用户名: 密码: 验证码:
高温对抗性和敏感小菜蛾caspase基因和hsp70基因热激表达及抗性进化的影响
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
小菜蛾是世界性十字花科蔬菜的重大害虫,根据本实验前人研究结果,高温下抗性和敏感小菜蛾生理适合度显著降低,本文选择了高温下显著上调表达的两个基因——caspase和hsp70作为生理适合度指标,通过生化、分子生物学及抗药性测定技术进行了高温对抗性和敏感小菜蛾caspase和hsp70基因热激表达及抗性水平的比较研究。研究揭示了高温条件下小菜蛾种群抗药性水平急剧下降,且这种抗性水平的下降是可遗传的。
     caspase是细胞凋亡过程中的关键酶,起到执行细胞凋亡的功能,本文通过同源克隆的策略和RACE技术,克隆得到一个1172bp长的小菜蛾caspase基因(Px-caspase-1),具有完整的开放阅读框,开放阅读框长903bp,编码具有300个氨基酸的caspase蛋白,分子量为33.6kDa。与其它昆虫caspase基因的氨基酸序列比对结果显示,Px-caspase-1)属于效应caspase。高温(32.1、36、40、42、45、47℃)和常温(25℃)预处理对caspase-9(起始caspase)和caspase-3(效应caspase)的酶活力及1px-caspase-1mRNA表达量变化影响的研究结果表明,常温下小菜蛾成虫体内存在caspase-9和caspase-3的酶活性及Px-caspase-1基因表达,高温能够显著诱导caspase-9和caspase-3酶活力增高以及Px-caspase-1mRNA表达上调,且随着温度的升高上调表达的高峰提前出现。此外,高温可导致小菜蛾成虫的死亡率显著增高。上述结果表明,常温25-C下细胞凋亡是小菜蛾的一种正常生命现象,而高温能够显著诱导小菜蛾发生细胞凋亡,使得细胞凋亡基因Px-caspase-1的上调表达高峰提前出现,加速小菜蛾的死亡。比较高温(32.1、40、42℃)处理不同时间敏感和抗性小菜蛾Px-caspase-1基因表达的差异,结果表明抗性小菜蛾Px-caspase-1基因在高温下的热激上调表达显著大于敏感小菜蛾。
     在热胁迫下的细胞凋亡与热休克蛋白70家族相关,本文克隆得到小菜蛾hsp70基因(Px-hsp70)序列的全长cDNA。该基因的cDNA序列长2128bp,具有5'非翻译区90bp,3'非翻译区140bp,开放阅读框为1899bp,演绎的蛋白质序列为632aa,分子量为69.3kDa。通过在NCBI上进行的序列比对及功能位点分析,Px-hsp70)禹于hsp70家族成员。通过采用雌、雄幼虫和雌、雄成虫为材料,25、37、42-C预处理3h后,无论在敏感还是抗性种群中整体上,幼虫的Px-hsp70表达量均比成虫Px-hsp70的表达量低,且高温诱导后幼虫Px-hsp70的表达量均无显著变化。在成虫中,高温可显著诱导敏感及抗性小菜蛾Px-hsp70的上调表达,但是高温对敏感小菜蛾Px-hsp70的上调表达程度显著大于对抗性小菜蛾的影响。
     这些结果表明,高温可显著抑制敏感和抗性小菜蛾的生理适合度,但是对抗性小菜蛾适合度的抑制作用更为显著。
     高温可显著影响小菜蛾的抗药性水平。田间监测的结果表明,夏季7月高温期间小菜蛾抗药性水平急剧下降。小菜蛾在高温下(33.5℃)饲养一代后对阿维菌素抗性水平大幅下降,高温饲养一代后小菜蛾抗药性水平急剧下降可能与高温下抗性小菜蛾适合度显著低于敏感小菜蛾有关。
Plutella xylostella (diamondback moth, DBM) is a destructive cosmopolitan pest of cruciferous crops. As reported, the fitness of the insecticide-resistant (R) and-susceptible (S) DBM was decreased sharply under high temperature. Effects of heat stress on expression of caspase and hsp70genes and level of resistance to insecticide in the R and S DBM were studied by biochemistry, molecular biology and resistant bioassays. The results showed that resistance level of DBM was decreased significantly under heat stress, and this decrease was heritable.
     Caspase is the key factor in apoptosis. The caspase gene, named Px-caspase-1, was isolated and sequenced from the DBM. The full-length of Px-caspase-1cDNA was1172bp, including an903bp open reading frame (ORF) that encoded300amino acids. The dedueed protein had a computed molecular mass of33.6kDa. The Px-caspase-1belonged to effector caspase based on its high identity of amino acid sequences to the effector caspase genes from other insect species.
     The expression of Px-caspase-1and the enzyme activity of caspase-9and caspase-3under heat stress (32.1、36、40、42、45、47℃) were studied. The results showed that the basic levels of Px-caspase-1expression and caspase-9and caspase-3activities could be detected at25℃. However, the gene expression and the two enzyme activities increased significantly when the adults of DBM were pretreated with high temperature. With the increase of pretreatment temperature and time period, the Px-caspase-1mRNA expression and activities of caspase-9and caspase-3reached the peak value earlier under heat stress than those at25℃. In addition, high temperature could result in the increase of mortality of adult DBM. The results indicated that apoptosis was a normal physiological procession in DBM at normal temperature, and heat stress could significantly induce apoptosis in DBM and cause death of DBM.
     The expression of Px-caspase-1between R and S adults DBM under heat stress (32.1、40、42℃) were studied. Significantly increase of Px-caspase-1expression was found in female and male adults of R and S DBM when the adults were pretreated with high temperature, and the extent of up-regulation of Px-caspase-Ⅰ expression in R DBM was significantly higher than in S DBM.
     The heat shock protein70family were invoved in apoptosis under heat stress. The heat shock protein gene, named Px-hsp70, was isolated and sequenced from DBM. The full-length of Px-hsp70cDNA was2128bp, including an1899bp open reading frame (ORF) that encoded632amino acids. The deduced protein had a computed molecular mass of69.3kDa. The Px-hsp70belonged to hsp70gene family based on its high identity of amino acid sequences to the hsp70genes from other insect species.
     The basic expression levels of Px-hsp70in female and male larvae were lower than those in female and male adults in R and S DBM, in general. There were no significantly difference of Px-hsp70expression in female and male larvae between25℃and high temperature treatments (37and42℃). However, significantly increase of Px-hsp70expression was found in female and male adults of R and S DBM when the adults were pretreated with high temperature, and the extent of up-regulation of Px-hsp70expression in S DBM was significantly higher than in R DBM.
     The results indicated that the fitness of the R and S DBM was inhibited significantly by high temperature, and the R DBM was inhibited much than S DBM.
     The level of resistance to insecticide of DBM was influenced markedly by high temperature. Based on the field resistance monitoring, the level of resistance to insecticide decreased sharply in July. The level of resistance to avermectin in the progenies of DBM declined sharply when the insects were reared at33.5℃for one generation. The great decline of avermectin resistance in the progenies of R DBM,when the DBM were reared at high temperature for one generation, might be associated with its significantly lower fitness.
引文
[1]Mochizuki K, Hayashi N, Hiramatsu N, et al. Fas antigen expression in liver tissues of patients with chronic hepatitis B[J]. J Hepatol,1996,24(1):1-7.
    [2]陈小云,何后军.细胞凋亡的调控基因研究进展[J],军中国兽医杂志,2000,26(11):40-42
    [3]McConkey D J, Zhivotovsky B, and Orrenius S. Apoptosis--molecular mechanisms and biomedical implications[J]. Mol Aspects Med,1996,17(1):1-110.
    [4]Thornberry N A, H G Bull, J R Calaycay, et al, A novel heterodimeric cycteine protease is required for interleukin-1 (3 processing in monocytes [J]. Nature,1992,356 (6372):768-774.
    [5]Ellis R E, Yuan J, Horvitz H R. Mechanisms and functions of cell death. Annu.Rev. Cell Biol., 1991,7:663-698.
    [6]Hengartner M Oand Horvitz H R. Programmed cell death in Caenorhabditis elegans [J]. Curr Opin Genet Dev,1994.4(4):581-586.
    [7]Yuan J and H R Horvitz.The Caenorhabditis elegans cell death gene ced-4 encodes a novel protein and is expressed during the period of extensive programmed cell death [J]. Development,1992.116(2):309-320.
    [8]Hengartner M Oand H R Horvitz.The ins and outs of programmed cell death during C. elegans development [J]. Philos Trans R Soc Lond B Biol Sci,1994.345(1313):243-246.
    [9]訾晓渊,胡以平.细胞凋亡的分子机理[J].自然杂志卷,1999,21(4):191-195.
    [10]朱国萍,程阳,廖军.细胞凋亡中的caspase家族[J].生物化学与生物物理进展,2000,27(2):147-150.
    [11]Quinn L..Stennicke D H R, Salvesen G S,et al. Endogenous Inhibitors of caspases [J]. Journal of Clinical Immunology,1999,19 (6):388-398.
    [12]杨丹彤.棉铃虫Hacaspase-1和Hahsc70基因克隆及表达研究[C].山东大学博士论文,2007:15.
    [13]Bertin J and DiStefano P S. The PYRIN domain, a novel motif founding apoptosis and inflammation proteins [J]. CellDeathDiffer,2000,7:1273-1274.
    [14]Hengartner M. Death by crowd control [J]. Science,1998,281(5381):1298-1299.
    [15]辛宏,颜光涛,陈泮藻.生物膜信号转导与细胞凋亡[J].生物化学与生物物理进展, 2001,28(1):52-55.
    [16]Takahashi A. caspase:executioner and undertaker of apoptosis[J]. Int J Hematol,1999,70: 226-232.
    [17]楚广民caspase激活途径和调控机制[J].陕西医学杂志,2004,33(9):809-811.
    [18]Rao RV, Hermel E, Castro-Obregon S, et al. Coupling endoplasmic reticulum stress to the cell death program:mechanism of caspase activation. J Biol Chem,2001,276:33869-33874.
    [19]Ashkenazi A and Dixit V M. Death receptors:signaling and modulation [J]. Science,1998. 281 (5381):1305-1308.
    [20]Rath P C and Aggarwal B B. TNF-induced signaling in apoptosis [J]. J Clin Immunol,1999, 19 (6):350-364.
    [21]Chinnaiyan A M and Dixit V M. The cell-death machine [J]. Curr Biol,1996,6 (5):555-562.
    [22]Muzio M, Chinnaiyan A M, Kischkel F C, et al. FLICE, a novel FADD-homologous ICE/CED-3-like protease, is recruited to the CD95 (Fas/APO-1) death-inducing signaling complex [J]. Cell,1996,85 (6):817-827.
    [23]Liu X, Kim C N, Yang J, et al. Induction of apoptotic program in cell-free extracts: requirement for dATP and cytochrome c [J]. Cell,1996,86 (1):147-157.
    [24]Reed J C. Cytochrome c:Can't live with it-can't live without it [J]. Cell,1997,91 (5): 559-562.
    [25]Li P, Nijhawan D, Budihardjo I, et al, Cytochrome c and dATP-dependent formation of Apaf-1/caspase-9 complex initiates an apoptotic protease cascade. Cell,1997,91(4): 479-489.
    [26]Wei M C, Zong W X, Andrea J R, et al. Proapoptotic BAX and BAK:A requisite gateway to mitochondrial dysfuncton and death [J]. Science,2001,292:727-730.
    [27]Martinon F, Tschopp J. Inflammatory caspases and inflammasomes:master switches of inflammation [J]. Cell Death and Differentiation,2007,14:10-22.
    [28]Shereen Shoma, Kohsuke Tsuchiya, Ikuo Kawamura, et al. Critical Involvement of Pneumolysin in Production of Interleukin-1α and Caspase-1-Dependent Cytokines in Infection with Streptococcus pneumoniae In Vitro:a Novel Function of Pneumolysin in Caspase-1 Activation[J]. Infection and Immunity,2008,76(4):1547-1557.
    [29]Sophie Roy, Sharom J R. Houde C, et al. Confinement of caspase-12 proteolytic activity to autoprocessing [J]. PNAS,2008,105 (11):4133-4138.
    [30]Susin S A, Zamzami N, Castedo M, et al. Bcl-2 inhibits the mitochondrial release of an apoptogenic protease [J]. J Exp Med,1996,184(4):1331-1341.
    [31]Cory S, Huang DC, Adams JM. The Bcl-2 family:roles in cell survival and oncogenesis [J]. Oncogene,2003,22 (53):8590-8607.
    [32]路斌.小鼠皮肤切创愈合过程中caspase抑制剂对caspase活性的影响和对细胞凋亡抑制作用的研究[c].中国医科大学博士学位论文,2007:80
    [33]方强caspase抑制剂研究进展[J].国外医学生理病理科学与临床分册,2001,21(6):459-461.
    [34]张雁钦,郑松志,陶兰,等.caspase抑制剂的结构及合成化[J].化学进展,2008,20(1):98-104.
    [35]Ting-Jun FAN, Li-Hui HAN, Ri-Shan CONG, et al. caspase Family Proteases and Apoptosis [J]. Acta Biochimica et Biophysica Sinica,2005,37(11):719-727.
    [36]Christine Bonzon, Lisa B H, Pagliari L J, et al. Caspase-2-induced Apoptosis Requires Bid Cleavage:A Physiological Role for Bid in Heat Shock-induced Death [J]. Molecular Biology of the Cell,2006,17:2150-2157.
    [37]Upton J P, Austgen K, Nishino M, et al. Caspase-2 Cleavage of BID Is a Critical Apoptotic Signal Downstream of Endoplasmic Reticulum Stress [J]. MOLECULAR AND CELLULAR BIOLOGY,2008,28(12):3943-3951.
    [38]Cheunga H H, Kellya N L, Listona P, et al. Involvement of caspase-2 and caspase-9 in endoplasmic reticulum stress-induced apoptosis:A role for the IAPs [J]. Experimental Cell Research,2006,312:2347-2357.
    [39]闫红涛,吴敬杰,杨静,等caspase-8在大鼠肌肉挫伤组织中的表达[J].四川大学学报(医学版),2006,37(2):315316.
    [40]Luthra S, Fardin B, Dong J, et al. Activation of Caspase-8 and Caspase-12 Pathways by 7-Ketocholesterol in Human Retinal Pigment Epithelial Cells [J]. Invest Ophthalmol Vis Sci, 2006,47:5569-5575.
    [41]Day T W, Huang S, Safa A R. c-FLIP knockdown induces ligand-independent DR5-, FADD-, caspase-8-, and caspase-9-dependent apoptosis in breast cancer cells [J]. biochemical pharmacology,2008,76:1694-1704.
    [42]Levenbrown Y, Ashraf Q M, Maounis N, et al. Phosphorylation of caspase-9 in the cytosolic fraction of the cerebral cortex of newborn piglets following hypoxia[J]. Neuroscience Letters, 2008,447:96-99.
    [43]Cillessen S A, Hess C J, Hooijberg E, et al. Inhibition of the Intrinsic Apoptosis Pathway Downstream of Caspase-9 Activation Causes Chemotherapy Resistance in Diffuse Large B-Cell Lymphoma[J]. Clin Cancer Res,2007,13 (23):7012-7021.
    [44]Wang J, Chun H J, Wong W, et al. Caspase-10 is an initiator caspase in death receptor signaling [J], PNAS,2001,98 (24):13884-13888.
    [45]Sprick M R,Rieser E, Stahl H, et al. Caspase-10 is recruited to and activated at the native TRAIL and CD95 death-inducing signalling complexes in a FADD-dependent manner but can not functionally substitute caspase-8[J], The EMBO Journal,2002,21(17):4520-4530.
    [46]Engels 1 H, Totzke G, Fischer U, et al. Caspase-10 Sensitizes Breast Carcinoma Cells to TRAIL-Induced but Not Tumor Necrosis Factor-Induced Apoptosis in a Caspase-3-Dependent Manner [J]. Molecular and Cellular Biology,2005,25 (7):2808-2818.
    [47]Park S J, Wu C H, Gordon J D, et al. Taxol Induces Caspase-10-dependent Apoptosis [J]. The Journal of Biological Chemistry,2004,279(49):51057-51067.
    [48]LAN H, LUY. Allitridi induces apoptosis by affecting Bcl-2 expression and caspase-3 activity in human gastric cancer cells[J]. Acta Pharmacol Sin,2004,25 (2):219-225.
    [49]Ke Y, WANG K, XU W, et al. caspase-3 and its inhibitor Ac-DEVD-CHO in rat lens epithelial cell apoptosis induced by hydrogen in vitro[J]. Chinese Medical Journal,2003,116 (7):1034-1038.
    [50]Petrache I, Fijalkowska I, Medler T R, et al. a-1 Antitrypsin Inhibits Caspase-3 Activity, Preventing Lung Endothelial Cell Apoptosis [J]. The American Journal of Pathology,2006, 169(4):1155-1166.
    [51]Fiedorowicz M, Makarewicz D, Stanczak-Mrozek K. I, et al. CDP-choline (citicoline) attenuates brain damage in a rat model of birth asphyxia[J]. Acta Neurobiol Exp,2008,68: 389-397.
    [52]Alkhalaf M, Mowafy A E, Renno W, et al. Resveratrol-induced Apoptosis in Human Breast Cancer Cells Is Mediated Primarily through the Caspase-3-dependent Pathway [J]. Archives of Medical Research,2008,39:162-168.
    [53]Fernandes-Alnemri T, Litwack G, Alnemri E S. Mch2, a New Member of the Apoptotic Ced-3/Ice Cysteine Protease Gene Family[J]. cancer research,1995,55:2737-2742.
    [54]Albrecht S, Bourdeau M, Bennett D, et al. Activation of Caspase-6 in Aging and Mild Cognitive Impairment[J].The American Journal of Pathology,2007,170(4):11200-1209.
    [55]Loegering D A, Ruchaud S, Earnshaw W C, et al. Evaluation of the role of caspase-6 in anticancer druginduced apoptosis[J].Cell Death and Differentiation,2006,13,346-347.
    [56]Schmeck B, Gross R, N'Guessan P D, et al. Streptococcus pneumoniae-Induced Caspase 6-Dependent Apoptosis in Lung Epithelium [J]. Infection and Immunity,2004,72(9): 4940-4947.
    [57]Denault J B, Salvesen G S. Human Caspase-7 Activity and Regulation by Its N-terminal Peptide [J]. The Journal of Biological Chemistry,2003,278 (36):34042-34050.
    [58]Jang M, Park B C, Kang S, et al. Mining of Caspase-7 Substrates Using a Degradomic Approach[J].Mol. Cells,2008,26:152-157.
    [59]Jang M, Park B C, Lee A Y, et al. Caspase-7 mediated cleavage of proteasome subunits during apoptosis[J].Biochemical and Biophysical Research Communications 2007,363: 388-394.
    [60]Bryant B, Blair C D, Olson K E, et al. Annotation and expression profiling of apoptosis-related genes in the yellow fever mosquito, Aedes aegypti [J]. Insect Biochemistry and Molecular Biology,2008,38:331-345.
    [61]Hebert C G, Valdes J J. Bentley W. E. Investigating apoptosis:characterization and analysis of Trichoplusia ni-caspase-1 through overexpression and RNAi mediated silencing [J]. Insect Biochem Mol Biol,2009,39 (2):113-124.
    [62]Yang D, Chai L, Wang J, Zhao X. Molecular cloning and characterization of Hearm caspase-1 from Helicoverpa armigera [J]. Mol Biol Rep,2008,35 (3):405-412.
    [63]Tanaka H, Ishibashi J, Fujita K, et al. A genome-wide analysis of genes and gene families involved in innate immunity of Bombyx mori [J]. Insect Biochem Mol Biol,2008 38(12): 1087-110.
    [64]程功,龚亮,陈久,等.家苍细胞凋亡其实酶caspase-1基因的克隆及在不同虫态的表达[J].昆虫学报,2009,52(7):721-727.
    [65]Kumar S and Doumanis J. The fly caspases [J]. Cell Death Differ,2000,7(11):1039-1044.
    [66]Hay B A, Guo M. Caspase-dependent cell death in Drosophila [J]. Annu. Rev. Cell. Dev. Biol, 2006,22:623-650.
    [67]Dorstyn L, Colussi P A, Quinn L M, et al. Drone, an ecdysone-inducible Drosophila caspase [J].Proc.Natl.Acad. Sci,1999,96:4307-4312.
    [68]Cashio P, Lee T V and Bergmann A. Genetic control of programmed cell death in Drosophila melanogaster. Semin [J]. Cell Dev. Biol.,2005,16:225-235.
    [69]Muro I, Means J C, Clem R J. Cleavage of the apoptosis inhibitor DIAP1 by the apical caspase DRONC in both normal and apoptotic Drosophila cells [J]. J Biol Chem,2005,280 (19):18683-18688.
    [70]Chen P, Rodriguez A, Erskine R, et al. Dredd, a novel effector of the apoptosis activators reaper, grim, and hid in Drosophila [J]. Dev Biol,1998,201(2):202-216.
    [71]Hu S, Yang X. dFADD, a novel death domain-containing adapter protein for the Drosophila caspase DREDD [J]. J Biol Chem,2000,275(40):30761-30764.
    [72]Hultmark D. Drosophila immunity:paths and patterns [J]. Curr Opin Immunol,2003,15(1): 12-19.
    [73]Song Z, McCall K, Steller H. DCP-1, a Drosophila cell death protease essential for development [J]. Science,1997,275 (5299):536-540.
    [74]Xu D, Wang Y, Willecke R, et al. The effector caspases drICE and dcp-1 have partially overlapping functions in the apoptotic pathway in Drosophila [J]. Cell Death Differ,2006, 13(10):1697-1706.
    [75]Kumar S. Caspase function in programmed cell death [J].Cell Death Differ,2007,14(1): 32-43.
    [76]Leulier F, Ribeiro P S, Palmer E, et al. Systematic in vivo RNAi analysis of putative components of the Drosophila cell death machinery [J]. Cell Death Differ,2006,13(10): 1663-1674.
    [77]Ahmad M, Srinivasula S M., Wang L, et al. Spodoptera frugiperda caspase-1, a novel insect death protease that cleaves the nuclear immunophilin FKBP46, is the target of the baculovirus antiapoptotic protein p35 [J]. J Biol Chem,1997,272 (3):1421-1424.
    [78]Cooper D M, Pio F, Thi E P, et al. Characterization of Aedes Dredd:a novel initiator caspase from the yellow fever mosquito, Aedes aegypti [J]. Insect Biochem Mol Biol,2007,37(6): 559-569.
    [79]Cooper D M, Thi E P, Chamberlain C M, et al. Aedes Dronc:a novel ecdysoneinducible caspase in the yellow fever mosquito, Aedes aegypti [J]. Insect Mol Biol,2007,16 (5): 563-572.
    [80]Rodriguez A, Oliver H, Zou H, et al. Dark is a Drosophila homologue of Apaf-1/CED-4 and functions in an evolutionarily conserved death pathway [J]. Nature Cell Biol,1999,1:272-279.
    [81]Zhou I, Song Z, Tittel J, et al. HAC-1, a Drosophila homolog of Apaf-1 and Ced-4, functions in developmental and radiation-induced apoptosis [J].Mol. Cell,1999,4:745-755.
    [82]Gaumer S, Guenal I, Brun S, et al. Bcl-2 and Bax mammalian regulators of apoptosis are functional in Drosophila [J]. Cell Death and Differentiation,2000,7:804-814.
    [83]Yu X, Wang L, Acehan D, et al. Three dimensional structure of a double apoptosome formed by the Drosophila Apaf-1 related killer [J]. J. Mol. Biol.,2006,355:577-589.
    [84]Hay B A, Wassarman D A and Rubin G M. Drosophila homologs of baculovirus inhibitor of apoptosis proteins function to block cell death [J]. Cell,1995,83(7):1253-1262.
    [85]White K, Tahaoglu E and Steller H, Cell killing by the Drosophila gene reaper [J]. Science, 1996,271(5250):805-807.
    [86]Chen P, Nordstrom W, Gish B, et al.grim, a novel cell death gene in Drosophila [J]. Genes Dev,1996,10(14):1773-1782.
    [87]Mosser D D, Caron A W, Bourget L, et al. Role of human heat shock protein hsp70 in protection against heat-induced apoptosis [J], Mol Cell Biol,1997,17:5317-5327.
    [88]Mattson M P and Chan S L.Calcium orchestrates apoptosis [J]. Nature Cell Biology,2003,5: 1041-1043.
    [89]Verheij M, Bose R, Lin X H, et al. Requirement for ceramide-initiated SAPK/JNK. signaling in stress-induced apoptosis [J]. Nature,1996,380:75-79.
    [90]Haimovitz-Friedman A, Kolesnick R N, Fuks Z. Ceramide signaling in apoptosis [J]. Br Med Bull,1997,53:539-553.
    [91]Fuse T, Yoon K W, Kato T, et al. Heat-induced apoptosis in human glioblastoma cell line A172 [J]. Neurosurgery,1998,42:843-849.
    [92]Boreham D R, Doling J A, Maves S R, et al. Heat-induced thermal tolerance and radiation resistance to apoptosis in human lymphocytes [J]. Biochem Cell Biol,1997,75:393-397.
    [93]Matsumoto H, Takahashi A, Wang X, et al. Transfection of p53-knockout mouse fibroblasts with wild type p53 increases thermosensitivity and apoptosis induced by heat stress [J]. Int J Radiat Oncol,1997,39:197-203.
    [94]Paula-Lopes F F and Hansen P J. Heat Shock-Induced Apoptosis in Preimplantation Bovine Embryos Is a Developmentally Regulated Phenomenon [J]. Biology of Reproduction,2002,66: 1169-1177.
    [95]Uchida D, Yamashita M, Kitano T. et al. An aromatase inhibitor or high water temperature induce oocyte apoptosis and depletion of P450 aromatase activity in the gonads of genetic female zebrafish during sex-reversal [J]. Comparative biochemistry and physiology,2004,137 (1):11-20.
    [96]Beere HM, Green DR. Stress management-heat shock protein-70 and the regulation of apoptosis [J]. Trends Cell Biol,2001,11:6-10.
    [97]Mosser D D, Caron A W, Bourget L, et al. The chaperone function of hsp70 is required for protection against stress-induced apoptosis [J]. Mol Cell Biol,2000,20:7146-7159.
    [98]何永文,赵德萍,刘流,等.高温诱导颊癌细胞凋亡的相关机理研究[J].Journal of Comprehensive Stomatology,2001,17 (1):12-14.
    [99]向世强,刘仁刚,周洁萍,等.高温诱导HeLa细胞凋亡的相关机理的研究[J].中国组织化学与细胞化学杂志,2004,13(4):427-431.
    [100]Morimoto R I. Cell in stress:transcriptional activation of heat shock genes [J]. Science, 1993,259:1409-1410.
    [101]Ritossa F M. A Hew puffing pattern induced by heat shock and DNP in Drosophilia [J]. xperientia,1962,18:571-573.
    [102]Pelham H R. A regulatory upstream promoter element in the drosophila Hsp70 heat-shock gene [J]. Cell,1982,30:517-528.
    [103]Welch W J. Mammalian stress response:cell physiologt, structure/function of stress proteins, and implications for medicine and disease [J]. Physiological Review,1992,72 (4):1063-1 081.
    [104]朱玉贤,李毅.现代分子生物学[M].高等教育出现社,1998:289-304.
    [105]Moseley P L. Heat shock proteins and heat adaptation of the whole organism [J]. Journal of Applied Physiology,1997,83:1413-1417.
    [106]Parsell D A, Lindquist S. Heat shock proteins and stress tolerance. In:Morimoto R I, Tissieres A, Georgopoulous C, eds. The Biology of Heat Shock Proteins and Molecular Chaperones [M]. New York:Cold Spring Harbor Laboratory Press,1994:457-494.
    [107]Beere HM, Wolf BB, CainK, et al. Heat-shock protein70 inhibits apoptosis by preventing recruitment of procaspase-9 to the Apaf-1 apoptosome [J]. Nat Cell Biol,2000,2 (8): 469-475.
    [108]Velazquez J M, Sonoda S, Bugaisky G, et al. Is the major Drosophila heat shock protein present in cells that have not been heat shocked? [J]. The Journal of Cell Biology,1983,96: 286-290.
    [109]Dahlgaard J, Loeschcke V P, Michalak J. Induced thermotolerance and associated expression of the heat-shock protein Hsp70 in adult Drosophila melanogaster [J]. Functional Ecology,1998,12:786-793.
    [110]张永强,王进军,丁伟,等.昆虫热休克蛋白的研究概况[J].昆虫知识,2004,40(1):16-19.
    [111]陈小芬,杨玉荣.果蝇对冷热极限温度耐受能力的研究[J].厦门大学学报(自然科学版),2005,44:188-190.
    [112]Niedzwiecki A, Reveillaud I, Fleming J E. Changes in superoxide dismutase and catalase in aging heat-shocked Drosophila [J]. Free Radic Res Commun,1992,17 (6):355.
    [113]Hoffmann R, Bulet P, Urge L, et al. Range of activity and metabolic stability of synthetic antibacterial glycopeptides from insects[J]. Biochim Biophys Acta,1999,14269 (3):459.
    [114]王薇,韩岚岚,赵奎军.昆虫热休克蛋白Hsp70的研究进展[J].东北农业大学学报,2009,40(1]):129-132.
    [115]Saeed R, Sayyed A H, Shad S A, et al. Effect of different host plants on the fitness of diamond-back moth, Plutella xylostella (Lepidoptera:Plutellidae) [J]. Crop Protection,2010 (29):178-182.
    [116]Talekar N S and Shelton A M. Biology, ecology, and management of the diamondback moth [J]. Annu Rev. Entomol,1993,38:275-301.
    [117]Verkerk R H J, Wright D J. Multitrophic interactions and management of the Plutella xylostella:a review [J]. Bull. Entomol. Res.1996,86:205-216.
    [118]Shelton A M. The management of diamondback moth and other crucifer pests [C]. In: Endersby N M, Ridland P M. (Eds.), Proceedings of the Fourth International Workshop. Department of Natural Resources and Environment,2004:38.
    [119]吴刚,江树人.田间小菜蛾抗药性监测及毒理机制研究[J].植物保护学报,2002,29(4):351-355.
    [120]黄剑,吴文君.小菜蛾抗药性研究进展[J].贵州大学学报(自然科学版),2003,20(1):97-104.
    [121]唐振华,毕强.杀虫剂作用的分子行为[M].上海远东出版社,2003.
    [122]罗倩,冯夏,吕利华,等.小菜蛾对阿维菌素抗性基因的AFLP连锁图谱的构建[J].昆虫学报,2007,50(5):474-480.
    [123]韩兰芝,白树雄,赵建周,等.转基因抗虫棉花和玉米与节肢动物相关的生态安全性研究进展[J].昆虫学报,2007,50(7):727-736
    [124]程罗根.昆虫抗药性遗传机制研究进展[J].植物保护,1997,23(6):33-34.
    [125]宋深伟,刘永香,肖平阔,等.昆虫抗药性遗传的研究进展[J].农药研究与应用,2007,1](5):17-19.
    [126]陈之浩,程罗根,张晓飞,等.小菜蛾抗药性分子遗传机理的探讨与分析[J].植物保护学报,2005,32(1):67-70.
    [127]Wu G, Jiang S R, Miyata T. Seasonal changes of methamidophos susceptibility and biochemical properties in Plutella xylostella (Lepidoptera:Yponomeutidae) and its parasitoid Cotesia plutellae (Hymenoptera:Braconidae) [J]. J Econ Entomol,2004,97: 1689-1698.
    []28]吴刚,赵士熙,尤民生.小菜蛾和绒茧蜂乙酰胆碱酯酶对甲胺磷和甲基异柳磷敏感性监测[J].农药学学报,2000,2(4):49-53.
    [129]亦兰全.甜菜夜蛾对三种拟除虫菊酯类杀虫剂的抗性遗传力及风向评估[J].应用生态学报,2006,17(13):468-471.
    [130]吴刚,江树人.小菜蛾有机磷抗性季节性变化及毒理机制研究[J].生态学报,2004,24(4):706-710.
    [131]Fang Liu, Tadashi Miyata, Zu Jian Wua, et al. Effects of temperature on fitness costs, insecticide susceptibility and heat shock protein in insecticide-resistant and susceptible Plutella xylostella[J]. Pesticide Biochemistry and Physiology,2008,91:45-52.
    [132]陈焕瑜,高琴.不同温度理阿维菌素对小菜蛾的毒力测定[J].广东农业科学,1999(5):41-42.
    [133]Maa C J, Guh S H. Temperature and other extraneous factors affecting malathion susceptibility of diamondback moth, Putella xylostella [J]. Bull Inst Zool,1988,27:265-274.
    [134]林仁振,吴国星.不同温度下四种杀虫剂对小菜蛾幼虫的药效试验[J].福建省农业科技,2001(6):18-19.
    [135]Larionov A, Krause A and Miller W. A standard curve based method for relative real time PCR data processing. BMC Bioinformatics,2005,6:62.
    [136]Bradford MM. A rapid and sensitive method for the quantiation of microgram quantities of protein unitizing the principle of protein dye binding [J]. Anal Biochem,1976,72:248-254.
    [137]Tang Q Y, Feng M G. Practical statistics and DPS data processing system, In:Tan Q Y, Feng M G. Eds., DPS Data Processing System for Practical Statistics [M], China Agricultural Press, Beijing, China,1997:188-195.
    [138]Liu Q, Qi Y, Chejanovsky N. Spodoptera littoralis caspase-1, a Lepidopteran effector caspase inducible by apoptotic signaling [J]. Apoptosis,2005,10 (4):787-795.
    [139]Hoskins R A, Carlson J W, Kennedy C, et al. Sequence finishing and mapping of Drosophila melanogaster heterochromatin [J]. Science,2007,316 (5831),1625-1628.
    [140]SONODA S and TSUMUK1 H. Gene expression of hsp70 of the diamondback moth, Plutella xylostella (Lepidoptera:Yponomeutidae), in response to heat shock and insecticides[J]. Appl Entomol Zool,2008,43 (2):241-247.
    [141]Cao G C. Han Z.I.Tebufenozide resistance selected in Plutella xylostella and its cross-resistance and fitness cost [J]. Pest Manag Sci,2006,62:746-751.
    [142]Crow J F. Genetics of insecticide resistance to chemicals [J]. Annu. Rev. Entomol,1957,2: 227-246.
    [143]Shi M A, Lougarre A, Alies C, et al. Acetylcholinesterase alterations reveal the fitness cost of mutations conferring insecticide resistance [J]. BMC Evol Biol,2004,4:5.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700