quality when it becomes more serious. An urgent and significant research issue is put into place on how to stabilize and improve the yield of crop, and how to ensure agricultural economy and grain security in agricultural science domain in the face of such cultivation adversity. Rice is the most important crop in the word as it is the major source of food for more than half of the word population. At present, there are a wide range of researches on high temperature-stress responses and heat tolerance characteristics of rice, including the variation of the protein expression profile, the physiological and biochemical reactions, location of Quantitative Trait Locus (QTLs) responsible for high temperature tolerance, et al. However there is no report on map-based cloning of heat tolerance so far. The reported genes, related with heat tolerance, are homology-based cloning method to get and most are heat shock proteins.
     The plant materials used in the present study include HT54, a heat tolerance cultivar, and HT13, a heat sensitive cultivar, which were provided and identified by Xuhua Zhong a research fellow from Rice Research Institute of Guangdong Academy of Agricultural Science. We attempted to establish high temperature resistance evaluation procedures as well as its assesment criteria at seedling stage, and on this basis, to further conduct inheritance analysis, gene mapping and physiological index assessment of high temperature resistance present in HT54. The main results detained are as follows:
     1. The establishment of high temperature resistance evaluation procedures and its assessment criteria
     HT54and HT13, both cultivated by nutrition solution or soil, were removed into growth cabinet and treated by42℃,45℃or48℃at two to three leaves or three to four leaves. The relative humidity was set at75%and the other cultural conditions were kept on the same level, and after that, the response on high temperature was observed at a certain period of time. The results showed that HT54, cultivated by nutrition solution, were all survive and HT13were all dead after84h48℃high temperature treatment at two to three leaves, but it needed only79h to achieve the same effect for soil culture. Both two culturing methods could be used in the high temperature resistance evaluation procedures, but the latter was highly efficient as compared with the former one. The obvious differences were observed after72h45℃high temperature treatment at the tillering stage. Although it solved the limits of sample for DNA isolation because of the death, more time and more work were needed to select and cultivate tillerings. At the heading stage, seed setting rate reduced vigorously after48hours under36℃high temperature and the varying degree of variance reached5%significance between HT54and HT13cultivars, but the rate of HT54after high temperature was significantly lower than that under natural condition. Therefore heading stage was not the optimal stage for high temperature resistance evaluation of HT54. According to these results, we established the high temperature procedures at seedling stage:two to three leaves, cultivated by soil or nutrition solution,84h or79h48℃high temperature treatment with75%air relative humidity, evaluation after5day recovery after treatment as the assessment criteria of high temperature resistance.
     2. Genetic analysis of high temperature resistance
     F2population was made by pollination of HT54with HT13. Regarding to the assessment criterion, the resistance response of F1plants was consistent with high temperature resistance cultivar HT54and the segregation of F2progeny was consistent with3:1ratio after high temperature treatment. These results thus demonstated that the high temperature resistance presence in HT54at seedling stage was controlled by complete dominance of monogenic allele, named OsHTAS (Oryza saliva heat tolerance at seedling stage).
     3. Mapping of high temperature resistance gene
     The mapping population was constructed with131sensitive plants randomly selected from F2generation according to the bulked recessive extreme segregats strategy. At the same time, two DNA pools for primary linkge analysis were also constructed with DNA samples extacted from10extreme sensitive and resisant plants, respectively, which were randomly selected from the same F2population. The high temperature resistance gene OsHTAS was then mapped using these populations. The results showed that the marker RM444, position on chromosome9, had the polymorphism between two DNA pools. This result was preliminarily confirmed by marker screening of61high temperature sensitive plants. Further marker density increasing analysis with61sensitive plants and an enlarged F2population containing131recessive extreme segregants demonstrated that the OsHTAS is located between markers InDel5and RM7364. The map distance between OsHTAS and the two closely linked markers is2.5cM/3.2cM and1.7cM/1.2cM, respectively. The physical distance between the two markers InDe15and RM7364is420kb. Two genes were selected and consequently sequenced according to deduced function analysis of cadidate genes within the interval of these two markers as well as previously reported chip expression data. Two single base pair (SNP) differences on the resultant sequences of of one gene between HT54and HT13were detected and one of these SNPs was developed into CAPS marker. Further analysis revealed that this CAPS marker was cosegregated with OsHTAS gene.
     3. High temperature resistance related physiological index SOD and POD assay
     The SOD and POD activity in the seedling samples of HT54, HT13were assayed at different time points after high temperature treatment at stage of two to three leaves and the currently well-known high temperature resistance cultivar Huanghuazhan was used as control. The result showed that the SOD and POD activity detected at different time points was stimulated to increase during heat stresses. But in case of activity detection value, the HT54was in the middl among three cultivars. In addition, these results also showed that under heat stress conditions, the relative degree of variation of the POD and SOD activity in Huang Huazhan and HT13was inconsistency. The SOD activity of HT13was the lowest but its POD activity appeared the highest among three cultivars except one case lower than Huanghuazhan at48℃. Therefore, all these results indicated that the high temperature resistance of the tested varieties could not be evaluated by simply detecting the SOD and POD activity.
引文
曹立勇,赵建根,占小登,李登楼,何立斌,程式化.水稻耐热性的QTL定位及耐热性与光合速率的相关性.中国水稻科学,2003,17(3):223-227.
    曹立勇,朱军,赵松涛.水稻籼粳交DH群体耐热性的QTLs定位.农业生物技术学报,2002,10(3):210-214.
    曹云英,段骅,杨立年,王志琴,刘立军,杨建昌.抽穗和灌浆早期高温对耐热性不同籼稻品种产量的影响及其生理原因.作物学报,2009,35(3):512-521.
    曹云英,段骅,杨立年,王志琴,周少川,杨建昌.减数分裂期高温胁迫对耐热性不同水稻品种产量的影响及其生理原因.作物学报,2008,34(12):2134-2142.
    陈庆全,余四斌,李春海,牟同敏.水稻抽穗开花期耐热性OTL的定位分析.中国农业科学,2008,41(2):315-32.
    陈文岳,俞祥群,章柏泉,戈长水,丁长命.DNA分子标记概述.杭州农业科技.2003,(1):14-17.
    陈小霞,李磊,牛洪斌,尹钧.高温胁迫对不同小麦品种幼苗叶片中抗氧化酶活性的影响.河南农业科学,2008,(12):38-40.
    陈晓亚,汤章城.植物生理与分子生物学.北京:高等教育出版社,2007,449-473.
    陈忠,苏维埃,汤章城.豌豆热激蛋白Hpc60对酶的高温保护功能及其机理.科学通报,1999,44(20):2171-2175.
    崔旭红,谢明,万方浩.高温胁迫下B型烟粉虱热激蛋白基因hsp70表达量的变化.昆虫学报,2007,50(11):1087-1091.
    方宣钧,吴为人,唐纪良.作物DNA标记辅助育种.北京:科学出版社,2000,1-31.
    郭晶心,曾文智,周宝津,卢浩荣,陈庚平,唐辉武,周少川,刘耀光.开花期高温胁迫对不同水稻品种花粉萌发和结实的影响.华南农业大学学报,201031(2):50-53.
    郭培国,李荣华.夜间高温胁迫对水稻叶片光合机构的影响.植物学报,20004,2(7):673-678.
    郝建军,康宗利,于洋.植物生理学实验技术.北京:化学工业出版社,2007,155-159.
    何晓明,林毓娥,陈清华,邓江明.高温对黄瓜幼苗生长、脯氨酸含量及SOD酶活性的影响.上海交通大学学报(农业科学版),2002,20(1):30-33.
    胡安生,管彦良,蒋斌芳,王振东,牟莉桦,卢惠智.高温胁迫与枳幼苗超氧物歧化酶活性和脂质过氧化作用的关系.浙江农业学报,1996,8(2):96-101.
    胡裕清,赵树进.RAPD技术及其在植物研究中的应用.生物技术通报,2010,(5):74-77.
    黄燕娟,华亚鹏,刘华清,苏军,陈建民,王锋.三个基于水稻明恢86的SSR电子遗传图谱的构建.分子植物育种,2008,6(4):655-663.
    黄义德,曹流俭,武立权,严平,陈多璞,杨安中.2003年安徽省中稻花期高温热害的调查与分析.安徽农业大学学报,2004,31(4):385-388.
    黄英金,罗永锋,黄兴作,饶志明,刘宜柏.水稻灌浆期耐热性的品种间差异及其与剑叶光合特性和内源多胺的关系.中国水稻科学,1999,13(4):205-210.
    江敏,金之庆,石春林,葛道阔,朱大威.长江中下游地区水稻孕穗开花期高温发生规律及其对产量的影响.生态学杂志,2001,29(4):649-656.
    奎丽梅,谭禄宾,涂建,卢义宣,孙传请.云南元江野生稻抽穗开花期耐热QTL定位.农业生物技术学报,2008,16(3):461-464.
    蓝贤勇,陈宏,张永德,孙维斌,雷初朝.一种新的分子标记方法—随机微卫星扩增多态DNA (RMAPD).遗传,2006,28(1):78-84.
    李成德.高温导致水稻出现大量空壳分析.陕西农业科学,2003,(5):45-47.
    李玲,李娘辉,蒋素梅,冷佳奕,王小菁.北京:植物生理学模块实验指导.科学出版社,2009,98-100.
    李木英,石庆华,许锦彪,胡志红,谭雪明.不同早稻品种灌浆期高温胁迫后根系生理差异研究.中国生态农业学报,2006,,14(3):105-107.
    李晟阳,罗光彬,石娇,何丽华,赵立虎.HSP70在小鼠睾丸中定位与表达研究现代畜牧兽医,2005,(7):16.
    李小白,崔海瑞,张明龙.EST分子标记开发及在比较基因组学中的应用.生物多样性,2006,14(6):541-547.
    李晓鲁,彭毅志.热激蛋白70与热激反应.生命的化学,2002,2(2):145-147.
    李晓芝,周人纲,樊志和,王占武,韩炜.高温锻炼对粒用觅幼苗叶片中可溶性蛋白、超氧化物歧化酶及膜耐热性的影响.华北农学报,1994,9(3):48-51.
    刘德立.植物热激蛋白及其功能.植物学通报,1996,13(1):1-8.
    刘敏华,黄仲青,张泽生,翁霞珍,赵成松.安徽省1988年高温天气对杂交早中稻结实率的影响.安徽农业科学,1989,(3):16-20.
    刘仁虎,孟金陵.MapDraw,在Excel中绘制遗传连锁图的宏.遗传,2003,25
    刘旭.遗传标记和遗传图谱构建.作物品种资源,1997,3:29-32.
    陆丹,牛楠,李莹.SSR标记技术在植物基因组研究上的应用.沈阳师范大学学报(自然科学版),2010,28(1):83-85.
    罗冉,吴委林,张肠.(2010)李玉花SSR分子标记在作物遗传育种中的应用.基因组与应用生物学,2010,29(1):137-143.
    马玉银,马国军.水稻基因组物理图谱和遗传图谱的整合.扬州教育学院学报,2006,24(3):3-8.
    欧志英,林桂珠,彭长连.超高产杂交水稻培矮64S/E32和两优培九剑叶对高温的响应.中国水稻科学,2005,19(3):249-254.
    盘毅,罗丽华,邓华并,张桂莲,唐文邦,陈立云,肖应辉.(2011)水稻开花期高温胁迫下的花粉育性QTL定位.中国水稻科学,25(1):99-102.
    秦亚平,梅银国,张似松.不同播种期对3个晚稻品种产量性状的影响.湖南农业科学,2009,18-20.
    任昌福,陈安,刘保国.高温影响杂交水稻开花结实的生理化基础.西南农业大学学报,1990,12(5):440-443.
    盛婧,陈留根,朱普平,薛新红,郑建初.不同水稻品种抽穗期对高温的响应及避热的调控措施.江苏农业学报,2006,22(4):325-330.
    谭中和,蓝泰源,任昌福,方文.杂交籼稻开花期高温危害及其对策的研究.作物学报,1985,11(2):103-108.
    汤日圣,王节萍,童红玉.脱落酸对水稻种子萌发和秧苗生长的调控作用.江苏农业学报,2003,19(2):75-80.
    汤日圣,张大栋,童红玉.高温胁迫对稻苗某些生理指标的影响及ABA和6-BA对其的调节.江苏农业学报,2005a,21(3):145-149.
    汤日圣,郑建初,陈留根,张大栋,金之庆,童红玉.高温对杂交水稻籽粒灌浆 和剑叶某些生理特性的影响.植物生理与分子生物学学报,2005b,31:657-662.
    汤日圣,郑建初,张大栋,金之庆,陈留根,黄益洪,石春林,葛道阔.高温对不同水稻品种花粉活力及籽粒结实的影响.江苏农业学报,2006,22(4):369-373.
    陶龙兴,谈惠娟,王熹,曹立勇,宋建,程式化.高温胁迫对国稻6号开花结实习性的影响.作物学报,2008,34(4):669-674.
    佟豪,康毅敏,王晓娟.HSP70与肿瘤免疫治疗.内蒙古医学院学报,2007,29(4):297-301.
    王光明,杨贵旭,朱自均,王三根,刘大均.高低温对水稻Ⅱ优6078开花结实的影响研究.西南农业大学学报,1998,20(1):24-27.
    王军,谢皓,郭二虎,李爱军,范慧萍.DNA分子标记及其在谷子遗传育种中的应用.北京农学院学报,2005,20(1):76-80.
    王利军,黄卫东.高温胁迫及其信号转导.植物学通报,2000,17(2):114-120.
    王曼玲,Rocha Pedro,李落叶,徐孟亮,Din Chen,夏新界.应用基因表达芯片分析水稻高温胁迫相关基因.生物技术通报,2009,(10):92-97.
    吴成钢,朱必凤.DNA分子标记在水稻遗传育种上的应用.韶关学院学报,200223(9):85-91.
    夏本勇.水稻高温热害的发生与防御措施.安徽农业科学,2004,(4):23.
    夏明元,戚华雄.高温热害对四个不育系配制的杂交组合结实率的影响.湖北农业科学,2004,(2):21-22.
    夏鹏,林海艳,罗美忠.1个水稻产量QTL区段及品系特异性重复序列的比较分析华中农业大学学报,2011,3(3):261-265.
    肖作江,张淑华,李巧.热激蛋白70在环境中的作用与应用.安徽农业科学,200836(36):16223-16224.
    徐云碧.分子标记在数量基因定位中的应用.遗传,1992,14(2):45-48.
    许红云,许为军,谭学林.高温对粳稻品种发芽及幼苗生长发育影响的研究.西南农业学报,2008,21(3):593-596.
    杨惠成,黄仲青,蒋之埙,王相文.2003年安徽早中稻花期热害及防御技术.安徽农业科学,2004,32(1):3-4.
    杨梯丰,刘斌.水稻耐热性QTL鉴定的研究进展.广东农业科学,2009,(6):16-20.
    耶兴元,马锋旺.植物热激蛋白研究进展.西北农业学报,2004,13(2):109-114.
    曾汉来,卢开阳,贺道华,潘雪祥,张端品.中籼杂交水稻新组合结实性的高温适应性鉴定.华中农业大学学报,2000,19(1):1-4.
    张桂莲,陈立云,张顺堂,刘国华,唐文帮,贺治洲,王明.抽穗开花期高温对水稻剑叶理化特性的影响.中国农业科学,2007,40(7):1345-1352.
    张桂莲,陈立云,张顺堂,肖应辉,贺治洲,雷东阳.高温胁迫对水稻剑叶保护酶活性和膜透性的影响作.物学报,2006,32(9):1306-1310.
    张建国,何彩云,段爱国,殷继艳.植物热激蛋白研究进展福建林学院学报.200525(2):187-192.
    张涛,杨莉,蒋开锋,黄敏,孙群,陈温福,郑家奎.水稻抽穗扬花期耐热性QTL分析.分子植物育种,2008,6(5):867-873.
    张伟峰,于拴仓,郝浩永,陈莉.植物功能基因组研究中的几种新型分子标记.湖北农业科学,2010,49(5):1221-1224.
    张侠,尹海波,熊冬金,张慧,赵彦修.植物热激蛋白70.植物生理学通讯,200440(4):500-504.
    张以顺,黄霞,陈云凤.植物生理学实验教程.北京:高等教育出版社,2009,139-141.
    张永生,刘喜,江玲,陈亮明,刘世家,翟虎渠,万建民.利用南京11X越光RIL群体进行抽穗期QTL定位分析.江苏农业学报,2009,,2(1):6-12.
    赵凡,于拴仓,石岭,张凤兰,余阳俊,赵岫云,张德双.SSR作为锚标记构建白菜×芜菁分子遗传图谱.分子植物育种,2010,8(2):375-382.
    赵向前,吴为人.水稻ILP标记遗传图谱的构建.遗传,2008,30(2):225-230.
    赵志刚,江玲,肖应辉,张文伟,翟虎渠.水稻孕穗期耐热性QTLs分析(Oryza sativa L.).作物学报,2006,32(5):640-644.
    郑小林,董任瑞.水稻热激反应的研究.E:高温对水稻幼苗叶片过氧化物酶的影响.湖南农业大学学报,1998,24(6):432-435.
    郑小林,董任瑞.水稻热激反应的研究:幼苗叶片的膜透性和游离脯氨酸含量的变化.湖南农业大学学报,1997,23(4):109-112.
    郑志广.光温条件对水稻结实及干物质生产的影响.北京农学院学报,2003,18(1): 13-16.
    周菊华,梁海曼.植物的热击反应及其在植物组织培养中的应用.武汉植物学研究,1990,8(1):87-100.
    朱昌兰,江玲,张文伟,王春明,翟虎渠,万建民.稻米直链淀粉含量和胶稠度对高温耐性的QTL分析.中国水稻科学,2006,20(3):248-250.
    朱昌兰,肖应辉,王春明,江玲,翟虎渠.水稻灌浆期耐热害的数量性状基因位点分析.中国水稻科学,2005,19(2):117-121.
    Abass M., Rajasheker C.B. (1993) Abscisic acid accumulation in leaves and cultured cells during heat acclimation in grapes. Hort Science.28(1):50-52.
    Adams, S.R., Cockshull K.E., Cave C.R.J. (2001) Effect of temperature on the growth and development of tomato fruits. Ann. Bot.88:869-877.
    Alahiotis S.N. (1983) Heat shock proteins. A new view on the temperature compensation. Comparative Biochemistry and Physiology Part B:Comparative Biochemistry.75(3):379-387.
    Al-Khatib K., Paulsen G.M. (1999) High-temperature effects on photosynthetic processes in temperate and tropical cereals. Crop Science.39(1):119-125.
    Almoguera C., Pilar Prieto-Dapena P., Juan Jordano J. (1998) Dual regulation of a heat shock promoter during embryogenesis:stage-dependent role of heat shock elements. The Plant Journal.13(4):437-446.
    Alon U., Barkai N., Notterman D.A., Gish K., Ybarra S., Mack D., Levine A.J. (1999) Board patterns of gene expression revealed by clustering analysis of tumor and normal colon tissues probed by oligonucleotide arrays. Proc Natl Acad Sci USA, 96(12):6745-6750.
    Alscher R.G., Donahue J.L., Cramer C.L. (1997) Reactive oxygen species and antioxidants:Relationships in green cells. Physiol Plant.100:224-233.
    Anderson J.A. (2002) Catalase activity, hydrogen peroxide content and hermotolerance of pepper leaves. Sci Hort.95:277-284.
    Apel K, Hirt H. (2004) Reactive oxygen species:metabolism, oxidative stress and signal transduction. Ann Rev Plant Biol.55:373-399.
    Apuya N.R., Zimmerman J.L. (1992) Heat shock gene expression is controlled primarily at the translational level in carrot cells and somatic embryos. The Plant Cell.4(6):657-665.
    Arrigo A. (1998) Small stress proteins:chaperones that act as regulators of intracellular Redox state and programmed cell death. Bio.Chem.379(1):19-26.
    Baker J.T., Allen L. H., J., Boote K. J. (1990) Growth and yield responses of rice to carbon dioxide concentration. J. Agric. Sci.115,313-320.
    Baker J.T., Allen L.H., Boote K.J. (1992) Temperature effects on rice at elevated CO2 concentration. Journal of Experimental Botany.43:959-964.
    Baneyx F., Bertsch U., Kalbach C.E., Vandervies S.M., Soii J., Gatenby A.A. (1995) Spinach chloroplast cpn21 co-chaperonin possesses two functional domains fused together in a toroidal structure and exhibits nucleotide-dependent binding to plastid chaperonin 60. J Biol Chem.270(18):10695-10702.
    Banzet N., Richaud C., Yves Deveaux Y., Michael Kazmaier M., Gagnon J., Triantaphylides C. (1998) Accumulation of small heat shock proteins, including mitochondrial HSP22, induced by oxidative stress and adaptive response in tomato cells. The Plant Journal.13(4):519-527.
    Barnabas B., Jager K., Feher A. (2008) The effect of drought and heat stress on reproductive processes in cereals. Plant cell environment.31(1):11-38.
    Barry G.F. (2001) The use of the Monsanto draft rice genome sequence in research. Plant physiology.125(3):1164-1165.
    Battisti D.S, Naylor R.L. (2009) Historical warnings of future food insecurity with unprecedented seasonal heat. Science.323:240-244.
    Bell C.J., Ecker J.R. (1994) Assignment of 30 microsatellite loci to the linkage map of Arabidopsis. Genomics 19:137-144.
    Bohnert H.J., Gong Q., Li P., Ma S. (2006) Unraveling abiotic stress tolerance mechanisms-getting genomics going. Current Opinion in Plant Biology.9(2): 180-188.
    Bowler C. Robert Fluhrb R. (2000) The role of calcium and activated oxygens as signals for controlling cross-tolerance. Trends in Plant Science.5(6):241-246.
    Bray E.A., Bailey-Serres J., Weretilnyk E. (2000) Responses to abiotic stresses In: Biochemistry and Molecular Biology of Plants (eds B.B. Buchanan, W. Gruissem & R.L. Jones), pp.1158-1203 American Society of Plant Physiologists, Rockville, MD, USA.
    Brown J.A., Li D., Ic M. (1993) Heat shock induction of manganese peroxidase gene transcription in Phanerochaete chryosporium. Appl. Environ. Microbiol.59: 4295-4299.
    Burke J.J., O'Mahony P.J., Olive M.J. (2000) Isolation of Arabidopsis mutants lacking components of acquired thermotolerance. Plant Physiol.123:575-587.
    Busch W., Wunderlich M, Schoffl F. (2005) Identification of novel heat shock factor-dependent genes and biochemical pathways in Arabidopsis thaliana.41(1): 1-14.
    Bush D.S. Calcium regulation in plant cells and its role in signaling. (1995) Annu Rev Plant Physiol Plant Mol Biol.46:95-122.
    Carriger S., Vallee D. (2007) More crop per drop. Rice Today.6:10-13.
    Cassman, K. G. (1999) Ecological intensification of cereal production syatems:Yield potential, soil quality, and precision agriculture. Proc. Natl. Acad. Sci. USA 96: 5952-5959.
    Chang C.C., Huang P.S., Lin H.R., Lu C.H. (2007) Transactivation of protein expression by rice HSP101 in planta and using Hsp101 as a selection marker for transformation. Plant Cell Physiol.48(8):1098-1107.
    Chen J.F., Hu J.G., Vick B.A., Jan C.C. (2006) Molecular mapping of a nuclear male-sterility gene in sunflower (Helianthus annuus L.)using TRAP and SSR markers. Theoretical and Applied Genetics.113:122-127.
    Chen X., Temnykh S., Xu Y., Cho Y.G., McCouch S.R. (1997) Development of a microsatellite framework map providing genome wide coverage in rice (Oryza sativa L.). Theor Appl Genet.95:553-567.
    Chumithri G.G., Dana P., Brian J.A., Paul A.H. (2010) Differential metabolic response of cultured rice(Oryza sativa) cells exposed to high-and low-temperature stress. Proteomics.10:3001-3019.
    Clarke S.M., Cristescu S.M., Miersch O., Harren F.J., Wasternack C., Mur L.A. (2009) Jasmonates act with salicylic acid to confer basal thermotolerance in Arabidopsis thaliana. New Phytol.182(1):175-87.
    Crafts-Brandner S.J., Law R.D. (2000) Effect of heat stress on the inhibition and recovery of the ribulose-1,5-bisphosphate carboxylase/oxygenase activation state. Planta.212:67-74.
    Cushman J.C., Bohnert H.J. (2000) Genomic approaches to plant stress tolerance. Current Opinion in Plant Biology. (3):117-124.
    Derisi J., Penland L., Brown P.O., Bittner M.L., Meltzer P.S., Ray M., Chen Y., Su Y.A., Trent J.M. (1996) Use of cDNA microarray to analyze gene expression patterns in human cancer. Nat Genet,14:457-460.
    Downs C.A., Heckathorn S.A. (1998) The mitochondrial small heat shock protein protects NADH:ubiquinone oxidoreductase of the electron transport chain during heat stress in plants. FEBS Lett.430(3):246-250.
    Easterling D.R., Horton B., Jones P.D., Peterson T.C., Karl T.R., Parker D.E., Salinger M.J., Razuvayev V., Plummer N., Jamason P., Folland C.K. (1997) Maximum and minimum temperature trends for the globe. Science.277(5324):364-367.
    Edwards K.D., Anderson P.E., Hall A., Salathia N.S., Locke J.C., Lynn J.R., Straume M., Smith J.Q., Millar, A.J. (2006) FLOWERING LOCUS C mediates natural variation in the high-temperature response of the Arabidopsis circadian clock. Plant Cell,18:639-650.
    Endo M., Tsuchiya T., Hamada K., Kawamura S., Yano K., Ohshima M., Higashitani A., Watanabe M., Kawagishi-Kobayashi M. (2009) High temperatures cause male sterility in rice plants with transcriptional alterations during pollen development. Plant Cell Physiol.50(11):1911-1922.
    Farquhar G.D., Caemmerer, S., Berry J. A. (1980) Ecology, photosynthesis CO2 assimilation in leaves of C3species. Planta 149,178-190.
    Foolad M.R. (1999) Comparison of salt tolerance during seed germination and vegetative growth in tomato by QTL mapping. Genome.42:727-734.
    Foreman J., Johansson H., Hornitschek P. Josse E.m., Fankhauser C., Halliday K. (2011) Light receptor action is critical for maintaining plant biomass at warm ambient temperatures. The Plant Journal,65(3):441-452.
    Foyer C.H., Descourvieres P., Kunert K.J. (1994) Protection against oxygen radicals: an important defense mechanism studied in transgenic plants. Plant Cell and Environment.17(5):507-523.
    Garcia-Ferris C., Moreno J. (1994) Oxidative modification and breakdown of ribulose 1,5-bisphosphate carboxylase/oxygenase induced in Euglena gracilis by nitrogen starvation. Planta.193:208-215.
    Goldring C.E., Reveneau S., Chantome A., Pance A., Fleury C., Hume D.A., Sester D., Mignotte B., Jeannin J.F. (2000) Heat shock enhances transcriptional activation of the murine-inducible nitric oxide synthase gene. FASEB J.14(15): 2393-2395.
    Gong M., Chen S.N., Song Y.Q., Li Z.G.(1997) Effect of Calcium and calmodulin on intrinsic heat tolerance in relation to antioxidant systems in maize seedlings. J Plant Physiol.24(3):371-379.
    Gong M., Li Y.J., Chen S.Z. (1998) Abscisic acid induced thermotolerance in maize seedling is mediated by calcium and associated with antioxidant systems. J Plant Physiol.153(4):488-496.
    Griffin J.J., Ranney T.G., Pharr D.M. (2004) Photosynthesis, Chlorophyll fluorescence, and carbohydrate content of Illicium Taxa grown under varied irradiance. J.Amer. Soc. Hort.129(1):46-53.
    Grodzicker T., Williams J., Sharp P., Sambrook J. (1974) Physical mapping of temperature-sensitive mutations of adenoviruses. Cold Spring Harbor Symp Quant Biol 39:439-446.
    Hall A.E. (2001) Crop responses to the environment. CRC Press, Boca Raton, pp324.
    Han F., Chen H., Li X.J., Yang M.F., Liu G.S., Shen S.H. (2009) A comparative proteomic analysis of rice seedlings under various high-temperature stress. Biochimica et Bophysica Acta.1794(11):1625-1634.
    Harndahl U., Hall R.B., Osteryoung K.W., Vierling E., Bornman J.F., Sundby C. (1999) The chloroplast small heat shock protein undergoes oxidation-dependent conformational changes and may protect plants against oxidative stress. Cell Stress Chaperons.4(2):129-138.
    Harushima Y., Yano M., Shomura A., Sato M., Shimano T., Kuboki Y., Yamamoto T., Lin S.Y., Antonio B.A., Parco A., Kajiya H., Huang N., Yamamoto K., Nagamura Y., Kurata N., Khush G.S., Sasaki T. (1988) A high-density rice genetic linkage map with 2275 markers using a single F2 population. Genetics.148:479-494.
    Hasegawa T., Yoshimoto M., Kuwagata T., Ishigooka Y. Kondo M., Ishimaru T. (2008) The impact of global warming on rice production:lessons from spikelet sterility observed under the record hot summer of 2007. NIAES Annual Report 2009:23-25.
    Heckathorn S.A, Downs C.A., Sharkey T.D., James S. Coleman J.S. (1998) The small, Methionine-rich chloroplast heat-shock protein protects photosystem Ⅱ electron transport during heat sress. American Society of Plant Physiologist.116(1):439-444.
    Herouart D.V.M.M., Inz'e D. (1994) Developmental and environmental regulation of the Nicotiana plumbaginifolia cytosolic Cu/Zn-superoxide dismutase promoter in transgenic tobacco. Plant Physiol.104:873-880.
    Hong S.W., Vierling E. (2000) Mutants of Arabidopsis thaliana defective in the acquisition of tolerance to high temperature stress. Proc Natl Acad Sci USA.. 97(8):4392-4397.
    Huang J., Wang M.M., Jiang Y., Bao Y.M., Huang X., Sun H., Xu D.Q., Lan H.X., Zhang H.S. (2008) Expression analysis of rice A20/AN1-type zinc finger genes and characterization of ZFP177 that contributes to temperature stress tolerance. Gene.420:135-144.
    Iba K. (2002) Acclimative response to temperature stress in higher plants:Approaches of gene engineering for temperature tolerance. Annual Review of Plant Biology. 53:225-245.
    IPCC,2007:Summary for Policymakers. In:Climate Change 2007:The Physical Science Basis. Contribution of Working Group I to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change [Solomon, S., D. Qin, M. Manning, Z. Chen, M. Marquis, K.B. Averyt, M.Tignor and H.L. Miller (eds.)]. Cambridge University Press, Cambridge, United Kingdom and New York, NY, USA.
    Irihimovitch V, Shapira M. (2000) Glutathione redox potential modulated by reactive oxygen species regulates translation of Rubisco large subunit in the chloroplast. J Biol Chem.275:16289-16295.
    Jagadish S.V.K., Craufurd P.Q., Wheeler.T.R.. (2007) High temperature stress and spikelet fertility in rice(Oryza saliva L.). Journal of Experimental Botany.58(7): 1627-1635.
    Jagadish S.V.K., Muthurajan R., Oane R., Wheeler T.R.. Heuer S., Bennett J., Craufurd P.Q. (2010b) Physiological and proteomic approaches to address heat tolerance during anthesis in rice(Oryza sativa L.). Journal of Experimental Botany. 61(1):143-156.
    Jagadisha S.V.K., Cairnsb J., Lafitte R., Wheeler T.R., Price A.H., Craufurd P.Q. (2010a) Genetic analysis of heat tolerance at anthesis in rice. Crop science. 50(5):1633-1641.
    Jander G., Norris A.R., Rounsley S.D., Bush D.F., Levin I.M., Last R.L. (2002) Arabidopsis map-based cloning in the post-genome era. Plant Physiology, 129:440-450.
    Jones C.J., Edwards K.J., Castagllone S., Winreld M.Q., Sala F., Wiel C., Bredemeijer G.., Vosman B., Matthes M., Daly A., Brettschneider R., Bettini P., Buiatti M., Maestri E., Malceschii A., Marmiroli N., Aert R.,Volckaert G., Rueda T., Linacero R., Vazques A., Karp A. (1997) Reproducibility testing of RAPD, AFLP and SSR markers in plants by a network of European laboratories. Molecular Breeding.3(5):381-390.
    Jones P.D., New M., Parker D.E., Martin S., Rigor I.G. (1999) Surface air temperature and its change over the past 150 years. Reviews of Geophysics.37(2):173-199.
    Katiyar-Agarwal S., Agarwal M., Grover A. (2003) Heat-tolerant basmati rice engineered by over-expression of hsp101. Plant Molecular Biology.51(5): 677-686.
    Khush G.S. (2005) What it will take to feed 5.0 billion rice consumers in 2030. Plant Mol Biol.59:1-6.
    Kleinhenz M.D., Palta J.P. (2002) Root zone calcium modulates the response of potato plants to heat stress. Physiol Plant.115(1):111-118.
    Kotak S., Larkindale J., Lee U., Koskull-Doring P.V., Vierling E., Scharf K.D. (2007) Complexity of the heat stress response in plants. Current Opinion in Plant Biology 10:310-316.
    Kurek I., Aviezer K., Erel N., Herman E., Breiman A. (1999) The wheat peptidyl prolylcis-trans-isomerase FKBP77 is heat induced and developmentally regulated. Plant Physiol.119(2):693-704.
    Kurek I., Chang T.K., Bertain S.M., Madrigal A., Liu L., Lassner M.W., Zhu G. (2007) Enhanced thermostability of Arabidopsis Rubisco activase improves photosynthesis and growth rates under moderate heat stress. The Plant Cell.19: 3230-3241.
    Kuzmin E.V., Karpova O.V., Elthon T.E., Newton K.J. (2004) Mitochondrial respiratory deficiencies signal up-regulation of genes for heat shock proteins. J Biol Chem.279:20672-20677.
    Lander E.S., Green P., Abrahamson J., Barlow A., Daly M.J., Lincoln S.E., Newburg L. (1987) MAPMAKER:An interactive computer package for constructing primary genetic linkage map of experimental and natural populations. Genomics. 1(2):174-181.
    Larkindale J., Hall J.D., Knight M.R., Vierling E. (2005) Heat stress phenotypes of Arabidopsis mutants implicate multiple signaling pathways in the acquisition of thermotolerance. Plant Physiol.138:882-897.
    Larkindale J., Huang B. (2004) Thermotolerance and antioxidant systems in Agrostis stolonifera:involvement of salicylic acid, abscisic acid, calcium, hydrogen peroxide, and ethylene. J Plant Physiol.161:405-413.
    Larkindale J., Mishkind M., Vierling E. (2005) Plant response to high temperature. In: Plant Abiotic Stress. Editerd by Jenks MA, Hasegawa PM. Blackwell Publishing, 100-144.
    Law R.D., Crafts-Brandner S.J. (1999) Inhibition and acclimation of photosynthesis to heat stress Is closely correlated with activation of ribulose-1,5-bisphosphate carboxylase/oxygenase. Plant Physiology.120:173-182.
    Lee D.G., Ahsan N., Lee S.H., Kang K.Y., Bahk J.D., Lee I.J., Lee. B.H. (2007) A proteomic approach in analyzing heat-responsive proteins in rice leaves. Plant Proteomics.7(18):3369-3383.
    Levinson G., Gutman G.A. (1987) Slipped-strand mispairing:a major mechanism for DNA sequence evolution. Mol Biol Evol.4:203-221.
    Li C., Wong W. (2003) The analysis of gene expression data. Statistics for Biology and Health.120-141.
    Li H.X., Chen Z., Hu M.X., Wang Z.M., Hua H., Yin C.X., Zeng H.L. (2011) Different effects of night versus day high temperature on rice quality and accumulation profiling of rice grain proteins during grain filling. Plant Cell Reports.30(9):1641-1659.
    Liu D., Zhang X., Cheng Y, Takano T., Liu S. (2006) rHsp90 gene expression in response to several environmental stresses in rice (Oryza sativa L.). Plant Physiol Biochem.44:380-386.
    Liu H.C., He Z.M., Rosenwakes Z. (2001) Application of complementary DNA microarray (DNA chip) technology in the study of gene expression profiles during folliculogenesis. Fertility and Sterility.75(5):947-955.
    Liu X., Huang B. (2000) Heat stress injury in relation to membrane lipid peroxidation in creeping bent grass. Crop Sci.40:503-510.
    Lu P., Sang W.G., Mal K.P. (2008) Differential responses of the activities of antioxidant enzymes to thermal stresses between two invasive eupatorium species in China. Journal of Integrative Plant Biology.50(4):393-401.
    Mackill D.J., Coffman W.R., Rutger J.N. (1982) Pollen shedding and combining ability for high temperature tolerance in rice. Crop Science.22(4):730-733.
    Maestri E., Klueva N., Perrotta C., Gulli M., Nguyen H.T., Marmiroli N. (2002) Molecular genetics of heat tolerance and heat shock proteins in cereals. Plant Molecular Biology.48(5-6):667-681.
    Maggs, R., Ashmore, M. R. (1998) Growth and yield responses of Pakistan rice (Oryza sativa L.) cultivars to O3 and NO2. Environmental Pollution.103: 159-170.
    Matsui T., Namuco O.S., Ziska L.H., Horie T. (1997a) Effects of high temperature and CO2 concentration on spikelet sterility in indica rice. Field Crop Research. 51(3):213-219.
    Matsui T., Omasa K, Horie T. (1997b) High temperature-induced spikelet sterility of japonica rice at flowering in relation to air temperature, humidity and wind velocity conditions. Jpn. J. Crop Sci.66(3):449-455.
    Matsui T., Omasa K. (2002) Rice (Oryza sativa L.) cultivars tolerant to high temperature at flowering:anther characteristics. Ann Bot.89(6):683-687.
    Matsui T., Omasa K.., Hore T. (2001) The difference in sterility due to high temperature during the flowering period among japonica-rice varieties. Plant Prod Sci.4:90-93.
    Matsuid T., Omasa K., Horie T. (1999a) Rapid swelling of pollen grain in response to floret oppening unfolds locule in rice. Plant Prod. Sci.2:196-199.
    Matsuid T., Omasa K., Horie T. (1999b) Mechanism of anther dehiscence in rice (Oryza sativa L.). Ann. Bot.84:501-506.
    Matsuid T., Omasa K., Horie T. (2000) High temperature at flowering inhibits swelling of pollen grains, a driving force for thecae dehiscence in rice (Oryza sativa L.). Plant Prod.Sci.3:430-434.
    Matsushima S., Ikewada H., Maeda A., Honma S. Niki H. (1982) Studies on rice cultivation in the tropics 1:Yielding and ripening responses of the rice plant to the extremely hot and dry climate in Sudan. Japanese Journal of Tropical Agriculture. 26(1):19-25.
    Mayer M.P., Bukau B. (2005) Hsp70 chaperones:cellular functions and molecular mechanism. Cell. Mol. Life. Sci.62:670-684.
    McCouch S.R., Kocher G., Yu Z.H., Wang Z.Y., Khush G.S., Coffman W.R., Tanksley S.D. (1988) Molecular mapping of rice chromosomes. Thero Appl Genet. 76:815-829.
    Meksem K., Kahl G. (2005) The handbook of plant genome mapping:genetic and physical mapping. Wilely-VCH Verlag Gmbh & Co.KGaA. pp3-17.
    Meyers B.C., Kozik A., Griego A., Kuang., Michelmore R. (2003) Genome-wide analysis of NBS-LRR encoding genes in Arabidopsis. Plant Cell.15:809-834.
    Michelmore R.W., Paran I., R V Kesseli R.V. (1991) Identification of markers linked to disease-resistance genes by bulked segregant analysis:a rapid method to detect markers in specific genomic regions by using segregating populations. 88(21):9828-9832.
    Miernyk J.A. (1997) The 70 kDa stress-related proteins as molecular chaperones. Trends Plant Sci.2:80-87.
    Miller G., Mittler R. (2006) Could heat shock transcription factors function as hydrogen peroxide sensors in plants? Ann Bot.98:279-288.
    Mittler R (2002) Oxidative stress antioxidants and stress tolerance.Trends Plant Sci 7:405-410.
    Moller I.M., Jensen P.E., Hansson A. (2007) Oxidative modifications to cellular components in plants. Annu Rev Plant Biol.58:459-481.
    Moriarty T., West R., Small G., Rao D., Ristic Z. (2002) Heterologous expression of maize chloroplast protein synthesis elongation factor (EF-Tu) enhances Escherichia coli viability under heat stress. Plant Science.163(6):1075-1082.
    Morita S., Yonemaru J.I., Takanashi J.C. (2005) Grain growth and endosperm cell size under high night temperatures in rice (Oryza sativa L.). Annals of Botany.95: 695-701.
    Mutsuo T. (1990) Rice Science Part Ⅱ Physiology. Tokyo:Rural Culture Association. 633-639.
    Neill S., Desikan R., Hancock J. (2002a) Hydrogen peroxide signalling. Current Opinion in Plant Biology.5(5):388-395.
    Neill S.J., Desikan R., Clarke A., Hurst R.D., Hancock J.T. (2002b) Hydrogen peroxide and nitric oxide as signaling molecules in plants. J Exp Bot.53(372): 1237-1247.
    Nguyen T.T.T., Klueva N., Chamareck V., Aarti A., Magpantay G., Millena A.C., Pathan M.S., Nguyen H.T. (2004) Saturation mapping of QTL regions and identification of putative candidate genes for drought tolerance in rice. Mol Genet Genomics.272(1):35-46.
    Nollen E.A.A., Morimoto, R.I. (2002) Chaperoning signaling pathways:molecular chaperones as stress-sensing 'heat shock' proteins. Journal of Cell Science, 115:2809-2816.
    Ogweno J.O., Song X.S., Shi k., Hu W.H., Mao W.H., Zhou Y.H., Yu J.Q., Nogues S. (2008) Brassinosteroids alleviate heat-induced inhibition of photosynthesis by increasing carboxylation efficiency and enhancing antioxidant systems in Lycopersicon esculentum. J Plant Regul.27:49-57.
    Ortiz C., Cardemil L. (2001) Heat-shock responses in two leguminous plants:a comparative study. J. Exp. Bot.52:1711-1719.
    Osada Akio., Sasiprapa V., Rahong M. (1973) Abnormal occurrence of empty grains of indica rice-plants in the dry, hot season in Thailand. Proc. Crop Sci. Japan. 42(1):103-109.
    Panaud O., Chen X., McCouch S.R. (1996) Development of microsatellite markers and characterization of simple sequence length polymorphism (SSLP) in rice (Oryza sativa L.). Mol Gen Genet.252:597-607.
    Paterson A.H. (1995) Molecular dissection of quantitative traits:progress and prospects. Genome.5:321-333.
    Paterson A.H., Damon S., Hewitt J.D., Zamir D., Rabinowitch H.D., Lincoln S.E., Lander E.S., Tanksley S.D. (1991) Mendelian Factors Underlying Quantitative Traits in Tomato:Comparison Across Species, Generations, and Environments Genetics.127(1):181-197.
    Pelham H.R. (1986) Speculations on the functions of the major heat shock and glucose-regulated proteins. Cell.46(7):959-961.
    Pelham H.R., Bienz M. (1982) A synthetic heat-shock promoter element confers heat-inducibility on the herpes simplex virus thymidine kinase gene. EMBO J. 1(11):1473-1477.
    Peng S., Huang J., Sheehy J.E., Laza R.C., Visperas R.M., Zhong X., Centeno G.S., Khush G.S, Cassman K.G. (2004) Rice yields decline with higher night temperature from global warming. Proc Natl Acad Sci USA.101(27): 9971-9975.
    Perez D.E., Hoyer J.S., Johnson A.I., Moody Z.R., Lopez J. Kaplinsky N.J. (2009) BOBBER1 is a noncanonical Arabidopsis small heat shock protein required for both development and thermotolerance. Plant Physiol.151:241-252.
    Perkel J. (2008) SNP genotyping:Six technologies t hat keyed a revolution. Natur Meth.5:447-453.
    Prandl R., Schoffl F. (1996) Heat shock elements are involved in heat shock promoter activation during tobacco seed maturation. Plant Molecular Biology.31(1): 157-162.
    Prasad P.V.V., Boote K.J., Allen L.H., Sheehy J.E., Thomas J.M.G. (2006) Species, ecotype and cultivar differences in spikelet fertility and harvest index of rice in response to high temperature stress. Field Crops Research.95:398-411.
    Preville X., Salvemini F., Giraud S., Chaufour S., Paul C., Stepien G., Ursini M.V., Arrigo A.P. (1999) Mammalian small stress proteins protect against oxidative stress through their ability to increase glucose-6-phosphate dehydrogenase activity and by maintaining optimal cellular detoxifying machinery. Experimental Cell Research.247:61-78.
    Queitsch, C., Hong, S.W., Vierling, E., Lindquest, S. (2000) Heat shock protein101 plays a crucial role in thermotolerance in Arabidopsis. Plant Cell.12:479-492.
    Ragot M., Hoisington D.A. (1993) Molecular markers for plant breeding: comparisons of RFLP and RAPD genotyping costs. Theor Appl Genet 86:975-984.
    Rosenzweig C., Parry M.L. (1994) Potential impact of climate change on world food supply. Nature.367:133-138.
    Salinas J., Sanchez-Serrano J.J. (2006) Arabidopsis Protocols. Human Press.65-78.
    Salinger M.J. (2005) Climate variability and change:past, present and future-an overview. Climatic Change.70:9-29.
    Salvucci M.E., Crafts-Brandner S.J. (2004) Relationship between the heat tolerance of photosynthesis and the thermal stability of Rubisco activase in plants from contrasting thermal environments. Plant Physiology.134:1460-1470.
    Sanmiya K., Suzuki K., Egawa Y., Shono M. (2004) Mitochondrial small heat-shock protein enhances thermotolerance in tobacco plants. FEBS Letters. 557(1-3):265-268.
    Sarkar N.K., Kim Y.K., Grover A. (2009) Rice sHsp genes:genomics organization and expression profiling under stress and development. BMC Genomics. 10:1-18.
    Scafaro A.P., Haynes P.A., Atwell B.J. (2010) Physiological and molecular changes in Oryza meridionalis Ng., a heat-tolerant species of wild rice. Journal of Experimental Botany.61(1):191-202.
    Scandalios J.G. (2002) Oxidative stress responses-What havegenome-scale studies taught us? Genome Biol.3:10191-10196.
    Schena M., Shalon D., Davis R.W., Brown P.O. (1995) Quantitative monitoring of genes expression patterns with a complementary DNA microarray. Science. 270(5235):467-470.
    Sharkey T.D. (1985) Photosynthesis in intact leaves of C3 plants:Physics, physiology and rate limitations Bot. Rev.51(1):,53-105.
    Shen Y.J., Jiang H., Jin J.P., Zhang Z.B., Xi B., He Y.Y., Wang G., Wang C., Qian L. Li X., Yu Q.B., Liu H.J., Chen D.G., Gao J.H., Huang H., Shi T.L., Yang Z.N. (2004) Development of genome-wide DNA polymorphism database for map-based cloning of rice genes. Plant Physiology.135:1198-1205.
    Sistrunk M.L., Antosiewicz D.M., Purugganan M.M., Braam J. (1994) Arabidopsis TCH3 encodes a novel Ca2+ binding protein and shows environment induced and tissues specific regulation. Plant Cell.6 (10):1553-1565.
    Song L.Y., Chow W.S., Sun L.L.,Peng C. (2010) Acclimation of photosystem Ⅱ to high temperature in two Wedelia species from different geographical origins: implications for biological invasions upon global warming. Journal of Experimental Botany.61(14):4087-4096.
    Stake T. and Yoshida S. (1978) High temperature induced sterility in indica rice at flowering. Japan J. Crop. Sci.47:6-17.
    Stone P. (2001) The effects of heat stress on cereal yield and quality. In:Basra A.S. (Ed.), Crop Responses and Adaptations to Temperature Stress. Food Products Press, Binghamton, New York, pp243-291.
    Sun C.W., Callis J. (1997) Independent modulation of Arabidopsis thaliana polyubiquitin mRNAs in different organs of and in response to environmental changes. Plant J.11:1017-1027.
    Sung D.Y., Kaplan F., Lee K.J., Guy C.L. (2003) Acquired tolerance to temperature extremes. Trends Plant Sci.8:179-187.
    Surekha K.A., Manu A., Anil G. (2003) Heat-tolerant basmati rice engineered by over-expression of hsp101. Plant Molecular Biology.51:677-686.
    Tabata M., Hirabayashi H., Takeuchi Y., Ando I., lido Y. (2007) Mapping of quantitative trait loci for the occurrence of white-back kernels associated with high temperatures during the ripening period of rice (Oryzae saliva L.). Breeding Science,57:47-52.
    Takeoka Y., Hiroi K., Kitano H., Wada T. (1991) Pistil hyperplasia in rice spikelets as affected by heat-stress. Sexual Plant Reproduction.4:39-43.
    Talanova V.V., Topchieva L.V., Titov A.F. (2006) Influence of abscisic acid on cucumber seedlings resistance to combined effects of high temperature and chloride salinity. Izv Akad Nauk Ser Biol. (6):757-61.Abstract in English. Article in Russian.
    Temnykh S., Park W.D., Ayres N., Cartinhour S., Hauck N., Lipovich L., Cho Y.G., Ishii T., McCouch S.R. (2000) Mapping and genome organization of microsatellite sequences in rice (Oryza saliva L.).Theor Appl Genet. 100:697-712.
    Tilman D., Cassman K. G., Matson P.A., Naylor, R., Polasky S. (2002) Agricultural sustainability and intensive production practices. Nature 418,671-677.
    Toh S., Imamura A., Watanabe A., Nakabayashi K., Okamoto M., Jikumaru Y., Hanada A., Aso Y., Ishiyama K., Tamura N., Iuchi S., Kobayashi M., Yamaguchi S., Kamiya Y., Nambara E., Kawakami N. (2008) High temperature-induced abscisic acid biosynthesis and its role in the inhibition of gibberellin action in Arabidopsis seeds. Plant Physiol.46(3):1368-1385.
    Tsutomu I., Hideyuki H., Masashi I., Toshiyuki T., Yumiko A.S., Satoshi Y., Ikuo A., Tsugufumi O., Motohiko K. (2010) A genetic resource for early-morning flowering trait of wild rice Oryza officinalis to mitigate high temperature-induced spikelet sterility at anthesis. Annals of Botany.106:515-520.
    Vacca R.A., de Pinto M.C., Valenti D., Passarella S., Marra E., Degara L. (2004) Production of reactive oxygen species, alteration of cytosolic ascorbate peroxidase, and impairment of mitochondrial metabolism are early events in heat shock-induced programmed cell death in tobacco bright-yellow 2 cells. Plant Physiol.134:1100-1112.
    Varshney R.K., Sigmund R., Borner A., Korzun V., Stein N., Sorrells M.E., Langridge P., Grane A. (2005) Interspecific transferability and comparative mapping of barley EST-SSR markers in wheat, rye and rice. Plant Science.168: 195-202.
    Vierling E. (1991) The roles of heat shock proteins in plants. Annu Rev Plant Physiol Plant Mol Biol.42:579-620.
    Vinocur, B., Altman, A. (2005) Recent advances in engineering plant tolerance to abiotic stress:achievements and limitations. Curr. Opin. Biotechnol.16: 123-132.
    Volkov R.A., Panchuk I.I., Mullineaux P.M., Scheffl F. (2006) Heat stress induced H2O2 is required for effective expression of heat shock genes in Arabidopsis. Plant Mol Biol.61(4-5):733-746.
    Vu J.C.V., Allen L.H., Boote K.J., Bowes G. (1997) Effects of elevated CO2 and temperature on photosynthesis and Rubisco in rice and soybean. Plant. Cell and Environment.20:68-76.
    Wahid A., Close T.J. (2007b) Expression of dehydrins under heat stress and their relationship with water relations of sugarcane leaves. Biol. Plant.51:104-109.
    Wahid A., Gelani S., Ashraf M., Foolad M.R. (2007a) Heat tolerance in plants:An overview. Environmental and Experimental Botany.61 (3):199-223.
    Wang L.J., Fan L., Loescher W., Duan W., Liu G.J., Cheng J.S., Luo H.B., Li S.H. (2010) Salicylic acid alleviates decreases in photosynthesis under heat stress and accelerates recovery in grapevine leaves. BMC Plant Biol. (10):1-10.
    Wang P., Duan W., Takabayashi A., Endo T., Shikanai T., Ye J.Y., Mi H. (2006) Chloroplastic NAD(P)H dehydrogenase in tobacco leaves functions in alleviation of oxidative damage caused by temperature stress. Plant Physiol.141:465-474.
    Wang W., Vinocur B., Altman A. (2003) Plant responses to drought, salinity and extreme temperatures towards genetic engineering for stress tolerance. Planta. 218:1-14.
    Weis E., Berry J.A. (1988) Plants and high temperature stress. Symp Soc Exp Bio. 42:329-346.
    Welsh J., McClelland M. Finger printing genomes using PCR with arbitrary primers. Nucleic Acids Res,1990,18 (24):7213-7218.
    Williams J.G., Kubelik A.R., L ivak K.J., Rafalsik J.A., Tingey S.V. (1990) DNA polymorphisms amplified by arbitrary p rimers are useful as genetic markers. Nucleic Acids Res,18(22):6531-6535.
    Wu K.S., Tanksley S. (1993) Abundance, polymorphism and genetic mapping of microsatellites in rice. Biomedical and life sciences.241(1-2):225-235.
    Wu X.L., Yoko S., Sachie K., Yukihiro I., Kinya T. (2009) Enhanced heat and drought tolerance in transgenic rice seedlings overexpressing OsWRKYll under the control of HSP101 promoter. Plant Cell Rep.28:21-30.
    Xu S., Li J., Zhang X., Wei H., Cui L. (2006) Effects of heat acclimation pretreatment on changes of membrane lipid peroxidation, antioxidant metabolites, and ultrastructure of chloroplasts in two cool-season turfgrass species under heat stress. Environ. Exp. Bot.56:274-285.
    Yamanouchi U.,Yano M., Lin H., Ashikari M., Yamada K. (2002) A rice spotted leaf gene, Spl7, encodes a heat stress transcription factor protein. PNAS.99(11): 7530-7535.
    Yang X., Wen X., Gong H., Lu Q., Yang Z., Tang Y., Liang Z., Lu C. (2007) Genetic engineering of the biosynthesis of glycinebetaine enhances thermotolerance of photosystem II in tobacco. plants. Planta.225:719-733.
    Yang, K.A., Lim, C.J., Hong, J.K., Park, C.Y., Cheong, Y.H., Chung, W.S., Lee, K.O., Lee, S.Y., Cho, M.J., Lim, C.O. (2006) Identification of cell wall genes modified by a permissive high temperature in Chinese cabbage. Plant Sci.171:175-182.
    Yokotani N., Higuchi M., Kondou Y., Ichikawa T., Iwabuchi M., Hirochika H., Matsui M., Oda K. (2011) A novel chloroplast protein, CEST induces tolerance to multiple environmental stresses and reduces photooxidative damage in transgenic Arabidopsis. Journal of Experimental Botany.62(2):557-569.
    Yokotani N., Ichikawa T., Kondou Y., Matsui M., Hirochika H., Iwabuchi M., Oda K. (2008) Expression of rice heat stress transcription factor OsHsfA2e enhances tolerance to environmental stresses in transgenic Arabidopsis. Planta, 227:957-967.
    Yoshida S. (1981) Fundamentals of Rice Crop Science (International Rice Research Institute, Los Banos, Philippines). pp 69-83.
    Yost H.J., Lindquist S. (1986) RNA splicing is interrupted by heat shock and is rescued by heat shock protein synthesis. Cell.45:185-193.
    Yutaka S., Sakiko Y. (2008) Enhanced tolerance to drought stress in transgenic rice plants overexpressing a small heat-shock protein, sHSP17.7. Plant Cell Rep.27: 329-334.
    Zabeau M. (1993) Selective restriction fragment amplification:a genetic method for DNA fingerprinting. European Patent Application.92402629.7.
    Zhang G.L., Chen L.Y., Xiao G.Y., Xiao Y.H., Chen X.B., Zhang S.T. (2009) Bulked segregant analysis to detect QTL related to heat tolerance in rice (Oryza sativa L.) using SSR markers. Agricultural Sciences in China.8(4):482-487.
    Zhang Q.F., Shen B.Z., Dai X.K., Mei M.H., Maroof M.A.S., Li Z.B. (1994) Using bulked extremes and recessive class to map genes for photoperiod-sensitive genic male sterility in rice. Proc. Natl. Acad. Sci.91:8675-8679.
    Zietkiewicz E., Rafalski A., Labuda D.(1994) Genome fingerprinting by simple sequence repeat (SSR)-anchored polymerase chain reaction amplification. Genomics.20:176-183.
    Zou J., Liu C., Chen X. (2011) Proteomics of rice in response to heat stress and advances in genetic engineering for heat tolerance in rice. Plant Cell Rep.17 July, Published online,11pages.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700