用户名: 密码: 验证码:
列车轴承故障道旁声学诊断关键技术研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
铁路运输在我国国民经济和现代化建设中发挥了十分重要的作用,而作为铁路运输主要运载工具的列车,其运行过程中的安全问题则直接影响到人民生命财产安全以及国民经济的发展。列车轮对轴承故障是导致列车发生故障甚至脱轨事故的最主要的原因,长期以来受到国内外各界的广泛关注。因此对列车轴承进行状态监测及故障诊断是非常必要的,对列车的安全运行具有重要意义。对比传统列车车载监测系统,列车轴承故障道旁声学监测与诊断系统具备诸多优点,但也同时存在“陡畸变、多声源、强噪声”这些声信号处理上的技术难点,阻碍了其自主化国产化的进程。
     本文围绕列车轴承故障道旁声学诊断存在的关键技术难题进行了研究与探讨,提出了多普勒畸变校正方法、多声源分离及强噪声滤除方法以及列车轴承道旁声信号故障特征提取方法,并对这些方法进行了理论推导与实验验证,以期为最终实现全自主化国产化列车轴承故障道旁声学监测与诊断系统奠定一定理论基础。主要研究内容如下:
     首先分析了滚动轴承的结构、故障特征频率以及主要的失效形式,阐述了振动产生的机理,同时也分析了轴承内噪声信号产生的原理以及与振动之间的联系。并针对我国现役客运列车轴承NJ(P)3226X1,设计了一个声信号采集实验平台,通过线切割对列车轴承设置了人工故障,以获取不同状况下的列车轴承声信号,为后续解决列车轴承故障道旁声学诊断的关键技术难题提供研究对象与理论依据。
     详细阐述了多普勒畸变的基本概念与原理,并从运动声学的角度建立了道旁声信号的多普勒畸变模型,推导了多普勒畸变的数学公式。研究分析了现有的多普勒畸变校正方法的一些缺陷与局限性,提出了一种基于匹配追踪Dopplerlet变换与重采样的多普勒畸变校正方法。该方法可以在不知道初始运动参数的情况下实现单点声源多普勒畸变校正,或是对多个点声源进行逐一校正。通过抗噪性分析可以发现此种方法对随机噪声具有很强的鲁棒性。最后针对轴承内、外圈故障的实验声信号进行分析和处理,实验结果成功地对该方法的有效性与可行性进行了验证。
     深入讨论了信号分离的研究现状,阐述了广义s变换的基本概念以及实现算法,讨论了基于广义S变换及时频域滤波的信号重构方法细节,同时也给出了相应的仿真案例。由于从单通道信号中实现高速运动信号有效分离的理论方法在国内外研究中都比较空缺,本文结合匹配追踪Dopplerlet变换其独有的多普勒信号匹配特性,提出了一种基于匹配追踪Dopplerlet变换、广义S变换及时频滤波的信号重构方法,来进行高速运动信号的有效分离,进而实现列车轴承道旁声信号多声源分离和强噪声滤除的目的。
     通过分析旋转机械的状态信号特有的周期性脉冲频率特征以及旁瓣现象,结合小波多尺度分析的方法,提出了一种用于列车轴承声信号故障特征提取的小波尺度方差斜率特征提取方法。通过对正常状态、外圈故障、内圈故障以及滚子故障的列车轴承声信号共200段信号进行了分析和验证,实验结果表明将小波尺度方差斜率特征作为轴承故障特征应用在列车轴承故障轨边声学诊断中具有很好的聚类性和稳定性。
Railway transportation plays a very important role in the national economy and the modernization of our country, but the train as a major railway transportation vehicle, the safety problems in the process of its operation directly affect people's life and property safety and the development of national economy. Train wheel bearing failure is the main cause of the train derailment accident or malfunction, which has attracted extensive attention from home and abroad. Thus the train bearing condition monitoring and fault diagnosis is very necessary and of great significance to the safe operation of the train. Compared with the traditional train vehicle monitoring systems, although the wayside acoustic defective bearing detector system has many advantages, the technological difficulties of acoustic signal processing, such as steep distortion, multiple sound sources, and strong noises still hindering the process of its autonomy and localization.
     The major research of this paper focuses on the key technical problems of the wayside acoustic fault diagnosis of train bearings, and the Doppler distortion remove method, multiple sound sources separation and strong noise filtering methods and the train bearing acoustic signal fault feature extraction methods are proposed in this paper. And these methods are theoretically elicited and experimentally verified, in order to lay a certain theoretical foundation of the final realization of the homemade wayside acoustic defective bearing detector system. The main research contents are as follows:
     Firstly the structure, fault characteristic frequency and the main failure forms of rolling bearing were discussed, the mechanism of vibration was elaborated. The analysis of the principle of bearing noise signal and the relationship between noise and vibration was given. An acoustic signal acquisition experimental platform was designed for the active duty passenger train bearing NJ (P)3226X1. The artificial cracks had been set by the wire-electrode cutting machine on the train bearings to obtain the train bearing acoustic signals under different fault conditions, which provide the research object and theoretical basis for resolving the key technical problems of the wayside acoustic fault diagnosis of train bearings.
     The basic concepts and principles of Doppler distortion were discussed in detail, and the Doppler distortion model of wayside acoustic signal was established form the view of moving acoustics, then a mathematical formula of Doppler distortion was derived. After analyzing the flaws and limitations of the existing Doppler distortion correction methods, a Doppler distortion correction method based on Matching Pursuit Dopplerlet transform(MPDT) and resample was proposed. This method can implement both the Doppler distortion correction of single acoustic source and the Doppler distortion correction of multiple acoustic sources one by one, without knowing the initial motion parameters. Meanwhile, this method was robust to random noise by anti-noise analysis. Finally, based on the analysis and processing of train bearing outer race fault and inner race fault acoustic signals, the experimental results demonstrated the effectiveness and feasibility of this method.
     A detailed discussion of the current research of signal separation was presented. Then the basic concepts and algorithm of generalized S transform(GST) were given, the details of signal reconstruction method based on the GST and time-frequency filtering(TFF) were discussed, and the corresponding simulation case was also given. As the theoretical method of separating high-speed motion acoustic signal from a single channel signal is extremely vacant in the research at home and abroad, based on the Doppler signal matching features of MPDT, a signal reconstruction method based on MPDT, GST and TFF was proposed to separate high-speed motion acoustic signal, thus achieving the purposes of multiple sound sources separation and strong noise filtering of wayside train bearing acoustic signals.
     By analyzing unique periodic pulse frequency and side-lobe phenomenon of the rotating machinery status signals, a method of wavelet scale variance slope feature extraction for wayside train bearing acoustic signals feature extraction was proposed, based on the method of wavelet multiscale analysis. Then this method was applied in the analysis of a total of200segments train bearing acoustic signals, which contains normal condition signals, outer race fault signals, inner race fault signals and roller fault signals. Finally, the experimental results showed that, as a train bearing fault feature, the wavelet scale variance slope feature had good properties of clustering and stability in the application of wayside acoustic fault diagnosis of train bearings.
引文
[1]钟秉林,黄仁.机械故障诊断学[M].机械工业出版社,2007.
    [2]钟群鹏,张峥,有移亮.我国安全生产(含安全制造)的科学发展若干问题[J].机械工程学报,2007,43(1):7-18.
    [3]徐敏.设备故障故障诊断手册[M].西安交通大学出版社,1998.
    [4]陈进.机械设备振动监测与故障诊断[M].上海交通大学出版社,1999.
    [5]王胜春.自适应时频分析技术及其在故障诊断中的应用研究[D].山东大学,2007.
    [6]甬温线特别重大铁路交通事故调查组.“7.23”甬温线特别重大铁路交通事故调查报告[R].2011.
    [7]刘登瑞.航天飞机的故障与风险[J].质量与可靠性,2000,1:008.
    [8]黄文虎,夏松波.不断总结经验将我国设备监测与诊断技术提高到新的水平[J].中国设备管理,1998,11:3-5.
    [9]施圣康.汽轮发电机组振动故障诊断技术的发展现状[J].动力工程,2001,21(4):1295-1298.
    [10]张玉妥,李依依.“哥伦比亚”号航天飞机空难原因及其材料分析[J].科技导报,2005,23(7):34-37.
    [11]刘军.故障诊断方法研究及软件开发[D].大连理工大学,2000.
    [12]褚福磊.机械故障诊断中的现代信号处理方法[M].科学出版社,2009.
    [13]屈梁生.机械故障的全息诊断原理[M].科学出版社,2007.
    [14]何正嘉.机械故障诊断理论及应用[M].高等教育出版社,2010.
    [15]王晓冬,何正嘉,訾艳阳.多小波白适应构造方法及滚动轴承复合故障诊断研究[J].振动工程学报,2010,23(4):438-444.
    [16]袁静,何正嘉,訾艳阳.基于提升多小波的机电设备复合故障分离和提取[J].机械工程学报,2010,46(1):79-85.
    [17]孔凡让,冯志华,刘志刚.直流电机换向火花图像监测与客观评价方法的应用[J].设备管理与维修,2001,(1):29-30.
    [18]Hu F, He Q B, Wang J P, et al. Commutation Sparking Image Monitoring for DC Motor[J], Journal Of Manufacturing Science And Engineering-Transactions Of the Asme,2012,134(2).
    [19]何清波.多元统计分析在设备状态监测诊断中的应用研究[D].中国科学技术大学博士学位论文,2007.
    [20]明阳,陈进,董广明.基于循环维纳滤波器和包络谱的轴承故障诊断[J].振动工程学报,2010,23(005):537-540.
    [21]李加庆,陈进,史重九.基于声全息的故障诊断方法[J].机械工程学报,2009,45(5):34-38.
    [22]陈予恕.机械故障诊断的非线性动力学原理[J].机械工程学报,2007,43(1):25-34.
    [23]于德介,程军圣,杨宇.机械故障诊断的Hilbert-Huang变换方法[M].科学出版社,2006.
    [24]皮维,于德介,彭富强.基于多尺度线调频基稀疏信号分解的广义解调方法及其在齿轮故障诊断中的应用[J].机械工程学报,2010,(15):59-64.
    [25]李舜酩,李香莲.振动信号的现代分析技术与应用[M].国防工业出版社,2008.
    [26]李舜酩.机械振动信号盲源分离的时域方法[J].应用力学学报,2006,22(4):579-584.
    [27]杨叔子,丁洪,史铁林.基于知识的诊断推理[M].清华大学出版社,1993.
    [28]郭瑜,秦树人,梁玉前.时频分析阶比跟踪技术三[J].重庆大学学报(自然科学版),2002,25(5).
    [29]程发斌,汤宝平,钟佑明.基于最优Morlet小波和SVD的滤波消噪方法及故障诊断的应用[J].振动与冲击,2008,27(2):91-94.
    [30]黄伟国.基于振动信号特征提取与表达的旋转机械状态监测与故障诊断研究p].中国科学技术大学,2010.
    [31]杨宇.基于EMD和支持向量机的旋转机械故障诊断方法研究[D].湖南大学,2005.
    [32]陈克兴,李川奇,黄天桂.设备状态监测与故障诊断技术[M].科学技术文献出版社,1991.
    [33]贾继德.往复机械非平稳信号的特征提取及诊断研究[D].Diss.2004.
    [34]温熙森,胡茑庆,邱静.模式识别与状态监控[M].国防科技大学出版社,1997.
    [35]Yuan S F, Chu F L. Support vector machines-based fault diagnosis for turbo-pump rotor[J]. Mechanical Systems and Signal Processing,2006,20(4):939-952.
    [36]李明华,罗世民.铁道概论[M].长沙:中南大学出版社,2010.
    [37]董锡明.高速列车维修及其保障技术[M].北京:中国铁道出版社,2008.
    [38]韦尔特纳.德国铁路事故大记事[M].北京:中国铁道出版社.2010.
    [39]Choe H C, Wan Y, Chan A K. Neural pattern identification of railroadwheel-bearing faults from audible acoustic signals:comparison of FFT, CWT and DWT features[J]. SPIE Proceedings on Wavelet Applications,1997, (3078):480-496.
    [40]Sneed W H, Smith R L. On-board real-time railroad bearing defect detection and monitoring[J]. Railroad Conference, Proceedings of the 1998 ASME/IEEE Joint IEEE,1998: 149-153.
    [41]Irani F D.先进道旁车辆状态监视系统的开发和应用.吴朝院,译[J].国外铁道车辆,2002,39(2):39-45.
    [42]Lagneback R. Evaluation of wayside condition monitoring technologies for condition-based maintenance of railway vehicles[J]. Licentiate Thesis, Lulea University of Technology,2007.
    [43]Donelson J, Dicus R L. Bearing defect detection using on-board accelerometer measurements[J]. Proceedings of the 2002 ASME/IEEE Joint Rail Conference,2002:95-102.
    [44]Brie D. Modeling of the spalled rolling element bearing vibration signal:an overview and some new results[J]. Mechanical Systems and Signal Processing,2000,14(3):353-369.
    [45]刘瑞扬.北美铁路车辆安全轨边检测系统的现状及思考[J].中国铁路,2004,(7):57-60.
    [46]Florom R L, Hiatt J E, Smith R L. Wayside acoustic detection of railroad roller bearing defects[J]. Proceedings of the 1987 Winter Annual Meeting of the ASME,1987.
    [47]Florom R L. Wayside acoustic detection of railroad roller bearing defects[J]. ASME WINTER,1988:79-92.
    [48]Smith R L, Bambara J E, Florom R L. Railcar bearing end-life failure distances and acoustical defect censuring methods[J]. Proceedings of the 1988 Winter Annual Meeting of the ASME,1988.
    [49]Southern C, Kopke U. Railbam and WCM wayside detection systems[J]. Journal and report of proceedings-Permanent Way Institution, Permanent Way Institution,2002, (120):361-368.
    [50]Southern C, Rennison D, Kopke U. RailBAM-an Advanced Bearing Acoustic Monitor:Initial Operational Performance Results[J]. CORE:New Horizons for Rail,2004:23.
    [51]Snell O D, Nairne I. Acoustic bearing monitoring-the future RCM[J]. Railway Condition Monitoring,2008 4th IET International Conference on IET,2008:1-5.
    [52]Bladon K, Rennison D, Izbinsky G. Predictive condition monitoring of railway rolling stock[J]. Proceedings of the Conference on Railway Engineering,2004:20-23.
    [53]刘瑞扬,王毓民.铁路货车滚动轴承早期故障轨边声学诊断系统(TADS)原理及应用[M].北京:中国铁道出版社,2008.
    [54]贺德强,路向阳,苗剑.地铁列车故障检测与诊断系统网络体系结构及其仿真研究[J].机车电传动,2009,(5):30-33.
    [55]Ram S S, Li Y, Lin A, et al. Doppler-based detection and tracking of humans in indoor environments[J]. Journal of the Franklin Institute,2008,345(6):679-699.
    [56]Lorenzo S, Nicola P. Laser Doppler vibrometry based on self-mixing effect[J]. Optics and lasers in Engineering,2002,38(3):173-184.
    [57]Zhang Z, Pouliquen P, Waxman A, et al. Acoustic micro-Doppler gait signatures of humans and animals[C]. Acoustic micro-Doppler gait signatures of humans and animals. Information Sciences and Systems,2007 CISS'07 41st Annual Conference on. IEEE:627-630.
    [58]Rabiner L R, Sambur M R. Application Of an Lpc Distance Measure To Voiced-Unvoiced-Silence Detection Problem[J]. Ieee Transactions on Acoustics Speech And Signal Processing,1977,25(4):338-343.
    [59]Reaves B. An Improved End-Point Detector for Isolated Word Recognition-Comment[J]. Ieee Transactions on Signal Processing,1991,39(2):526-527.
    [60]Sohn J, Kim N S, Sung W. A statistical model-based voice activity detection[J]. Ieee Signal Processing Letters,1999,6(1):1-3.
    [61]俞悟周,王晨,毛东兴,等.高速铁路动车组列车的噪声特性[J].环境污染与防治,2009,31(1):74-77.
    [62]王靖.列车轮对故障振动特性及诊断关键技术研究[D].中南大学,2012.
    [63]铁道部.铁路客车轮对和滚动轴承轴箱组装及检修规则[M].北京:中国铁道出版社.2007.
    [64]周俊丽,周久华.滚动轴承故障机理与诊断策略[J].四川兵工学报,2012,33(4):56-59.
    [65]黄志强,冈本纯三.球轴承的设计计算[J].北京:机械工业出版社,2003.
    [66]Rafsanjani A, Abbasion S, Farshidianfar A, et al. Nonlinear dynamic modeling of surface defects in rolling element bearing systems[J]. Journal Of Sound And Vibration,2009, 319(3-5):1150-1174.
    [67]赵联春.球轴承振动的研究[D].杭州:浙江大学,2003.
    [68]万长森.滚动轴承的分析方法[M].北京:机械工业出版社,1987.
    [69]雷继尧,丁康.轴承故障诊断[M].西安交通大学出版社,1991.
    [70]王肇琪,付勤毅.滚动轴承故障的振动检测方法[J].有色矿山,1999,1:010.
    [71]周瑞峰.滚动轴承故障智能诊断方法的研究与实现[D].大连理工大学,2009.
    [72]孟涛,廖明夫.齿轮与滚动轴承故障的振动分析与诊断[D].西安:西北工业大学,2003.
    [73]Lu Y, Morris J M. Gabor expansion for adaptive echo cancellation[J]. Signal Processing Magazine, IEEE,1999,16(2):68-80.
    [74]陈恩利,吴勇军,申永军,等.基于改进奇异值分解技术的齿轮调制故障特征提取[J].振动工程学报,2008,21(5):530-534.
    [75]陈夔蛟.基于振动信号的滚动轴承故障诊断研究[D].西安电子科技大学,2011.
    [76]杨国安.机械设备故障诊断实用技术[M].中国石化出版社,2007.
    [77]李鹏.多尺度分析方法在旋转机械状态监测中的应用研究[D].中国科学技术大学.2012.
    [78]Cline J E, Bilodeau J R, Smith R L. Acoustic wayside identification of freight car roller bearing defects[J]. Proceedings Of the 1998 Asme/Ieee Joint Railroad Conference,1998: 79-83.
    [79]于江林.滚动轴承故障的非接触声学检测信号特性及重构技术研究[D].大庆石油学院,2009.
    [80]李艳妮.旋转机械故障机理与故障特征提取技术研究[D].北京化工大学,2007.
    [81]温志渝,温中泉,贺学锋,等.振动式压电发电机及其在无线传感器网络中的应用[J].机械工程学报,2008,44(11):75-79.
    [82]Beeby S P, Torah R N, Tudor M J, et al. A micro electromagnetic generator for vibration energy harvesting[J]. Journal Of Micromechanics And Microengineering,2007,17(7): 1257-1265.
    [83]Zhang A, He Q, Hu F, et al. Doppler distortion removal based on Dopplerlet Transform and re-sampling for wayside fault diagnosis of train bearings[J]. Proceedings of the Institution of Mechanical Engineers, Part C:Journal of Mechanical Engineering Science.
    [84]Stojanovic M, Catipovic J A, Proakis J G. Phase-coherent digital communications for underwater acoustic channels[J]. Oceanic Engineering, IEEE Journal of,1994,19(1): 100-111.
    [85]Johnson M, Freitag L, Stojanovic M. Improved Doppler tracking and correction for underwater acoustic communications[C]. Improved Doppler tracking and correction for underwater acoustic communications. Acoustics, Speech, and Signal Processing,1997 ICASSP-97,1997 IEEE International Conference on. IEEE.1:575-578.
    [86]Kwon H S, Kim Y H. Moving frame technique for planar acoustic holography[J]. Journal Of the Acoustical Society Of America,1998,103(4):1734-1741.
    [87]Park S H, Kim Y H. Visualization of pass-by noise by means of moving frame acoustic holography[J]. Journal Of the Acoustical Society Of America,2001,110(5):2326-2339.
    [88]杨殿阁,郑四发,连小珉.用于声源识别的声全息重建方法的研究[J].声学学报,2001,26(2):156-160.
    [89]贾沛璋,吴连大.计算多普勒频偏的新算法[J].天文学报,2000,41(4):355-360.
    [90]杨殿阁,罗禹贡,李兵,等.基于时域多普勒修正的运动声全息识别方法[J].物理学报,2010,59(7):4738-4747.
    [91]刘方,沈长青,何清波,等.基于时域多普勒校正和EEMD的列车轴承道旁声音监测故障诊断方法研究[J].振动与冲击,2013,32(24):104-109.
    [92]吴强,孔凡让,何清波,等.基于重采样技术的声学信号多普勒畸变校正[J].信号处理,2012,28(9):1308-1313.
    [93]Dybala J, Galezia A, Maczak J. Verification of Doppler Effect removal method for the needs of pass-by railway condition monitoring system[J]. Diagnostyka,2008,4(48):25-30.
    [94]Dybala J, Radkowski S. Reduction of Doppler effect for the needs of wayside condition monitoring system of railway vehicles[J]. Mechanical Systems and Signal Processing,2013, 38(1):125-136.
    [95]http://en.wikipedia.org/wiki/Doppler_effect.
    [96]路峻岭,汪荣宝.多普勒效应公式的简便推导[J].大学物理,2005,8:25-27.
    [97]Morse P, Ingard K. Theoretical Acoustics[J]. Princeton University Press,1986.
    [98]邹红星,戴琼海,周小波,李衍达.Dopplerlet变换及其匹配收敛性分析[J].电子与信息学报,2001,23(5).
    [99]Qian S, Chen D. Signal representation using adaptive normalized Gaussian functions[J]. Signal Processing,1994,36(1):1-11.
    [100]Mallat S G, Zhang Z. Matching pursuits with time-frequency dictionaries[J]. Signal Processing, IEEE Transactions on,1993,41(12):3397-3415.
    [101]Mihovilovic D, Bracewell R. Whistler analysis in the time-frequency plane using chirplets[J]. Journal of Geophysical Research:Space Physics (1978-2012),1992,97(A11): 17199-17204.
    [102]Mann S, Haykin S. The chirplet transform:Physical considerations[J]. Signal Processing, IEEE Transactions on,1995,43(11):2745-2761.
    [103]邹红星,周小波,李衍达.采用Dopplerlet基函数的时频信号表示[J].清华大学学报(自然科学版),2000,40(3):55-58.
    [104]Honging Zou Y C, Yanda Li. Steady-Motion-Based Dopplerlet Transform:Application to the Estimation of Rangeand Speed of aMoving Sound Source[J]. IEEE JOURNAL OF OCEANIC ENGINEERING,2004,29.
    [105]Yin Q, Ni Z. Adaptive Oriented Orthogonal Projectire Decomposition[J]. Acta Electronica Sinica,1997,25:52-58.
    [106]Yin Q, Qian S, Feng A. A fast refinement for adaptive Gaussian chirplet decomposition[J]. Signal Processing, IEEE Transactions on,2002,50(6):1298-1306.
    [107]Bultan A. A four-parameter atomic decomposition of chirplets[J]. Ieee Transactions on Signal Processing,1999,47(3):731-745.
    [108]Papandreou-Suppappola A, Suppappola S B. Adaptive time-frequency representations for multiple structures[J]. Proceedings Of the Tenth Ieee Workshop on Statistical Signal And Array Processing,2000:579-583.
    [109]Zou H X, Dai Q G, Wang R M, et al. Parametric TFR via windowed exponential frequency modulated atoms[J]. Ieee Signal Processing Letters,2001,8(5):140-142.
    [110]Zhang A, Hu F, He Q, et al. Doppler Shift Removal Based on Instantaneous Frequency Estimation for Wayside Fault Diagnosis of Train Bearings[J]. Journal of Vibration and Acoustics,2014,136(2):021019.
    [111]张翱,胡飞,孔凡让.基于能量重心法的列车轴承多普勒畸变故障声信号校正诊断研究[J].振动与冲击,2014.
    [112]Jutten C, Herault J. Blind Separation Of Sources, part.l:An Adaptive Algorithm Based on Neuromimetic Architecture[J]. Signal Processing,1991,24(1):1-10.
    [113]Herault J, Jutten C, Comon P. Blind Separation Of Sources, part.2:Problems Statement[J]. Signal Processing,1991,24(1):11-20.
    [114]Comon P. Independent Component Analysis, a New Concept[J]. Signal Processing,1994, 36(3):287-314.
    [115]Mendel J M. Tutorial on Higher-Order Statistics (Spectra) In Signal-Processing And System-Theory-Theoretical Results And Some Applications[J]. Proceedings Of the Ieee, 1991,79(3):278-305.
    [116]Bell A J, Sejnowski T J. An Information Maximization Approach To Blind Separation And Blind Deconvolution[J]. Neural Computation,1995,7(6):1129-1159.
    [117]Woo W L, Sali S. Neural network schemes for blind separation of sources from nonlinear mixtures[J]. Dsp 2002:14th International Conference on Digital Signal Processing Proceedings, Vols 1 And 2,2002:1227-1234.
    [118]Krim H, Viberg M. Two decades of array signal processing research-The parametric approach[J]. Ieee Signal Processing Magazine,1996,13(4):67-94.
    [119]Belouchrani A, Amin M G. Time-frequency MUSIC[J]. Ieee Signal Processing Letters, 1999,6(5):109-110.
    [120]Belouchrani A, Amin M G. Blind source separation based on time-frequency signal representations[J]. Ieee Transactions on Signal Processing,1998,46(11):2888-2897.
    [121]Belouchrani A, Ren W. New formulation of the carrier phase tracking problem[C]. New formulation of the carrier phase tracking problem. Signals, Systems and Computers,1996 Conference Record of the Thirtieth Asilomar Conference on. IEEE:1186-1190.
    [122]Lin J. Ridges reconstruction based on inverse wavelet transform[J]. Journal Of Sound And Vibration,2006,294(4-5):916-926.
    [123]Carmona R A, Hwang W L, Torresani B. Characterization of signals by the ridges of their wavelet transforms[J]. Ieee Transactions on Signal Processing,1997,45(10):2586-2590.
    [124]Staszewski W J. Identification of non-linear systems using multi-scale ridges and skeletons of the wavelet transform[J]. Journal Of Sound And Vibration,1998,214(4):639-658.
    [125]Carmona R A, Hwang W L, Torresani B. Multiridge detection and time-frequency reconstruction[J]. Ieee Transactions on Signal Processing,1999,47(2):480-492.
    [126]吴乐南.数据压缩的原理与应用[M].电子工业出版社,1995.
    [127]Krim H, Tucker D, Mallat S, et al. On denoising and best signal representation[J]. Ieee Transactions on Information Theory,1999,45(7):2225-2238.
    [128]Hlawatsch F, Boudreaux-Bartels G F. Linear and quadratic time-frequency signal representations[J]. Ieee Signal Processing Magazine,1992,9(2):21-67.
    [129]Cohen L. Time-frequency analysis:theory and applications[M]. City:Prentice-Hall, Inc., 1995.
    [130]Cambanis S, Houdre C. On the continuous wavelet transform of second-order random processes[J]. Information Theory, IEEE Transactions on,1995,41(3):628-642.
    [131]Cardoso J. Super-symmetric decomposition of the fourth-order cumulant tensor. Blind identification of more sources than sensors[C]. Super-symmetric decomposition of the fourth-order cumulant tensor. Blind identification of more sources than sensors. Acoustics, Speech, and Signal Processing,1991 ICASSP-91,1991 International Conference on. IEEE: 3109-3112.
    [132]Cao X R, Liu R W. General approach to blind source separation[J]. Ieee Transactions on Signal Processing,1996,44(3):562-571.
    [133]Taleb A, Jutten C. On underdetermined source separation[J]. Icassp '99:1999 Ieee International Conference on Acoustics, Speech, And Signal Processing, Proceedings Vols I-Vi,1999:1445-1448.
    [134]陈学华,贺振华,黄德济.广义S变换及其时频滤波[J].信号处理,2008,24(1):28-31.
    [135]张贤达,保铮.非平稳信号分析与处理[M].国防工业出版社,1998.
    [136]Mallat S,杨力华.信号处理的小波导引[M].机械工业出版社,2002.
    [137]Stockwell R G, Mansinha L, Lowe R P. Localization of the complex spectrum:The S transform[J]. Ieee Transactions on Signal Processing,1996,44(4):998-1001.
    [138]Pinnegar C R, Mansinha L. The S-transform with windows of arbitrary and varying shape[J]. Geophysics,2003,68(1):381-385.
    [139]彭玉华.小波变换与工程应用[M].科学出版社,1999.
    [140]何正嘉.机械设备非平稳信号的故障诊断原理及应用[M].高等教育出版社,2001.
    [141]张国华,张文娟,薛鹏翔.小波分析与应用基础[M].西北工业大学出版社,2006.
    [142]Yong R. An Introduction to Nonlinear Fourier Series [M]. New York:Academic Press. 1980.
    [143]Stromberg J. A Modified Haar System and Higher Order Spline Systems, Conference in harmonic analysis in honor of Antoni Zygmund, Wadworth math, series, edited by W[J]. Beckner and al, II,475:493.
    [144]Grossmann A, Morlet J. Decomposition of Hardy functions into square integrable wavelets of constant shape[J]. SIAM journal on mathematical analysis,1984,15(4):723-736.
    [145]Meyer Y. Principe d'incertitude, bases hilbertiennes et algebres d'operateurs[J]. Seminaire Bourbaki,1985,28:209-223.
    [146]Mallat S G. Multiresolution representations and wavelets[J].1988.
    [147]Mallat S G. Multiresolution approximations and wavelet orthonormal bases of L2(R)[J]. Transactions of the American Mathematical Society,1989,315(1):69-87.
    [148]Mallat S G. A Theory for Multiresolution Signal Decomposition-the Wavelet Representation[J]. Ieee Transactions on Pattern Analysis And Machine Intelligence,1989, 11(7):674-693.
    [149]彭玉华.小波变换与工程应用[M].北京:科学出版社,1999.
    [150]Daubechies I. Orthonormal Bases Of Compactly Supported Wavelets[J]. Communications on Pure And Applied Mathematics,1988,41(7):909-996.
    [151]Daubechies I. The Wavelet Transform, Time-Frequency Localization And Signal Analysis[J]. Ieee Transactions on Information Theory,1990,36(5):961-1005.
    [152]Hartin J R. Application of a wavelet based FRF to the analysis of a bilinear structure[J]. Proceedings Of Imac-Xix:A Conference on Structural Dynamics, Vols 1 And 2,2001,4359: 1414-1419.
    [153]邹甲军,冯志华.基于小波脊的MDOF系统的模态参数识别[J].苏州大学学报:自然科学版,2004,20(3):35-39.
    [154]卢新城,龚沈光.基于Morlet小波的高分辨率信号频谱估计[J].武汉理工大学学报:交通科学与工程版,2002,26(5):622-624.
    [155]Oraintara S, Tran T D, Heller P N, et al. Lattice structure for regular paraunitary linear-phase filterbanks and M-band orthogonal symmetric wavelets[J]. Signal Processing, IEEE Transactions on,2001,49(11):2659-2672.
    [156]Kim H O, Lim J K. On frame wavelets associated with frame multiresolution analysis[J]. Applied and Computational Harmonic Analysis,2001,10(1):61-70.
    [157]Acharyya M, De R K, Kundu M K. Segmentation of remotely sensed images using wavelet features and their evaluation in soft computing framework[J]. Geoscience and Remote Sensing, IEEE Transactions on,2003,41(12):2900-2905.
    [158]Staszewski W, Tomlinson G. Application of the wavelet transform to fault detection in a spur gear[J]. Mechanical Systems and Signal Processing,1994,8(3):289-307.
    [159]Ganesan R, Das T K, Venkataraman V. Wavelet-based multiscale statistical process monitoring:A literature review[J]. IIE transactions,2004,36(9):787-806.
    [160]Zhang G, Zhou Z, Chen Y P. The signal processing technology based on wavelet transform[J]. International Conference on Sensor Technology (Istc 2001), Proceedings, 2001,4414:455-459.
    [161]Mallat S. A wavelet tour of signal processing[M]. Academic press,1999.
    [162]Percival D B, Walden A T. Wavelet methods for time series analysis [M]. Cambridge University Press,2006.
    [163]Chui C K. An introduction to wavelets[M]. Academic press,1992.
    [164]Mclnerny S, Dai Y. Basic vibration signal processing for bearing fault detection[J]. Education, IEEE Transactions on,2003,46(1):149-156.
    [165]张正松.旋转机械振动监测及故障诊断[M].机械工业出版社,1991.
    [166]陶新民,孙丽华,杜宝祥,等.基于小波方差谱熵的轴承故障诊断方法[J].振动与冲击,2009,28(3):18-22.
    [167]Harris T A, Kotzalas M N. Advanced concepts of bearing technology:rolling bearing analysis[M]. CRC Press,2006.
    [168]罗继伟,天宇.滚动轴承分析计算与应用[M].机械工业出版社,2009.
    [169]Hooge F.1/f noise sources[J]. Electron Devices, IEEE Transactions on,1994,41(11): 1926-1935.
    [170]Flandrin P. Wavelet analysis and synthesis of fractional Brownian motion[J]. Information Theory, IEEE Transactions on,1992,38(2):910-917.
    [171]Barton R J, Poor H V. Signal detection in fractional Gaussian noise[J]. Information Theory, IEEE Transactions on,1988,34(5):943-959.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700