用户名: 密码: 验证码:
井地磁测联合反演研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
随着国家现代化建设和国民经济的发展,矿产资源消耗迅速,我国多数矿山的浅部资源已被开采殆尽,找矿目标转向矿山的外围和深部。因此,近年来,深部找矿成了我国地质勘探的热点。
     由于老矿山多年开采,地面磁测受浅部及地表干扰十分严重,再加上深部矿体引起的地面磁异常较弱,难以识别。如果用单一地面磁测资料进行反演解释,结果往往不尽人意。
     井中磁测是一种有效的找矿方法,它能够避开地面及浅部磁性体的干扰,在钻孔中实现全方位测量,有很高的纵向分辨率和精度。如果单独用井中资料反演,可以根据各分量的矢量线簇发散情况来确定矿头和矿尾的大概位置,但是对于空间形态和准确位置的确定仍然有一定困难,而且井中磁测受钻井的限制,它所控制的范围非常有限,因此单一井中资料的反演解释难以满足实际需要。
     为了更好地寻找深部矿体,我们必须找到一种更为有效的方法,能够将地面磁测和井中磁测资料结合起来,准确反演定位地下矿体的空间位置和形态。本文针对上述深部找矿过程中存在的问题开展了井地磁测联合反演研究工作,主要包含以下几点:
     1、本文实现了三维空间的井地联合磁化率成像反演。介绍了地下三维空间模型单元划分的方法和原则,将下半空间划分为诸多小的长方体,每个长方体的磁化率为常数,但磁化率大小可以不同。在成像反演过程中,采用Occam's反演方法,利用了预优共轭梯度算法求解磁化率成像大规模线性方程组。给出了单一倾斜板状体和组合倾斜板状体两个模型实例,分别进行了3D地面磁化率成像反演、3D井中三分量磁化率成像反演和3D井地联合磁化率成像反演,并将反演结果进行对比和分析。通过对比发现,单一地面磁化率成像反演中,可以从横向上区分开两块倾向相反的板状体,具有较高的分辨率,但在纵向上却反演出两个大小相同的板状体,且位置和形态与理论模型不符。井中磁测资料的单一成像反演,在纵向上大致可以区分开两个大小不同的板状体,但横向上却十分模糊,无法区分开两个板的水平位置。3D井地磁测联合成像反演后,反演结果在横向和纵向上都具有非常清晰的边界,很容易识别出两个大小不同、倾向相反的板状体。通过模型实例,证明了3D井地磁测资料的联合成像反演,可以充分发挥地面磁测资料横向分辨率高和井中磁测资料纵向分辨率高的优点,反演结果更加清晰,符合实际情况。
     2、以BG理论为基础,从理论上讨论了进行3D井地磁测联合反演的必要性,说明了平均函数A(ξ-ξ0)的形态取决于核函数的性质,也就是说取决于地球物理问题的本质。核函数的性质不同,它随深度的衰减特性也不同,必然会影响平均函数的属性。在浅部衰减殆尽的核函数,主要决定平均函数的浅部性质;反之,衰减缓慢的核函数主要影响平均函数的深部特性。对于地面磁测资料而言,对浅部的分辨力较高,对深部的分辨力低;对于井中磁测资料而言,在井附近分辨力高,在周围远的地方分辨力低。因此从理论上来说,3D井地磁测联合反演的分辨力要比单一资料反演的分辨力高。并以一个球体模型的实例来说明,证实了井地磁测资料的联合反演要优于地面或井中磁测资料的单一反演。
     3、本文详细阐述了3D井地联合人机交互反演的基本原理和实现步骤,介绍了3D空间地面和井中磁异常的正演计算公式,讨论了在积分间距相等和不等情况下,如何用三维数值积分来求取正演异常,如何利用三维可视化技术建立3D地质模型和相邻剖面之间的连接成图方案等,并将3D井地联合人机交互反演应用于国家危机矿山深部找矿中。
     本文以湖北大冶铁矿尖林山-象鼻山矿段为例,通过详细整理矿区的岩石物性资料、已有地质和钻孔资料,对前人的工作成果进行了分析和比较,然后对尖林山-象鼻山矿段的6条测线(17线、18线、19-0线、19-1线、21线和22线)和3个钻孔(ZK18-12、ZK19-1-15和ZK22-16)做了3D井地联合人机交互反演,并得出该矿区内铁矿赋存位置在标高上具有明显的“台阶”特征的重要结论。最后,本文给出了两个实例,论证了3D井地联合人机交互反演要优于单一资料的反演,它不但减少了反演的多解性,而且改变了2.5D反演中地质体形态沿y方向无法改变的问题,更加符合实际情况,是一种深部找矿非常有效的理论和方法。
With the country's modernization construction and national economic development, consumption of mineral resources increased rapidly, and the majority of our resources in shallow mines have been mined and exhausted, exploration targets have turned to the external and deep mines. Thus, in recent years, deep exploration become our geological hot spot.
     Years of exploitation of the old mines, the ground magnetic survey of the shallow and surface disturbance is very serious, coupled with magnetic response of deep ore bodies on the ground are weak, hard to be identified. Inversion results are often unsatisfactory by single ground-magnetic survey data inversion interpretation.
     Borehole magnetic measurement is an effective method of magnetite ore, and it can avoid ground and shallow magnetic body interference, achieve all-round measurement in borehole, high vertical resolution and accuracy. If borehole magnetic data is used to inverse alone, according to the various components of the vector line maps to determine the head and tail of the mine, but not avail to determinate spatial patterns and the exact location. And the magnetic measurement is restricted by drilling, the scope of its control is very limited, so a single inversion of borehole data interpretation is sometimes difficult to meet the actual needs.
     In order to search for deep deposits better, we must find a more effective way to combine the ground and well magnetic measurement data, so as to inverse the spatial location and forms of the underground ore accurately. This paper mainly carried out the following research work for the deep prospecting problems:
     1. The ground-borehole joint magnetic susceptibility imaging inversion was carried out in this article. The principle and rule for dividing the underground 3D spatial model were introduced, which divide the semi-space underground into many little cuboids, each magnetic susceptibility value of which was a constant, but could be different. In the process of imaging, use the Occam's inversion method and the pre-optimum conjugate gradient algorithm to solve the large scale linear equation group. The practical examples of single inclined plate and combined plates models were presented, performed 3D ground magnetic susceptibility imaging inversion,3D borehole 3 components magnetic susceptibility imaging inversion and 3D ground-borehole joint magnetic susceptibility imaging inversion separately, through compared and analyzed the results, we found that we could distinguish two plates with different inclines from the horizontal direction by the single ground magnetic susceptibility imaging inversion, which was with higher resolution, while the results of two similar plates from the vertical direction were different from the theoretical models. The plates could be approximately distinguished from the vertical direction by the single borehole magnetic susceptibility imaging inversion, but it was very fuzzy in the horizontal direction, and couldn't separate the horizontal positions. It was very clear and easy to distinguish two plates with different sizes and opposite inclines both in the horizontal and vertical directions with the ground-borehole joint magnetic susceptibility imaging inversion. Through the model test, we proved 3D ground-borehole joint magnetic susceptibility imaging inversion could utilize advantages of the high horizontal resolution of ground magnetic susceptibility imaging inversion and high vertical resolution of borehole magnetic susceptibility imaging inversion, and it was more clear, which was more coincident with the practical situation.
     2. Based on BG theory, the necessary of 3D surface and borehole magnetic joint inversion is discussed theoretically. Form of average function depends on the character of the kernel function, which is the essence of geophysical problem. Kernel functions are different in nature, its attenuation with depth is different, and will affect the character of the average function. Kernel functions which depleted in the shallow, decides the shallow nature of the average function; the other hand, the slow decay of the kernel function mainly affects the deep features of the average function. For surface magnetic measurement data, the shallow resolution is high, and the deep resolution is low; well for the borehole magnetic measurement data, the resolution near the borehole is high and low far from the borehole. Therefore, in theory, resolution of 3D surface and borehole joint inversion is much better than a single data inversion. An example of sphere model is given to prove that surface and borehole joint inversion is superior to the single surface, or borehole inversion.
     3. The basic principle and performed steps of 3D ground-borehole joint human-computer interactive inversion was described, the forward formula of 3D spatial ground-borehole magnetic anomaly was introduced and how to compute the forward anomaly and build 3D geological model as well as the linked precept between adjacent profiles when with the same or different integral offsets were discussed, and 3D ground-borehole joint human-computer interactive inversion for the deep prospecting of the national crisis ore mine was applied in this article.
     In this paper, Jianlin hill-Elphant trunk hill mining block in Daye, Hubei province was shown as an example, by sorting out the petrophysics data as well as the known geological and borehole data, we analyzed and compared the predecessors'achievements, then did 3D ground-borehole joint human-computer interactive inversion for the 6 profiles(line 17,18,19-0,21,22) and 3 borehole(ZK18-12,ZK19-1-15,Zk22-16) here, as a result, we concluded it was with obvious "step" characteristics of the iron mine in the elevation hosting position. Finally, we present 2 practical examples and proved that 3D ground-borehole joint human-computer interactive inversion was prior to single data inversion, which not only reduced the multi-plicity of the solutions, but also improved the difficulty problem in 2.5D inversion for changing geological body's form along y direction, and it was more coincident with the practical situation, so it is a very effective theory and method for deep prospecting.
引文
[1].曾华霖,阚筱玲,谢婷婷等.重磁勘探反演问题.北京:石油工业出版社,1991.
    [2].朱文孝,屠万生,刘天佑.重磁资料电算处理与解释方法.武汉:中国地质大学出版社,1989.
    [3].陈军.改进遗传算法进行重磁反演.同济大学海洋地质与地球物理系博士论文,2000.
    [4]. R. O. Hansen,2001, Gravity and magnetic methods at the turn of the millennium: Geophysics,66,36-37.
    [5].杨文采,评地球物理反演的发展趋势.地学前缘,2002,9(4):389-396.
    [6].杨文采.地球物理反演的理论与方法.北京:地质出版社.1997.
    [7].王家林,吴健生.中国典型含油气盆地综合地球物理研究.上海:同济大学出版社,1995.
    [8].Vozoff, K. Jupp, D.L.B. Effective search for a buried layer:An approach to experimental designing geophysics. Expl.Geophysics.1977,8(l):6-15.
    [9].Savino, J.M., Rodi, W.L., Masso, J.F. Simultaneous inversion of multiple geophysical data sets for earth structure.Presented at the 50th Ann. Internat. Mtg.Soc. Explor. Geophys.,1980.
    [10].王一新,廉西京.重力与地震联合解释在石油勘探中的应用.石油物探,1983,22(3):34-41.
    [11].Lines L, Schultz A.K., Treitels. Cooperative inversion of geophysical data. In:Annual Meeting Abstracts,Society of Exploration Geophysicists,1987,814-816.
    [12].Lines L, Schultz A.K., Treitels. Cooperative inversion of geophysical data. Geophysics, 1988,53(01) 8-20.
    [13].杨文采,焦富光.利用联合反演技术进行反射地震的波速成象.地球物理学报,1987,30(6):617-627.
    [14].中国地质大学八五科技攻关项目“新疆塔里木盆地北部综合物探评价圈闭的技术方法研究”(85-101-06-02-01)科研报告,1994.
    [15].Rasmussen H J, Hohman G W. Cooperative inversion of transient electromagnetic and gravity data for depth determinations in a basin[A].In:Annual Meeting Abstracts, Society of Exploration Geophysicists,1991,614-617.
    [16].Dobroka M, Gyulai A, Ormos T, Csoka J, Dresen, L. Joint inversion of seismic and geoelectric data recorded in an underground coalmine.Geophys, Prosp.,1991,39 (5):643-665.
    [17].李雄,地震-重力联合反演,中国科学院测量与地球物理研究所博士论文,1991.
    [18].王西文,孟昭泰,张工会等.重力、地震联合反演在研究含油气盆地构造中的应用.石油地球物理勘探,1991,26(2):201-209.
    [19].汪宏年等.层状介质中重力、地震联合反演的迭代算法.石油地球物理勘探,1993, 28(2):153-165.
    [20].冯锐等.地震-重力联合反演中的非块状一致性模型.地球物理学报,1993,36(4):463-475.
    [21].关小平等.谈重震联合反演问题.物探与化探,1994,18(6):429-437.
    [22].Vasco D W, Peterson J E, Majer E L.A simultaneous inversion of seismic traveltimes and amplitudes for velocity and attenuation. Geophysics,1996,61 (06):1738-1757.
    [23].Hering A, Misiek R., Gyulai A., Ormos T, et al.A joint inversion algorithm to process geoelectric and surface wave seismic data. Part I:Basic ideas, Geophys, Prosp.,1995,43 (02):135-156.
    [24].Li Y, Oldenburg D W. Joint inversion of surface and three component borehole magnetic data[A]. In:Annual Meeting Abstracts. Society Of Exploration Geophysicists,1996, 1142-1145.
    [25].王西文.用重力、地震资料联合反演直预测油气藏的方法.石油地球物理勘探,1997,32(2):221-228.
    [26]杨振武,王家映,张胜业等.一维大地电磁和地震数据联合反演方法研究.石油地球物理勘探,1998,33(1):78-88.
    [27].Brian S, Anderson, Mark E, Weber, John E, Bain. A report on the renaissance of gravity in the deep water Gulf of Mexico:A practical view of integration methods[A]. In:Annual Meeting Abstracts. Society Of Exploration Geophysicists,1998,515-5171.
    [28].杨辉,重力、地震联合反演基岩密度及综合解释.石油地球物理勘探,1998,33(4):496-502.
    [29]过仲阳,王家林,吴健生.应用遗传算法联合反演地震-大地电磁测深数据.石油物探,1999,38(01):102-108.
    [30].Grechka V, Theophanis S, Tsvankin I, Joint inversion of P and PS waves in orthorhombic media:Theory and a physical modeling study, Geophysics,1999,64 (01):146-161.
    [31].Greg J, Jorgensen, Jerry L, Kisabeth. Joint 3D inversion of gravity, magnetic and tensor gravity fields for imaging salt formations in the deep water Gulf of Mexico[A]:In: Annual Meeting Abstracts. Society Of Exploration Geophysicists,2000,400-402.
    [32].Bosch M, McGaughey J. Joint inversion of gravity and magnetic data under lithologic constraints. The Leading Edge,2001,20, (08):877-881.
    [33].B.H.吉特林.根据井中磁测资料推断磁铁石英岩层的连续性.物探化探丛译,1966,02,90-92.
    [34].A.H.阿符多宁.应用井中磁法勘探确定中、北乌拉尔地面磁异常的性质.物探与化探,1966,1-5.
    [35].刘天成.井中磁场强度测量的资料整理.物探与化探,1981,04:233-239.
    [36].蔡柏林.井中物探的发展现状和展望.物探化探译丛,1992:101-104.
    [37].潘和平,马火林,蔡柏林等.地球物理测井与井中物探.北京:科学技术出版社,2009.
    [38].陈百军.井中磁测正演研究及中国大陆科学钻探井中磁测资料处理与解释[硕士论文].中国地质大学(北京),2006.
    [39].曾采芹.磁测井在找深部矿的应用实例.地质与勘探,1986,21(9):46-49.
    [40].范志雄,陈石羡,舒秀锋.利用井中磁测异常确定磁性体走向的方法.地质找矿论丛,2006,21(sup):160-162.
    [41].Bosum, W., Eberle, D., and Rehli, H.-J.,1988, A gyroorientated 3-component borehole magnetometer for mineral prospecting, with examples of its application:Geophys. Prosp., 36,933-961.
    [42].Levanto,A. E.,1959,Athree-component magnetometer for small drillholes and its use in ore prospecting:Geophys. Prosp.,7,183-195.
    [43].Morris, W. A., Mueller, E. L., and Parker, C. E.,1995, Borehole magnetics:Navigation, vector components, and magnetostratigraphy:65th Ann. Internat. Mtg., Soc. Expl. Geophys., Expanded Abstracts,495-498.
    [44].Silva, J. B. C., and Hohmann, G. W.,1981, Interpretation of threecomponent borehole magnetometer data:Geophysics,46,1721-1731.
    [45]. W. Bosum, U. Casten, F. C. Fieberg, et al. Three-dimensional interpretation of the KTB gravity and magnetic anomalies [J]. Journal of Geophysical research,1997,102 (8):18037-18321.
    [46].Yaoguo Li and Douglas W. Oldenburg. Joint inversion of surface and three-component borehole magnetic data[J]. Geophysics,2000,65(2):540-552.
    [47].潘贤炽,刘行义.井中磁测与地面磁测的关系.物探与化探,1982,1(5):265-269.
    [48].张大莲,刘双,陶德益,等.井中磁测与地面磁测资料联合反演.工程地球物理学报,2008,5(1):60-64.
    [49].刘双,张大莲,刘天佑,等.井地磁测资料联合反演及应用,地质与勘探,2008,44(6):69-72.
    [50].张丽霞.井地磁测资料的联合反演[硕士论文],中国地质大学(武汉),2008.
    [51].姚姚.地球物理反演基本理论与应用方法.武汉:中国地质大学出版社,2002.
    [52].刘天佑.重磁异常反演理论与方法.武汉:中国地质大学出版社,1992,59-64.
    [53].王家映.地球物理反演问题概述.工程地球物理学报,2007,4(1):1-3.
    [54].D.欧登伯格,王家映.在地球物理学中的线性反演理论.地球科学.1984,26(3):133-147.
    [55].王家映.地球物理反演理论.北京:高等教育出版社,1998.
    [56].Green, W. R., Inversion of gravity profiles by use of a Backus-Gilbert approach. Geophysics,1975,40,763-772.
    [57].刘天佑,管志宁.对二维磁异常利用广义逆矩阵的选择法.地球物理学报.1986,29(4):390-398.
    [58].Safon, C.,et al, Some applications of linear programming to the inverse gravity problem, Geophysics,1977,42,1215-1229,.
    [59].王家映等.大地电磁测深的拟地震解释法.石油地球物理勘探,Vol(20),1985.
    [60].敬荣中.地球物理非线性联合反演方法研究[博士论文],中南大学,2002.
    [61].王家映.地球物理资料非线性反演方法讲座(二)蒙特卡洛法.工程地球物理学报,2007,4(2):81-85.
    [62].师学明,王家映.地球物理资料非线性反演方法讲座(三)模拟退火法.工程地球物理学报,2007,4(3):165-174.
    [63].师学明,王家映.地球物理资料非线性反演方法讲座(四)遗传算法.工程地球物理学报,2008,5(2):129-140.
    [64].王家映.地球物理资料非线性反演方法讲座(五)人工神经网络反演法.工程地球物理学报,2008,5(3):255-165.
    [65].朱培民,王家映.地球物理资料非线性反演方法讲座(六)共轭梯度法.工程地球物理学报,2008,5(4):381-386.
    [66].张丽琴,王家映.地球物理资料非线性反演方法讲座(七)同伦反演法.工程地球物理学报,2008,5(5):509-515.
    [67].罗红明,王家映,师学明,朱培民.地球物理资料非线性反演方法讲座(八)量子遗传算法.工程地球物理学报,2008,5(6):635-642.
    [68].杨文采.非线性地球物理反演方法:回顾与展望.地球物理学进展.2002,17(2):255-261.
    [69].G.T.赫尔曼,H.K.图伊,K.J.兰振伯格等.层析成象和反演问题的基本方法.北京:石油工业出版社.
    [70].杨文采.地球物理反演和地震层析成象.北京:地质出版社,1989
    [71].刘长风,王妙月,陈静等.磁性层析成像——塔里木盆地(部分)地壳磁性机构反映.地球物理学报,1996,39(1).
    [72].张世晖.海洋卫星测高重力数据处理方法研究及在冲绳海槽的应用[博士论文],中国地质大学(武汉),2003.
    [73].O., Boulanger, M. Chouteau. Constraints in 3D gravity inversion. Geophysics Prospecting,,2001,49,265-280.
    [74].Bhattacharyya, B.K., Two-dimensional harmonic analysis as a tool for magnetic interpretation, Geophysics,1965,30,829-857
    [75].罗孝宽,郭绍雍.应用地球物理教程.北京:地质出版社,1991
    [76].马在田等.计算地球物理学概论.上海:同济大学出版社,1997
    [77].萧敬涌,周国藩,林振民等.重力勘探资料解释手册.北京:地质出版社,1985.
    [78].长春地质学院磁法教研室.磁法勘探.北京:地质出版社,1979.
    [79].成都地质学院,武汉地质学院,河北地质学院,合肥工业大学.应用地球物理学-磁法教程[M].北京:地质出版社,1980.
    [80].《重力勘探资料解释手册》编写组.重力勘探资料解释手册.北京:地质出版社,1983
    [81].张胜业,潘玉玲,应用地球物理学原理.武汉:中国地质大学出版社,2001.
    [82].刘天佑,位场勘探数据处理新方法.北京:科学出版社,2007.
    [83].管志宁,地磁场与磁力勘探.北京:地质出版社,2005.
    [84].Constable. S. C.. Parker, K. L.. and Constable. C. G.. Occam's inversion a practical algorithm for generating smooth models from EM sounding data. Geophysics,52, 289-300.
    [85].deGroot Hedlin C. Constable. S. Occam's inversion to generate smooth, two-dimensional models from magnetotelluric data, Geophysics,1987,55,1613-1624
    [86].徐树方,矩阵理论计算的理论与方法.北京:北京大学出版社,1999.
    [87].吴小平,徐果明,李时灿.利用不完全Cholesky共轭梯度法求解电源三维地龟场.地球物理学报,1998,41(6)
    [88].徐树方,矩阵理论计算的理论与方法.北京:北京大学出版社,1999.
    [89].吴小平,徐果明,利用共轭梯度法的电阻率三维反映研究.地球物理学报,2000,43(3)
    [90].方保镕,矩阵理论.河海大学出版社,1992.
    [91].姚天任,孙洪,现代数字信号处理.武汉:华中理工大学出版社,1999
    [92].胡昌华,张军波,夏军等,基于Matlab的系统分析与设计——小波分析.西安:西安电子科技大学出版社,1999
    [93].吴小平,徐果明,利用共轭梯度法的电阻率三维反映研究.地球物理学报,2000,43(3)
    [94].吴小平,徐果明,大地电磁数据的Occam反演改进.地球物理学报,1998,41(4)
    [95].吴小平,徐果明,李时灿,利用不完全Cholesky共轭梯度法求解电源三维地电场.地球物理学报,1998,41(6)
    [96].Li, Y., Oldenburg, D.W.,3-D inversion of gravity data:Geophysics,1998,63,109-119.
    [97].林振民,陈少强,三维可视化技术在固体矿产中的应用.物探化探计算技术,1994,16(4):338-344.
    [98].林振民,陈少强,计算机上的橡皮膜技术.物探化探计算技术,1996,18(1):6-16.
    [99].吴文鹂,管志宁,基于八叉树结构的可视化三维位场正反演.物探与化探,1997,21(4):282-288.
    [100].吴文鹂,管志宁,高艳芳等,重磁异常数据三维人机联作模拟.物探化探计算技术,2005,27(3):227-232.
    [101].田黔宁,吴文鹂,管志宁,任意形状重磁异常三度体人机联作反演.物探化探计算技术,2001,23(2):125-129.
    [102].王秀芳,孟令奎,陈飞,一种改进的地形三维建模方法.武汉大学学报·信息科学版,2009,34(2):154-157
    [103].王媛妮,边馥苓,基于等高线的三维地形可视化研究.武汉大学学报·信息科学版,2008,33(9):904-929.
    [104].刘天佑,,刘大为,詹应林等,磁测资料处理新方法及在危机矿山挖潜中的应用.物探与化探.2006,30(5):377-390.
    [105].刘天佑,吴招才,詹应林,磁异常小波多尺度分解及危机矿山的深部找矿:以大冶铁矿为例.地球科学,2007,32(1):135-140.
    [106].Bhattacharyya, B. K., Magnetic anomalies due to prism-shaped bodies with arbitrary magnetization:Geophysics,1964,29,517-531.
    [107].Ageneralized multibody model for inversion of magnetic anomalies:Geophysics,45, 255-270.
    [108].Guillen, A., Menichetti, V., Gravity and magnetic inversion with minimization of a specific functional:Geophysics,1984,49,1354-1360.
    [109].Last,B. J., Kubik, K., Compact gravity inversion:Geophysics,1983,48,713-721.
    [110].Sharma, P. V., Rapid computation of magnetic anomalies and demagnetization effects caused by bodies of arbitrary shape:Pure Appl. Geophys.,1966,64,89-109.
    [111].Wang, B., Effective approaches to handling nonuniform data coverage problem for wide-aperture refraction/reflection profiling:65th Ann. Internat. Mtg., Soc. Expl. Geophys., Expanded Abstracts,1995,659-662.
    [112].Zeyen, H., Pous, J. A new 3-D inversion algorithm for magnetic total field anomalies: Geophy. J. Internat.,,1991,104,583-591.
    [113].蔡柏林,王作勤,杨坤彪等,井中磁测物理-地质模型及其应用.北京:地质出版社,1989.
    [114].地质矿产部第一综合物探大队.井中磁测.北京:地质出版社,1985.
    [115]. X.Wang and R.O. Hansen. Inversion for magnetic anomalies of arbitrary three-dimensional bodies. Geophysics,1990,55(10):1321-1326.
    [116].Joao B.C. Silva and Gerald W. Hohmann. Interpretation of three-component borehole magnetometer data. Geophysics,1981,46(12):1721-1731.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700