用户名: 密码: 验证码:
平交路口机动车自行车行人及其相互干扰微观行为模型研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
摘要:混合交通是我国城市交通的典型特征之一。混合交通环境下,行人、自行车、机动车之间的相互干扰显著影响了交叉口的交通运行状况。因此,深入研究平交路口处机动车、自行车、行人三种出行方式之间的干扰机理,提出一套符合我国交通实际情况的平交路口机动车自行车行人微观仿真模型,在理论上不仅能够进一步丰富和完善国内外在混合交通领域的研究成果,促进交通流理论的完善和发展,并且在实践中能够指导开发符合我国混合交通特征的城市交通仿真系统,为平面交叉口的交通规划、管理和信号控制方案设计提供基本参数和理论依据。
     本文通过扩展社会力模型对平交路口处机动车、自行车、行人及其相互干扰行为建模研究。以平交路口处右转机动车流、相同进口相邻直行自行车流、相交进口双向行人流相互干扰为例,研究思路是:首先,分析无其他出行方式干扰下的行人、右转机动车及自行车微观行为及交通特性,在此基础上分别建立基于社会力模型的行人微观仿真模型、右转机动车跟驰模型及自行车微观仿真模型;其次,考虑混合交通环境下其他不同出行方式对当前道路使用者的干扰影响,为前述机动车、自行车及行人的社会力模型构成分别引入不同出行方式对其施加的相互作用力,进而得到平交路口机动车、自行车、行人相互干扰下的行为仿真模型。
     本文的主要研究工作如下:
     1.建立考虑行人减速避让的改进社会力模型。首先,分析研究平交路口处行人微观行为及行人交通特性。其次,考虑行人的运动需求空间,为社会力模型引入“行人减速避让机制”,改进社会力模型。再次,利用C++语言编程实现模型,模拟现象表明行人能够有效避让其他行人及障碍物并且能够充分的利用步行空间;将仿真实验数据拟合得到的行人流速度-密度图与实际数据比较,结果表明行人密度在[0,3.5]p/m2内变化时,所建模型能够再现行人流基本图。
     2.建立基于修正广义力及车辆动力理论的右转机动车仿真模型。首先,分析研究平交路口处右转机动车跟驰行为及机动车交通特性。其次,考虑右转机动车跟驰行为与无弯度路段机动车跟驰行为的差异,修正广义力模型。再次,建立仿真框架,分别利用修正后的广义力模型及阿克曼转向分别计算车辆加速度(速度)及转向角;将车辆转向角及车速作为车辆动力模型输入,得到车辆转弯时的侧滑角、偏航角速度、地面坐标。最后,采集数据并设计仿真实验,将仿真实验数据拟合得到的机动车流量-占有率基本图与实际数据比较进而验证模型的有效性。
     3.建立考虑期望路径骑行特点的自行车社会力模型。首先,分析研究平交路口处自行车微观行为及自行车交通特性。其次,分析应用社会力模型仿真自行车微观行为的可行性;在此基础上,构建自行车在自驱动力、环境作用力、考虑几何特征的自行车相互作用力等三种力共同作用下的社会力模型,其中,针对平交路口处自行车依照期望路径骑行通过路口的特点,提出环境作用力,环境作用力包括驱使骑行者沿着期望路径骑行的力及障碍物对自行车施加的作用力;考虑几何特征的自行车相互作用力包括社会心理力及减速力,社会心理力用于反映距离的效应,而减速力能够再现自行车之间在一定距离内的减速行为。再次,采集数据并设计仿真实验,将仿真实验数据拟合得到的自行车速度-密度基本图与实际数据比较进而验证模型的有效性。
     4.建立平交路口机动车自行车行人相互干扰模型。首先,考虑机动车自行车行人的速度差异、各向异性及仿真步长等因素,改进社会力模型中“相互作用力”的势函数及力。改进后“相互作用力”的特点是能够同时考虑机动车、自行车、行人在下一个仿真步长下的需求空间、各自运动期望速度之间夹角等因素对“相互作用力”的影响。其次,分析混合交通干扰对机动车、自行车及行人行为的影响,分别为前述所建模型引入不同出行方式施加的相互作用力,进而建立考虑机动车自行车干扰的行人仿真模型、考虑行人自行车干扰的机动车仿真模型及考虑机动车行人干扰的自行车仿真模型。再次,通过比较两两干扰下机动车、自行车及行人的空间移动实测轨迹数据与仿真得到的轨迹数据校准机动车、自行车及行人“相互作用力”的作用强度及作用范围。最后,在既有信号平交路口混合交通微观仿真平台上实现平交路口机动车自行车行人相互干扰模型,并给出平台应用案例。
ABSTRACT:The traffic condition that high volumes of pedestrians and bicycles are mixed up together is one of the most obvious characteristics on the urban road network in China. In this situation, the mutual interference among pedestrians, non-motor vehicles and motor vehicles seriously affects the traffic condition of intersections; therefore, the research on the interference mechanism and providing the suitable mixed traffic microscopic behavior model become imperative, because it could not only further enrich the research in the field of mixed traffic and develop the traffic flow theory, but also guide to develop the urban traffic simulation system suitable for the specific characteristics of China, so as to provide basic parameters and theoretical support for traffic planning and management and signal control scheme.
     The interaction model among pedestrians, non-motor vehicles and vehicles at signalized plane intersections is proposed on the basis of extending the social force model in this dissertation, and then is exemplified by the specific study on right-turning vehicles, straight-moving bicycles from the same approach, and bidirectional pedestrians from the intersecting approach. The research process is generally as follows: microscopic behavior and traffic characteristics of right-turning vehicles, straight-moving bicycles and bidirectional pedestrians under the environment without interference from other traffic entity are analyzed, and then on the basis of the social force model, pedestrian microscopic simulation model, right-turning vehicle following model, and bicycles microscopic simulation model are built, respectively. In addition, considering that other different trip modes could influence the present users of the road, the interactive forces from those trip modes are added to the previous social force of vehicle, bicycle, and pedestrian. As a result, the behavior simulation model at the intersection where vehicle, bicycle, and pedestrian interfere with each other is finally obtained.
     The endeavors of this dissertation are as follows:
     1. Designing the improved social force model considering pedestrian deceleration avoidance. First, the pedestrian microscopic behavior and traffic characteristics are analyzed. Second, in order to introduce the "deceleration avoidance mechanism" for the social force model, the space required by pedestrian is considered, and the model gets improved. Third, the model is realized by C++programming and can simulate the phenomenon which represents that pedestrian can effectively avoid other people and obstacles and fully make use of the walk space. Through comparing the simulation data with the velocity-density diagram of pedestrian flow fitting from the real data, it shows that when the density of pedestrians is at the range of0-3.5p/m2, the proposed model can represent the basic behavior of the pedestrian flow well.
     2. Designing the right-turning vehicle simulation model based on the revised generalized force model and vehicle dynamic theory. First, the following behavior and traffic characteristics of right-turning vehicle are analyzed. Second, considering the difference of following behavior of right-turning vehicle and ones running on the straight road, the generalized force model gets revised. Third, a simulation frame is built, and on the basis of the revised generalized force model and Ackermann Steering Geometry, the vehicle's accelerated velocity (velocity) and its steering angle are calculated, correspondingly. As the input of vehicle dynamic model, the steering angle and velocity are used to obtain the sideslip angle, yaw rate, and geographical coordinates when vehicle turning. At last, the data are collected, and a simulation experiment is designed, and then through comparing the flow-occupancy diagram from simulation data with that from field data, the proposed model is well verified.
     3. Designing the bicycle social force model considering the riding feature on the expected route. First, the microscopic behavior and traffic characteristics of bicycle are analyzed. Second, the feasibility of applying the social force model to simulate the bicycle microscopic behavior is also analyzed. Based on the above, the bicycle social force modes is constructed under the conditions that the bicycle bears three different forces, including its driving force, the outside force, and the interactive forces among its different parts. Meanwhile, based on the characteristic that bicycle runs its expected route to get through the intersection, the outside force is proposed, which includes the force from rider for driving on the expected route and the force from the barriers acting to bicycle. Due to the geometrical characteristics of bicycle, the inside interactive forces include social psychological force and retarding force. Additionally, the psychological force is used to reflect the effect of distance, and the retarding force could represent the bicycle following behavior when they run within some specific distance. Third, the data are collected, and a simulation experiment is designed, and then through comparing the velocity-density diagram from simulation data with that from field data, the proposed model is well verified.
     4. Designing the interactive interference model of vehicle, bicycle, and pedestrian at the signalized plane intersection. First, considering some factors, such as, the difference in velocity of vehicle, bicycle and pedestrian, different directions, and simulation step, the potential function and force of "interactive forces" of social force model are improved. The improved "interactive forces" can simultaneously consider how some factors from vehicle, bicycle and pedestrian influence itself. Those factors include the demand space when they are under next simulation step and the intersection angle among their own expected velocity. Second, through analyzing their microscopic behaviors of vehicle, bicycle and pedestrian under mixed traffic, the interactive forces from different trip modes are introduced for the above models, and then pedestrian simulation model, vehicle simulation model and bicycle simulation model are built when they are interfered by two other modes, correspondingly and respectively. Third, through comparing the tested movement trajectory data and the simulation data of pedestrian, bicycle and vehicle when they disturb anther one individually, the effect degree and scope of interactive forces from pedestrian, bicycle and vehicle are calibrated. At last, the interference model is realized on the existing mixed traffic microscopic simulation platform of signalized plane intersections, and is applied into a real case successfully.
引文
[1]邹智军,杨东援.道路交通仿真研究综述[J].交通运输工程学报,2001,1(2):88-91.
    [2]商蕾.城市微观交通仿真及其应用[D].武汉:武汉理工大学,2003.
    [3]邹智军.道路交通仿真研究[D].上海:同济大学,2001.
    [4]朱晓燕.城市干线交通流仿真研究及软件设计[D].南京:东南大学,2005.
    [5]李旭宏,方靖,叶涛.双车道公路路段通行能力研究中的计算机模拟[J].东南大学学报(自然科学版),1998,28(2):96-100.
    [6]田军,黄立葵,钱勇.城市道路交通网络仿真系统个开发研究[J].中南公路工程,2000,25(3):78-79.
    [7]朱双荣.城市道路交通流中观仿真研究[D].武汉:华中科技大学,2005.
    [8]刘洋.城市微观交通仿真系统研究[D].西安:西北工业大学,2006.
    [9]王晓原,隽志才.开发和评价ITS的微观交通流仿真模型[J].交通运输工程学报,2002,2(1):64-66.
    [10]倪安宁.并行交通仿真模型及关键算法研究[D].长春:吉林大学,2007.
    [11]毛保华,陈海波.道路交通仿真技术与系统研究[J].北方交通大学学报,2002,26(5):3746.
    [12]杨宏志,许金良,朱理平.公路仿真系统数据库[J].长安大学学报(自然科学版),2005,25(5):34-37.
    [13]杨齐.对交通仿真模型软件开发及应用问题的思考[J].城市交通,2006,4(3):77-81.
    [14]钱大琳,魏丽英,朱茵.信号交义口混合交通微观仿真理论与方法[M].北京:中国铁道出版社,2006.
    [15]Ferrara T C. Establishing warrants for control of a bicycle crossing through simulation (abridgment) [J]. Transportation Research Record:Journal of the Transportation Research Board, 1976,570:20-23.
    [16]Taylor D, Mahmassani H. Bicyclist and motorist gap acceptance behavior in mixed-traffic[C]. The 78th Annual Meeting of the Transportation Research Board (CD-ROM), Washington, D.C., 1998.
    [17]Raksuntom W. A study to examine bicyclist behavior and to develop a micro-simulation for mixed traffic at signalized intersections[D]. Austin:University of Texas,2002.
    [18]Wu J P, Huang L, Zhao J L. The behavior of cyclists and pedestrians at signalized intersections in Beijing[J]. Journal of Transportation Systems Engineering and Information Technology,2004, 4(2):105-114.
    [19]钱大琳,黄迪.信号平交路口右转机动车穿越直行自行车决策行为研究[J].系统工程理论与实践:2006,26(5):140-144.
    [20]Schroeder B J, Rouphail N M. Event-based modeling of driver yielding behavior at unsignalized crosswalks[J]. Journal of Transportation Engineering,2011,137(7):455-465.
    [21]Schroeder B J, Rouphail N M. Empirical behavioral models to support alternative tools for the analysis of mixed-priority pedestrian-vehicle interaction in a highway capacity context[J]. Procedia-Social and Behavioral Sciences,2011,16:653-663.
    [22]Geruschat D, Hassan S. Driver behavior in yielding to sighted and blind pedestrians at roundabouts[J]. Journal of Visual Impairment & Blindness,2005,99(5):286-302.
    [23]Ashmead D H, Guth D, Wall R S, et al. Street crossing by sighted and blind pedestrians at a modern roundabout[J]. Journal of Transportation Engineering,2005,131(11):812-821.
    [24]Harrel W A. The impact of pedestrian visibility and assertiveness on motorist yielding[J]. The Journal of Social Psychology,1993,133(3):353-360.
    [25]Guth D, Ashmead D, Long R, et al. Blind and sighted pedestrians' judgment of gaps in traffic at roundabouts[J]. Human Factors,2005,47(2):314-331.
    [26]Varhelyi A. Drivers' speed behavior at a zebra crossing:a case study[J]. Accident Analysis and Prevention,1998,30(6):731-743.
    [27]Himanen V, Kulmala R. An application of logit models in analyzing the behavior of pedestrians and car drivers on pedestrian crossings[J]. Accident Analysis and Prevention,1988,2(3), 187-197.
    [28]Sun D, Ukkusuri S, Benekohal R, et al. Modeling of Motorist-Pedestrian Interaction at Uncontrolled Mid-Block Crosswalks[C]. The 82nd Annual Meeting of the Transportation Research Board(CD-ROM), Washington, D.C.,2003.
    [29]Transportation Research Board. Highway Capacity Manual, Special Report 209[R]. Washington, D.C.:National Research Council,2000.
    [30]Rouphail N, Hughes R, Chae K. Exploratory simulation of pedestrian crossings at roundabouts[J]. Journal of Transportation Engineering,2005,131(3),211-218.
    [31]Lobois R, Cavallo V. Age-related differences in street-crossing decisions:the effects of vehicle speed and time constraints on gap selection in an estimation task[J]. Accident Analysis & Prevention,2007,5(39):934-943
    [32]孙智勇,荣建,何民.信号交义口人行横道处的行人可接受间隙研究[J].公路交通科技,2004,21(11):102-104.
    [33]冯树民,裴玉龙.行人过街延误研究[J].哈尔滨工业大学学报,2007,39(4):613-616.
    [34]Yang J G, Deng W, Wang J M, et al. Modeling pedestrians' road crossing behavior in traffc system micro-simulation in China[J]. Transportation Research Part A,2006,40(3):280-290.
    [35]陆斯文,方守恩.行人穿越机动车流的平均临界间隙分析方法[J].交通标准化,2008,1:145-148.
    [36]刘胜洪.无信号控制城市行人过街交通特性研究[D].重庆:重庆交通大学,2008.
    [37]徐良杰,王炜.信号交叉口行人过街时间模型[J].交通运输工程学报,2005,5(1):111-115.
    [38]王臻.基于避险行为的平面交叉口机非冲突TCA模型研究与仿真[D].北京:北京交通大学,2011.
    [39]能宁,黄毓瑜,李公立.基于元胞自动机的微观城市道路混合交通仿真[J].系统仿真学报,2005,17(5):1234-1236.
    [40]李新刚.基于元胞自动机模型的交通系统微观建模与特性研究[D].北京:北京交通大学,2010.
    [41]熊桂林,黄悦.元胞自动机在混合交通仿真中的应用[J].系统工程,2006,24(6):24-27.
    [42]张晋.基于元胞自动机的城域混合交通流建模方法研究[J].杭州:浙江大学,2004.
    [43]Zhang Y, Duan H L, Zhang Y. Modeling mixed traffic flow at crosswalks in micro-simulations using cellular automata[J]. Tsinghua Science & Technology,2007,12(2):214-222.
    [44]孙泽,贾斌,李新刚.基于元胞自动机的行人和机动车相互干扰机理研究[J].物理学报, 2012,61(10):76-83.
    [45]段后利,张毅.交通灯控制下基于元胞自动机的行人过街模型研究[J].ITS通讯,2006,8(1):52-56.
    [46]陈大飞.基于社会力的城市道路混合交通流建模与分析[D].长沙:中南大学,2011.
    [47]王华东.城市混合交通系统的建模方法与应用研究[D].杭州:浙江大学,2003.
    [48]Schonauer R, Stubenschroot M, Huang W N. Modeling concepts for mixed traffic:steps towards a microscopic simulation tool for shared space zones[C]. The 91st Annual Meeting of Transportation Research Board(CD-ROM), Washington, D.C.,2012.
    [49]Helbing D, Jiang R, Treiber M. Analytical investigation of oscillations in intersecting flows of pedestrian and vehicle traffic[J]. Physical Review E,2005.72:046130.
    [50]Bani A. A mathematical model for driver and pedestrian interaction in shared space environments[C]. UTSG,2012.
    [51]刘小明,任福田.平面交叉口交通冲突技术标准化研究[J].北京工业大学学报,1997,23(3):43-50.
    [52]钱大琳,李珊珊,陈小红.行人和自行车交通微观仿真和应用[M].北京:人民交通出版社,2011.
    [53]邵春福,魏丽英,贾斌.交通流理论[M].北京:电子工业出版社,2012.
    [54]Helbing D, Farkas I, Vicsek T. Simulating dynamical features of escape panic[J]. Nature,2000, 407(6803):487-90.
    [55]Thomas D G.车辆动力学基础[M].北京:清华大学出版社,2006.
    [56]GIPPS P G, Marksjo B. A micro-Simulation model for pedestrian flows[J]. Mathematics and Computers in Simulation,1985,27(2):95-105.
    [57]Blue, V J, Alder J L. Cellular automata microsimulation for modeling bi-directional pedestrian walkways[J]. Transportation Research Part B,2001,35(3):293-312.
    [58]YUE H, GUAN H Z, Zhang J, SHAO C F. Study on bi-direction pedestrian flow using cellular automata simulation[J]. Physic A,2010,389(3):527-539.
    [59]Okazaki S. A study of pedestrian movement in architectural space, part 1:pedestrian movement by the application of magnetic models[J]. Transactions of Architectural Institute of Japan,1979, 283(3):111-119.
    [60]Lovas G G. Modeling and simulation of pedestrian traffic flow[J]. Transport Research Part B,1995,28(3):429-443.
    [61]Thompson P A, Marchant E W. A computer model the evacuation of large buiding population[J]. Fire Safety Journal,1995,24(1):131-148.
    [62]Thompson P A, Marchant E W. Testing and application of computer model 'SIMULEX'[J]. Fire Safety Journal,1995,24(3):149-166.
    [63]Watts J M. Computer models for evacuation analysis[J]. Fire Safety Journal,1987,12(3): 237-245.
    [64]Muramatsu M, Irie T, Nagatani T. Jamming transition in pedestrian counter flow[J]. Physica A, 1999,267[3]:487-498.
    [65]Helbing D, Molnar P. Social force model for pedestrian dynamics[J]. Physica Review E,1995, 51(4):4282-4286.
    [66]Parisi D R, Dorso C O. Microscopic dynamics of pedestrian evacuation[J]. Physic A,2005,354: 606-618.
    [67]Parisi D R, Dorso C O. Morphological and dynamical aspects of the room evacuation process[J]. Physic A,2007,385343-355.
    [68]Teknomo K. Application of microscopic pedestrian simulation model [J]. Transportation Research Part F,2006,9(1):15-27.
    [69]Seyfried A, Steffen B, Lippert T. Basics of modeling the pedestrian flow[J]. Physica A,2006, 368(1):32-238.
    [70]董立耘,戴世强.二维行人交通模型中转向运动对则色相变的影响[J].自然科学进展,2002,12(1):18-22.
    [71]陈然,董立耘.中国大都市行人交通特征的实测和初步分析[J].上海大学学报(自然科学版),2005,11(1):93-97.
    [72]Yu W J, Chen R, Dong L Y, et al. Centrifugal force model for pedestrian dynamics[J]. Physica Review E,2005,72(2):72-78.
    [73]黄恒栋.高层建筑火灾安全疏散中的人流集结、出口流出时间特性曲线[J].重庆建筑大学学报,1997,19(1):26-34.
    [74]Lo S M, Fang Z, Li N P, et al. An evacuation model:the SGEM package[J]. Fire Safety Journal, 2004,39(2):169-190.
    [75]杨立中,李健,赵道亮,等.给予个体行为的人员疏散微观离散模型[J].中国科学E辑,2004,34(11):1264-1270.
    [76]陈全.人在火灾中的行为规律及计算机仿真[R].东北大学博士后研究工作报告,1997.
    [77]李庆丰,王兆安,杨建国.用于估计信号交义口行人延误的微观仿真系统[J].系统仿真学报,2005,17(9):2244-2246.
    [78]宋卫国,于彦飞,张和平.某大型商贸中心的人员疏散性能化分析[J].中国工程科学,2005,7(10):78-83.
    [79]潘忠,王长波,谢步瀛.基于几何连续模型的人员疏散仿真[J].系统仿真学报,2006,18:233-236.
    [80]Helbing D, Farkas I J, Molnar P, et al. Simulation of pedestrian crowds in normal and evacuation situations[C]. Pedestrian and Evauation Dynamics, Berlin,2001.
    [81]景超.行人过街交通特性研究[D].长春:吉林大学,2007.
    [82]王小华.平面信号交叉口机动车穿越行人决策建模研究[D].北京:北京交通大学,2008.
    [83]季全刚.城市道路平交路口行人特性及人机干扰研究[D].北京:北京交通大学,2009.
    [84]陈晓明.混合交通条件下城市道路信号交叉口通行能力理论研究[D].北京:北京交通大学,2008.
    [85]Fruin J J. Pedestrian planning and design[R].1971.
    [86]Douglas P J. Environment & behavior-planning and everyday urban life[M]. Addison-Wesly Publishing Company, Inc,1977.
    [87]Parisi D R, Gilman M, Moldovan H. A modification of the social force model can reproduce experimental data of pedestrian flows in normal conditions[J]. Physica A,2009, 388(17):3600-3608.
    [88]Thompson P A, Marchant E W. Testing application of computer model Simulex[J]. Fire Safety Journal,1995,24(2):149-166.
    [89]Schreckenberg M, Sharma S D. Pedestrian and evacuation dynamics[M]. Berlin, Germany: Springer,2002.
    [90]Kirchner A, Klupfel H, Nishinari K, et al. Discretization effects and the influence of walking speed in cellular automata models for pedestrian dynamics[J]. Journal of Statistical Mechanics: Theory and Experiment,2004(10):P10011.
    [91]Weidmann U. Transporttechnik der fussgaenger ETH, schriftenreihe ivt-beriehte 90, zuerich[DB/OL].[2010-11-05].http://www.kent.fire-uk.org/pdf/firt_ppt_hbw2011-dr-john-drury. pdf.
    [92]Society of File Protection Engineers. SFPE Handbook of Fire Protection Engineering[M]. Third Edition. USA:National Fire Protection Association,2002.
    [93]Reushel A. Vehicle movements in a platoon[J]. Oesterreichishesing-Arch,1950,4:193-215.
    [94]Pipes L A. An operational analysis of traffic dynamics[J]. Journal of applied physics,1953. 24(3):274-281.
    [95]Gazis D C, Herman R. Nonlinear follow the leader models of traffic flow [J]. Operations Research,1961,9(4):913-933.
    [96]邹智军,杨东援.交通仿真系统中的纯微观跟车模型[J].同济大学学报:自然科学版,2001,29(8):898-901.
    [97]荣建,刘小明.基于可变跟驰时间和随机因素的通行能力理论计算模型[J].中国公路学报,2001,14(3):81-85.
    [98]贾洪飞,隽志才.基于期望间距的车辆跟驰模型的建立[J].中国公路学报,2000,13(4):86-87.
    [99]Kometani E, Sasaki T. Dynamic behavior of traffic with an on linear spacing-speed relationship[J].In proceedings of the symposium on theory of traffic flow, Research Laboratories, General Motors,1959:105-119.
    [100]Kikuchi S, Chakroborty P. Car following model based on a fuzzy inference system[J]. Transportation Research Record,1992:82-91.
    [101]Helbing D, Tilch B. Generalized force model of traffic dynamics[J]. Physical Review E,1998, 58(1):133.
    [102]王浩,马寿峰.适用于弯度与坡度的跟驰模型及其仿真研究[J].土木工程学报,2006,38(11):106-111.
    [103]Huang W N, Fellendorf M, Schoenauer R. Social force based vehicle model for two-dimensional spaces[C]. The 91st Annual Meeting of Transportation Research Board(CD-ROM), Washington, D.C.,2012.
    [104]黄迪.平面交叉口混合交通流机非干扰微观行为模型研究[D].北京:北京交通大学,2006.
    [105]Abe M, Manning W. Vehicle handling dynamics:theory and application[M]. Amsterdam: Elsevier,2009.
    [106]李庆扬.数值分析[M1.北京:清华大学出版社,2001.
    [107]Bando M, Hasebe K, Nakayama A,et al. Dynamical model of traffic congestion and numerical simulation[J]. Phyical Review E,1995,51:1035-1042.
    [108]任福田.交通工程学[M].北京:人民交通出版社,2008.
    [109]李柏年,吴礼斌.Matlab数据分析方法[1].北京:机械工业出版社,2012.
    [110]关宏志,陈艳艳,刘小明,等.基本路段机非混合交通流的解析模型[J].北京工业大学学报,2001,27(1):12-15.
    [111]Hossain M, McDonald M. Modeling the impacts of reducing non-motorized traffic in urban corridors of developing cities [J]. Transportation Research Part A,1998,32(4):247-260.
    [112]李新刚,高自友,赵小梅,等.混合非机动车流的多值元胞自动机模型模拟研究[J].物理学报,2008,57(8):4777-4785.
    [113]王华东,吴铁军.一种新的交通流矢量场微观模型[J].中国公路学报,2003,16(2):99-102.
    [114]黄玲.混合交通流无信号交叉口自行车微观行为研究[D].北京:北京交通大学,2007.
    [115]魏丽英,吕凯.信号交叉口处自行车交通流的跟驰行为[J].吉林大学学报:工学版,2008,38(1):53-56.
    [116]Hossain M. Modeling of traffic operations in urban networks in developing countries[D]. UK: University of Southampton,1996.
    [117]Faghri A, Egyhaziova E. Development of a computer simulation model of mixed motor vehicle and bicycle traffic on an urban road network[J]. Transportation Research Record,1999, 1674:86-93.
    [118]Leutzbach W. Introduction to the theory of traffic flow[M]. Berlin:Springer-Verlag,1988.
    [119]Raksuntorn W. A study to examine bicyclist behavior and to develop a microsimulation for mixed traffic at signalized intersections[D]. Denver:University of Colorado,2002.
    [120]张晋,王慧,李平.基于元胞自动机(CA)的自行车流建模及仿真[J].公路交通科技,2006,23(1):125-129.
    [121]邓建华.基于元胞自动机的自行车流蛇行、穿插模型[J].武汉理工大学学报:交通科学与工程版,2011,35(1):198-200.
    [122]Zhuang Q, Jia B. A modified weighted probabilistic cellular automaton traffic flow model[J]. Chinese Physics,2009,8:3271-3278.
    [123]李艳霞.基于多值元胞自动机的自行车流模型模拟及分析研究[D].北京:北京交通大学,2009.
    [124]贾宁,马寿峰.自行车干扰下机动车交通流的元胞自动机模型[J].系统工程理论与实践,2010,7:1333-1339.
    [125]梁肖.自行车微观行为动力学建模及仿真研究[D].北京:北京交通大学,2012.
    [126]李昕.微观交通仿真中的自行车建模[D].西安:西安交通大学,2003.
    [127]Opiela K S, Khasnabis S, Datta T K. Determination of characteristics of bicycle traffic at urban intersections[J]. Transportation Research Record,1980,743:30-37.
    [128]Smith D. Safety and location criteria for bicycle facilities [R]. Report FHWA-R-D-75-112, FHWA, U.S. Department of Transportation,1986.
    [129]何民.混合交通流微观仿真关键技术研究[D].北京:北京工业大学,2004.
    [130]徐良杰,王炜.左转自行车对直行机动车通行的影响分析模型[J].东南大学学报:自然科学版,2005,35(5):805-809.
    [131]常魏,谢光军.Matlab R2007基础与提高[M].北京:电子工业出版社,2007.
    [132]Johansson A, Helbing D, Pradyumn K S. Specification of the social force pedestrian model by evolutionary adjustment to video tracking data[J]. Advances in Complex Systems,2007,10(02): 271-288.
    [133]唐勃勃.基于合作博弈的平面信号交叉口行人和机动车干扰研究[D].北京:北京交通大学,2010.
    [134]沈涛.基于视频检测的行人交通参数提取技术研究[D].北京:北京交通大学,2011.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700