用户名: 密码: 验证码:
淀粉基UV固化速降解型高吸水材料的制备及性能
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本文采用熔融缩聚法制备了交联剂不饱和聚酯酰胺脲,同时以溶液聚合法合成玉米淀粉接枝丙烯酸共聚物。不饱和聚酯酰胺脲与淀粉接枝丙烯酸共聚物在紫外光照射作用下交联固化成型,制得一种具有较好吸水性能和降解性能的膜状高吸水性材料。该材料在成型过程中不添加任何光引发剂,具有无毒副作用、无残留小分子、降解速度快等特点。本文研究了制备条件对高吸水材料性能的影响,并用红外、TG-DSC和SEM分析仪对聚合物进行了表征。
     研究结果表明,淀粉与水的糊化比为1:10,引发剂硝酸铈铵用量为丙烯酸单体质量的0.1 %,丙烯酸与玉米淀粉反应时间3 h,反应温度60℃,丙烯酸与淀粉质量比为6,丙烯酸中和度90 %,玉米淀粉接枝丙烯酸聚合物与交联剂不饱和聚酯酰胺脲质量比为200,UV固化时间15 min时,高吸水性材料具有较好的吸水能力,常温条件下,对蒸馏水、自来水、0.9 % KCl和0.9 % NaCl水溶液的吸收能力分别可达920.58 g/g,410.73 g/g,128.70 g/g,99.13 g/g;高吸水性材料吸水速率较快,10 min内对蒸馏水的吸收倍率可达230倍;高吸水性材料保水能力较好,常温条件下,吸蒸馏水、自来水、0.9 % NaCl溶液及0.9 % KCl溶液达饱和状态后,保水率分别可达91.17 %、83.83 %、70.71 %及79.93 %。对高吸水性材料的红外分析证实淀粉接枝丙烯酸共聚物与交联剂不饱和聚酯酰胺脲发生了交联反应。TG-DSC分析证明膜状高吸水性材料具有较好的热稳定性。
     高吸水性材料降解性能较好,有望应用于一次性生理卫生用品领域,减少环境污染。常温条件下,在蒸馏水、1 mol/L NaOH溶液、0.9 % NaCl溶液中降解7 d后的失重率分别为85.25 %、64.73 %和36.82 %;SEM表明高吸水性材料降解前表现出一种深层中空的立体交联网络结构,表面粗糙多孔,在不同溶液中降解后,交联网络结构逐渐消失,表面粗糙程度增加并伴随有较大的裂痕,表明高吸水性材料在降解过程中先是长链断裂成短链,然后逐渐变为细小颗粒。
Unsaturated polyester-urea amide which was used as cross-linking agent was prepared by melt-polycondensation in this paper, and corn starch grafted acrylic acid copolymer was prepared by aqueous solution polymerization. A membranous material with high water absorption and easy degradation was prepared, when unsaturated polyester-urea amide and corn starch grafted acrylic acid copolymer were UV-curing and cross-linking under UV irradiation. In the progress of modeling, we didn’t add any photo-initiators in it, and the material has the advantages of non-toxic side effects, no residual small molecules and can be fast degradable and so on. In this paper, the effects of preparation conditions on the properties of super absoebent were studied. The polymer was characterized by IR, TG-DSC and SEM.
     The research results show that in the conditions of gelatinization ratio of starch and water 1:10 , w(CAN)=0.1 % (based on acrylic acid quality), reaction time of corn starch grafting acrylic acid 3 h , reaction temperature 60℃, mass ratio of acrylic acid and corn starch 6, neutralization degree of acrylic acid 90 %, mass ratio of corn starch grafting acrylic acid polymer and unsaturated polyester-urea amide 200 , UV curing time of 15 min , the superabsorbent material has fairly good water absorption capacity, water absorbency of this material in distilled water, tap water, 0.9 % KCl and 0.9 % NaCl solutions can reach to 920.58 g/g,410.73 g/g,128.70 g/g,99.13 g/g respectively in normal temperature; the superabsorbent material also has good water retention capacity, when the material immersed in distilled water, tap water, 0.9 % KCl and 0.9 % NaCl solutions to water saturation state, 24 h water retaining rate are up to 91.17 % , 83.83 % , 70.71 % and 79.93 % separately. IR confirmed that crosslinking reaction has occurred between corn starch grafted acrylic acid copolymer and unsaturated polyester-urea amide, and TG-DSC confirmed that the membranous material with high water absorption has good thermal stability.
     The super absorbent material has better performance in degradation than others, and it can be used in the area of disposable physiological health articles to reduce environmental pollution. In normal temperature, the weight loss rate of it can be 85.25 % , 64.73 % and 36.82 % after being immersed in distilled water, 1 mol/L NaOH solution and 0.9% NaCl solutions respectively for 7 d . The super absorbent material shows a deep hollow and three-dimensional cross-linked network structure before degradation, and it has rough and porous surface. When degradation in different solutions, cross-linked network structure has gradually disappeared, meanwhile, roughness degree increase and accompany with large cracks in the surface. It shows that, in degradation process, long chains breaking into short chains and then change into small particles gradually.
引文
[1]王飞镝,崔英德,林海琳,等.淀粉基和纤维素基吸水材料的研究进展.粮油食品科技, 2006, 14(1): 56-59
    [2]江照洋. SA-IP-SPS互穿网络高吸水树脂的合成与性能研究:[西安科技大学硕士学位论文].西安:西安科技大学, 2009, 2-5
    [3]尹沾合.淀粉/AA/AM/MA反相悬浮法合成高吸水树脂:[广西大学硕士学位论文].广西:广西大学, 2007, 4
    [4]胡金生,曹同玉,刘庆普.乳液聚合.北京:化学工业出版社, 1987, 362
    [5]黄占斌.农用保水剂应用原理与技术.北京:中国农用科学技术出版社, 2005, 25
    [6]崔英德,黎新明,尹国强,等.绿色高吸水树脂.北京:化学工业出版社, 2008, 1-70
    [7] Liu J H, Wang Q, Wang A Q. Synthesis and characterization of chitosan-g-poly (acrylic acid)/sodium humate superabsorbent. Carbonhydrate Polymers, 2007, 70: 166-173
    [8]陈雪萍,翁志学,黄志明.高吸水性树脂的结构与吸水机理.化工新型材料, 2002, 30(3): 19-21
    [9]邹新禧.超强吸水剂(第二版).北京:化学工业出版社, 2002: 184-638
    [10] Mostafa K M. Graft polymerization of acrylic acid onto starch using potassium permanganate acid (redox system). Journal of applied Polymer Science, 1995, 56: 263-269
    [11] Mostafa K M, ElSanabary A A. Graft Polymerization of Different Monomers onto Carbamated Starches Derived from Native and Hydrolyzed Starches. Journal of Applied Polymer Science, 2003, 88: 959-965
    [12]朱林晖,唐尧基,丁马太.皂化对于淀粉-MMA接枝共聚物吸水性能影响的研究.功能材料, 2009, 40(9): 1510-1512
    [13]姜绍通,周建芹,赵妍嫣,等.甘薯淀粉接枝共聚高吸水树脂的合成及在种子包衣上的应用研究.农业工程学报, 2004, 20(1): 207-210
    [14]阮波.淀粉接枝改性制备高吸水性树脂:[南京理工大学硕士学位论文].南京:南京理工大学, 2008, 16-17
    [15] Athawale V D, Vidyagauri L. Graft copolymerization onto starch.II.Grafting of acrylic acid and preparation of it’s hydrogels. Carbohydrate Polymers, 1998, 35: 21-27
    [16] Athawale V D, Lele V. Syntheses and characterisation of graft copolymers ofmaize starch and methacrylonitrile. Carbohydrate Polymers, 2000, 41: 407-416
    [17] Cao Y M, Qing X S, Sun J, et al. Graft copolymerization of acrylamide onto carboxymethyl starch. European Polymer Journal, 2002, 38: 1921-1924
    [18] Athawale V D, Vidyagauri L. Factors influencing absorbent properties of saponified starch-g-(acrylic acid-co-acrylamide). Journal of Applied Polymer Science, 2000, 77(11): 2480-2485
    [19]张明杰,许芝.淀粉接枝系高吸水吸油树脂的合成.化工新型材料, 2007, 35(1): 59-60
    [20]周明,蒲万芬,杨燕.抗盐性淀粉接枝高吸水性树脂合成条件优化.石油化工, 2003, 32(4): 314-316
    [21]乌兰,柳明珠.玉米淀粉接枝丙烯酸制备高吸水性树脂.高分子材料科学与工程, 2006, 22(1): 250-253
    [22] Khalil M I, Mostafa K M, Hebeish A. Graft polymerization of acrylamide onto maize starch using potassium persulfate as initiator. Materials and Engineering, 1993, 213(1): 43-45
    [23] Lanthong P, Nuisin R, Kiatkamjornwong S. Graft copolymerization characterization and degradation of cassava starch-g-acrylamide/itaconic acid superabsorbents. Carbohydrate Polymers, 2006, 66: 229-245
    [24] Zhang J P, Li A, Wang A Q. Study on superabsorbent composite. VI. Preparation characterization and swelling behaviors of starch phosphate-graft-acrylamide/ attapulgite superabsorbent composite. Carbohydrate Polymers, 2006, 65: 150-158
    [25]默丽敏,王锡臣,王佩璋.淀粉-丙烯酸接枝共聚新工艺研究.高分子材料科学与工程, 1999, 15(6): 167-168
    [26]姜绍通,伍亚华,赵妍嫣.淀粉基高吸水树脂的制备新方法.合肥工业大学学报(自然科学版), 2006, 29(3): 260-263
    [27]王存国,董晓臣,何丽霞,等.淀粉与丙烯酸接枝共聚物吸水性能的影响因素研究.功能材料, 2007, 38(11): 1904-1907
    [28] Luo W, Zhang W A, Chen P, et al. Synthesis and Properties of Starch Grafted Poly [acrylamide-co-(acrylic acid)]/Montmorillonite Nanosuperabsorbent viaγ-Ray Irradiation Technique. Journal of Applied Polymer Science, 2005, 96: 1341-1346
    [29] Kiatkamjornwonga S, Chomsaksakul W, Sonsuk M. Radiation modification of water absorption of cassava starch by acrylic acid/acrylamide. Radiation Physics and Chemistry, 2000, 59: 413-427
    [30]王庆军,全一武,张粉英,等.利用60Coγ辐射聚合技术研制淀粉型农用高吸水材料.核技术, 2003, 26(4): 310-313
    [31]辜英杰,邹伟权,闫世平,等.淀粉-丙烯酸钠高吸水树脂的辐射反相悬浮法制备与性能.华南农业大学学报(自然科学版), 2004, 25(2): 112-112
    [32]魏远安,韦超,姚评佳,等.辐射聚合法合成淀粉接枝聚丙烯酸钠超强吸水剂.广西大学学报(自然科学版), 2004, 29(4): 269-273
    [33]黄明德,阎学伟.淀粉接枝丙烯腈共聚物的微波皂化.高分子材料科学与工程, 1998, 14(2): 127-129
    [34] Ge H C, Pang W, Luo D K. Graft copolymerization of chitosan with acrylic acid under microwave irradiation and its water absorbency. Carbohydrate Polymers, 2006, 66: 372-378
    [35]刘莲英,孙玉凤,何辰凤,等.光引发玉米淀粉-丙烯酸反相乳液接枝共聚合制备高吸水性树脂.石油化工, 2005, 34(8): 739-743
    [36] Fanta G F, Russel R C. Syntheses of starch-grafted polyacrylonitrile polymers. Journal of Applied Polymer Science, 1969, 10: 929-936
    [37]谈福华,钱斌良.高吸水性树脂的制备方法.中国专利. 86104111A, 1988-6-8
    [38]廖列文,崔英德,康正,等.高保水性淀粉接枝聚丙烯酸钠高吸水性树脂合成研究.现代化工, 2001, 21(2): 27-29
    [39]温国永,温国华,王奂玲.玉米淀粉接枝丙烯酸钠合成高吸水性树脂.内蒙古大学学报(自然科学版), 2002, 33(3): 292-294
    [40]邓新华,孙元,王胜利,等.复合型高吸水性树脂的设计与制备.精细石油化工, 2003, (3): 33-36
    [41]李云雁.淀粉接枝丙烯酸制备高吸水性树脂的研究.精细石油化工, 2004, (6): 50-53
    [42]余丽秀,张然,孙亚光,等.丙烯酸盐/膨润土/淀粉共聚复合高吸水材料制备研究.非金属矿, 2005, 28(6): 18-20
    [43]燕青芝,宿新泰,张文峰,等.波聚合制备淀粉接枝丙烯酸钠-丙烯酰胺高吸水性树脂.高等学校化学学报, 2005, 26(7): 1363-1365
    [44]聂明,谭世语,王孝华,等.接枝共聚法合成高吸水性树脂.高分子材料科学与工程, 2005, 21(6): 84-89
    [45]李丽,曹冲,单晓波.天然高分子吸水材料的制备工艺与性能评价.材料科学与工艺, 2006, 14(5): 471-475
    [46] Peng G, Xu S M, Peng Y, et al. A new amphoteric superabsorbent hydrogel based on sodium starch sulfate. Bioresource Technology, 2008, 99: 444-447
    [47]江照洋,蔡会武,王瑾璐.丙烯酸/淀粉/SPS互穿网络高吸水树脂的合成研究.化工新型材料, 2009, 37(9): 79-82
    [48]张涛,谭兴和,张瑜.马铃薯淀粉复合吸水树脂合成工艺优化.食品与机械, 2009, 25(3): 17-20
    [49] Nakasona C, Wohmanga T, Kaesamana A, et al. Preparation of cassava starch-graft-polyacrylamide superabsorbents and associated composites by reactive blending. Carbohydrate Polymers, 2010, 81: 348-357
    [50]旷云香.可生物降解型淀粉接枝丙烯酸类高吸水性树脂的研究:[北京工业大学硕士学位论文].北京:北京理工大学, 2006, 7
    [51] Albertsson A C, Bánhidi Z G. Microbial and oxidative effects in degradation of polyethene. Journal of Applied Polymer Science, 1980, 25(8): 1655-1671
    [52] Peanasky J S, Long J M, Wool R P. Percolation effects in degradable polyethylene-starch blends. Journal of Applied Polymer SciencePart B, 1991, 29(5): 565-579
    [53]刘晓洪,曾莹.淀粉接枝类高吸水性树脂的生物降解性与毒性研究.精细石油化工, 2003, (6): 25-26
    [54]张小红,崔英德,潘湛昌.聚丙烯酸/海藻酸钠高吸水性树脂的制备及生物降解性能.化工学报, 2005, 56(6): 1134-1137
    [55]崔亦华,崔英德,郭建维.番薯淀粉接枝丙烯酸盐吸水剂的制备及生物降解性能.材料导报, 2007, 21(8): 151-153
    [56]赵伟,崔亦华,郭建维.可生物降解吸水树脂的制备及其性能研究.化工新型材料, 2007, 35(7): 71-72
    [57] Mubarak A K, Bhattacharia S K, Kader M A, et al. Preparation and characterization of ultra violet (UV) radiation cured bio-degradable films of sago starch/PVA blend. Carbohydrate Polymers, 2006, 63: 500-506
    [58]陈展云,彭慧梅,蒋林斌,等.淀粉-丙烯酸接枝共聚物的合成及产物结构表征.高分子材料科学与工程, 2009, 25(3): 21-24
    [59]方敏.不饱和聚酯酰胺脲树脂紫外光固化涂料的制备与性能的研究:[湖南大学硕士学位论文].长沙:湖南大学, 2009, 18
    [60]汪娟.淀粉接枝丙烯酸盐类的聚合物的合成及应用:[济南大学硕士学位论文].济南:济南大学, 2009, 19
    [61]王磊,李仲谨,赵新法,等.交联淀粉微球对Cu2+的吸附性能.高分子材料科学与工程, 2008, 24(8): 104-107
    [62]马凤国,廖双全,周贵忠,等.超强吸水树脂的吸水性能研究.高分子材料科学与工程, 2002, 18(5): 199-201
    [63]马松海,李桂英,孙琳,等.聚丙烯酸/黏土复合高吸水性树脂的合成及性能.石油化工, 2009, 38(7): 779-784
    [64]陈煜,陆铭,唐奕,等.羧甲基壳聚糖接枝聚丙烯酸钠/乙烯基吡咯烷酮高吸水性树脂的合成.石油化工, 2004, 33(12): 1137-1141
    [65]孙民伟,张健,高彦芳,等.交联剂分子量对高吸水性树脂性能的影响.高分子学报, 2008, (4): 295-299

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700