用户名: 密码: 验证码:
动态高压微射流技术对聚半乳糖醛酸酶活性与构象的影响
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
动态高压微射流是一种新兴技术,可以对物料进行高速剪切,气穴作用等,其工作压力最高可达200 MPa。聚半乳糖醛酸酶(PG)属于果胶酶家族的一员,果胶是植物细胞壁中的一种结构性多糖,而PG主要是水解组成果胶酸的D-半乳糖醛酸α-1,4-糖苷键,从而降解植物组织。其组织软化功能在食品工业中的果汁提取和澄清中得到广泛使用。本课题通过酶活测定、圆二色谱、紫外吸收光谱和游离巯基与巯基总量的测定来研究动态高压微射流对PG酶活性和构象的影响,同时研究了热、金属离子和乙醇对PG酶的影响,揭示了PG酶活性与构象间存在着的一定的关联性。
     通过动态高压微射流对PG酶进行处理,研究了PG酶活性与构象之间的关系。PG酶的最适宜反应温度为50℃。DHPM处理降低了PG酶的活性,降低后的酶活性在76.5%-94.5%。经过DHPM处理后的PG酶的构象分析显示PG酶的二级结构的β-折叠含量降低了,同时PG酶分子结构更为“松散”。其活性变化与β-折叠含量的变化呈一定程度的正相关,但不是简单的线性相关。原来包埋在分子内部的Trp和Tyr残基部分暴露出来,分子表面的二硫键被打断形成巯基,但从分子整体来看,新的二硫键形成的量要多于被打断的量。
     通过热和动态高压微射流对PG酶进行处理,在50℃下保温半小时的酶活性最大,在其他温度下保温半小时的酶活性均有所降低,而在70℃下保温半小时的酶相对活性只有39.2%。在不同的温度下处理后的PG酶经过DHPM处理后的酶活性的降低程度比单独经过DHPM处理后的酶活性降低程度要大,这说明热与动态高压微射流协同处理的效果要好过单独热处理或是单独DHPM处理。PG酶的温控曲线明确表现出了PG酶的变性温度在60-65℃之间。从本实验可以看出,PG酶对温度还是敏感的,尤其是高温。
     一些金属离子对PG酶起激活作用,一些起抑制作用,还有一些对酶活性没有明显影响。在本实验中,Ca2+、Ba2+、Zn2+、Mg2+对PG酶的酶活力有抑制作用,Mn2+对PG酶有激活作用。Na+对酶活力没有表现出明显的影响,不过他们的机理不尽相同。而DHPM处理对这一结果没有产生较大的影响。除了Mn2+Mn2+对经过动态高压微射流处理的PG酶没有激活作用。Ca2+、Ba2+、Na+、Zn2+ Mn2+、Mg2+均没有对PG酶的温控曲线产生较大的影响。
     本实验还研究了乙醇(20%)对PG酶活性与构象的影响。PG酶在20%的乙醇溶液中活性降低了,只有未加乙醇的PG酶活性的75%。随着时间的增加,酶的活性随之降低,24 h后,酶的活性降低幅度增大,而20%的乙醇对PG酶的CD谱并未造成太大影响。因此,我们得出结论:乙醇对酶的二级结构可能未造成影响,它是通过影响酶的三级结构来影响酶的活力。乙醇对PG酶的温控曲线未造成影响,其变性温度依然处在60-65℃。
Dynamic High Pressure Microfluidization(DHPM) is a newly developed technology,which uses the combined forces of shear, cavitation, and ultra-high pressures up to 200 MPa.Polygalacturonase (PG) is a member of pectinase family that acts onα-1 4 linkages of polygalacturonic acid in pectin, a cementing substance in plant cell wall, and causes structural degradation. Its tissue-softening property is commercially exploited in the food industry in the extraction and clarification of fruit juices.This subject was to study the effect of DHPM on the activity and conformation of polygalacturonase mainly,effects of thermal、metal ions and ethanol on PG were observed at the same time by means of activity detection,far-UV circular dichroism(CD),UV absorption and sulphydryl groups detection..The result showed the relationship between activity change and conformation change of PG.
     The effect of DHPM on the activity and conformation of PG was showed as follows, the optimal temperature of PG is 50℃.DHPM treatment decreased the activity of PG treated under different pressures,the residual activity of PG was in the range 76.5%-94.5%.The analysis of conformation indicated that after microfluidization treatment under different pressure,the content ofβ-sheet reduced and PG structure became looser.In addition, there were some indices that the decrease of PG relative activity was accompanied by the decrease in theβ-sheet content. Tip and Tyr residues,which buried inside the PG molecular, exposed to the solvent, S-S bonds on the surface of PG were ruptured and formed new free SH residues, while the total amount of S-S bonds new formed was more than the amount of ruptured S-S bonds.
     Effect of combined thermal and DHPM on the activity and conformation of PG was studied,the result was showed as follows, The activity of enzyme incubated in 50℃for 30 min is the maxmium,the activities of PG incubated under other temperature were reducted, there was 39.2% of residual activity of enzyme incubated in 70℃for 30 min.The decrease of PG actvity under DHPM treatment after incubated under different temperature was more than the decrease of PG activity under DHPM treatment.lt demonsrated that the effect of DHPM-temperature treatment is more than DHPM or temperature treatment alone.Temperature profile of PG at the value of 218 nm showed that the denaturation temperature is in the range 60-65℃.The result indicated that PG is sensitiveness to temperature,the high temperature,specially.
     Some metal ions stimulate the activity of PG,and some inhibit,others had no significance effect on the activity of PG.This subject was to study the effect of Ca2+ Ba2+、Na+、Zn2+、Mn2+、Mg2+ on the activity and conformation of PG.The result showed that, Ca2+、Ba2+、Zn2+、Mg2+ inhibited the activity of PG, Mn2+ stimulate the activity of PG,and Na+ had no effect on the activity of PG.But the mechanism of their different effect on the PG was different.DHPM treatment had no effect on the result,except Mn2+, Mn2+ had no stimulation on the activity of PG after DHPM treatment.All these metal ions had no effect on the temperature profile of PG at the value of 218 nm.
     The changes of activity and conformation of polygalacturonase in ethanol(20%) were observed.The activity of PG in ethanol(20%) decreased,only 75% of redidual activity of PG leaved.The decreasement increased by the time goes.24 hours later,the decrease amplitude accelerated.However,ethanol(20%) had no conspicuous effect on the far-UV CD spectra of PG.It means that ethanol did not change the secondary structure,it had effect on the tertiary structure to change the activity of PG.Ethanol had no effect on the temperature profile of PG at the value of 218 nm,the denaturation temperature is in the range 60-65℃,which had no changed.
引文
[1]Creasy L L,Coffee M. Phytoalexin production potential of grape berries[J]. Journal of the American Society for Horticultural Science,1988,113(2):230-234.
    [2]方华平,程茂基.果胶酶在食品与饲料工业中的应用[J].饲料博览,2006(5):34-35.
    [3]Kashyap D R,Vohra P K,Chopra S,et al. Applications of pectinases in the commercial sector:a review[J]. Bioresour Technol,2001,77(3):215-227.
    [4]Baird-Parker A C. Symposium on microbial changes in foods. Factors affecting the production of bacterial food poisoning toxins[J]. J Appl Bacteriol,1971,34(1):181-197.
    [5]丁凤平,张秀芝.碱性果胶酶PATE及其测定方法[J].中国生化药物杂志,1993(2):42-43.
    [6]Berensmeier S,Singh S A,Meens J,et al. Cloning of the pela gene from bacillus licheniformis 14a and biochemical characterization of recombinant, thermostable, high-alkaline pectate lyase[J]. Appl Microbiol Biotechnol,2004,64(4):560-567.
    [7]Gainvors A,Nedjaoum N,Gognies S,et al. Purification and characterization of acidic endo-polygalacturonase encoded by the pgll-1 gene from saccharomyces cerevisiae[J]. Fems Microbiol Lett,2000,183(1):131-135.
    [8]Lei Z,Bi S,Hu B,et al. Combined magnetic and chemical covalent immobilization of pectinase on composites membranes improves stability and activity[J]. Food Chemistry, 2007,105(3):889-896.
    [9]Zhang Y F,Yang L F,Chen K S,et al. Effects of neodymium on growth, pectinase activity and mycelium permeability of fusarium oxysporum[J]. Journal of Rare Earths,2007,25 (1):100-105.
    [10]Cui L,Wang P,Wang Q,et al. The bioscouring efficiency and activity of alkaline pectinase for cotton fabric[J]. Fibers and Polymers,2009,10(4):476-480.
    [11]Croak S,Corredig M. The role of pectin in orange juice stabilization:effect of pectin methylesterase and pectinase activity on the size of cloud particles[J]. Food Hydrocolloids, 2006,20(7):961-965.
    [12]Ahlawat S,Dhiman S S,Battan B,et al. Pectinase production by bacillus subtilis and its potential application in biopreparation of cotton and micropoly fabric[J]. Process Biochemistry,2009,44(5):521-526.
    [13]Kollar A. Characterization of an endopolygalacturonase produced by the apple scab fungus, venturia inaequalis[J]. Mycological Research,1998,102(Part 3):313-319.
    [14]Li T P,Li S H,Wang N,et al. Immobilization and stabilization of pectinase by multipoint attachment onto an activated agar-gel support[J]. Food Chemistry,2008,109(4):703-708.
    [15]Nakkeeran E,Subramanian R,Umesh-Kumar S. Purification of polygalacturonase from solid-state cultures of aspergillus carbonarius[J]. J Biosci Bioeng,2010,109(2):101-106.
    [16]Villarreal N M,Martinez G A,Civello P M. Influence of plant growth regulators on polygalacturonase expression in strawberry fruit[J]. Plant Science,2009,176(6):749-757.
    [17]Nighojkar S,Phanse Y,Sinha D,et al. Production of polygalacturonase by immobilized cells of aspergillus niger using orange peel as inducer[J]. Process Biochemistry,2006,41 (5): 1136-1140.
    [18]Pathak N,Mishra S,Sanwal G G. Purification and characterization of polygalacturonase from banana fruit[J]. Phytochemistry,2000,54(2):147-152.
    [19]Pandita V K,Jindal K K. Enzymatic and anatomical changes in abscission zone cells of apple fruits induced by ethephon[J]. Biologia Plantarum,1991,33(1):20.
    [20]Bartley I M. Exo-polygalacturonase of apple[J]. Phytochemistry,1978,17(2):213-216.
    [21]Brady C J,Meldrum S K,Mcglasson W B,et al. Differential accumulation of the molecular-forms of polygalacturonase in tomato mutants[J]. Journal of Food Biochemistry, 1983,7(1):7-14.
    [22]励建荣,俞坚.超高压对酶活的影响[J].食品科技,2006(9):18-20.
    [23]Bruins M E,Janssen A,Boom R M. Equilibrium shifts in enzyme reactions at high pressure[J]. Journal of Molecular Catalysis B-Enzymatic,2006,39(1-4Sp. Iss. SI):124-127.
    [24]Hendrickx M,Ludikhuyze L,Van den Broeck I,et al. Effects of high pressure on enzymes related to food quality[J]. Trends in Food Science & Technology,1998,9(5):197-203.
    [25]Heremans K. High pressure effects on proteins and other biomolecules[J]. Annu Rev Biophys Bioeng,1982,11:1-21.
    [26]Bang W S,Chung H J. Effect of high hydrostatic pressure on the enzyme activities in saccharomyces cerevisiae and escherichia coli[J]. N Biotechnol,2010,27(4):440-444.
    [27]Tanimoto S,Matsumoto H,Fujii K,et al. Enzyme inactivation and quality preservation of sake by high-pressure carbonation at a moderate temperature[J]. Biosci Biotechnol Biochem,2008,72(1):22-28.
    [28]Hartmann C,Delgado A. The influence of transport phenomena during high-pressure processing of packed food on the uniformity of enzyme inactivation[J]. Biotechnology and Bioengineering,2003,82(6):725-735.
    [29]Gomes M,Ledward D A. Effect of high-pressure treatment on the activity of some polyphenoloxidases[J]. Food Chemistry,1996,56(l):1-5.
    [30]Gomes M,Sumner I G,Ledward D A. Effects of high pressure on papain activity and structure[J]. Journal of the Science of Food and Agriculture,1997,75(1):67-72.
    [31]Urrutia G,Arabas J,Autio K,et al. Safe ice:low-temperature pressure processing of foods: safety and quality aspects, process parameters and consumer acceptance[J]. Journal of Food Engineering,2007,83(2Sp. Iss. SI):293-315.
    [32]Ludikhuyze L,Van Loey A,Indrawati,et al. Effects of combined pressure and temperature on enzymes related to quality of fruits and vegetables:from kinetic information to process engineering aspects[J]. Critical Reviews in Food Science and Nutrition,2003,43(5):527-586.
    [33]Kim Y S,Park S J,Cho Y H,et al. Effects of combined treatment of high hydrostatic pressure and mild heat on the quality of carrot juice[J]. Journal of Food Science,2001,66 (9):1355-1360.
    [34]Krebbers B,Matser A M,Koets M,et al. Quality and storage-stability of high-pressure preserved green beans[J]. Journal of Food Engineering,2002,54(1):27-33.
    [35]Vannini L,Lanciotti R,Baldi D,et al. Interactions between high pressure homogenization and antimicrobial activity of lysozyme and lactoperoxidase[J]. Int J Food Microbiol,2004,94(2):123-135.
    [36]Lanciotti R,Patrignani F,Iucci L,et al. Potential of high pressure homogenization in the control and enhancement of proteolytic and fermentative activities of some lactobacillus species[J]. Food Chemistry,2007,102(2):542-550.
    [37]Welti-Chanes J,Ochoa-Velasco C E,Guerrero-Beltran J A. High-pressure homogenization of orange juice to inactivate pectinmethylesterase[J]. Innovative Food Science & Emerging Technologies,2009,10(4):457-462.
    [38]Bilbao-Sainz C,Younce F L,Rasco B,et al. Protease stability in bovine milk under combined thermal-high hydrostatic pressure treatment[J]. Innovative Food Science & Emerging Technologies,2009,10(3):314-320.
    [39]Martinez-Garcia O,Mujica-Paz H,Valdez-Fragoso A,et al. Pickling brine treatment for possible recycling using high-pressure homogenization[J]. Journal of the Science of Food and Agriculture,2007,87(6):1157-1163.
    [40]Floros J D,Liang H H. Acoustically assisted diffusion through membranes and biomaterials[J]. Food Technology,1994,48(12):79-84.
    [41]Yashchenok A M,Delcea M,Videnova K,et al. Enzyme reaction in the pores of caco3 particles upon ultrasound disruption of attached substrate-filled liposomes[J]. Angew Chem Int Ed Engl,2010,49(44):8116-8120.
    [42]Barton S,Bullock C,Weir D. The effects of ultrasound on the activities of some glycosidase enzymes of industrial importance[J]. Enzyme and Microbial Technology,1996,18 (3):190-194.
    [43]Yu G,He P,Shao L,et al. Enzyme extraction by ultrasound from sludge flocs[J]. J Environ Sci (China),2009,21(2):204-210.
    [44]Sharma P,Nahar P. Ultrasound wave-mediated enzyme-linked immunosorbent assay technique[J]. Anal Chim Acta,2009,650(2):241-246.
    [45]Tian Z M,Wan M X,Wang S P,et al. Effects of ultrasound and additives on the function and structure of trypsin[J]. Ultrason Sonochem,2004,11(6):399-404.
    [46]Dogan A. Application of galerkin's method to equal width wave equation[J]. Applied Mathematics and Computation,2005,160(1):65-76.
    [47]Asavasanti S,Ersus S,Ristenpart W,et al. Critical electric field strengths of onion tissues treated by pulsed electric fields[J]. J Food Sci,2010,75(7):E433-E443.
    [48]Aguilo-Aguayo I,Soliva-Fortuny R,Martin-Belloso O. High-intensity pulsed electric fields processing parameters affecting polyphenoloxidase activity of strawberry juice[J]. J Food Sci,2010,75(7):C641-C646.
    [49]Luo W,Zhang R B,Chen J,et al. spectral analysis of polyphenol oxidase (ppo) and lipoxygenase (lox) treated by pulsed electric field[J]. Guang Pu Xue Yu Guang Pu Fen Xi,2009,29(8):2122-2125.
    [50]Grahl T,Markl H. Killing of microorganisms by pulsed electric fields[J]. Appl Microbiol Biotechnol,1996,45(1-2):148-157.
    [51]Sanchez-Vega R,Mujica-Paz H,Marquez-Melendez R,et al. Enzyme inactivation on apple juice treated by ultrapasteurization and pulsed electric fields technology[J]. Journal of Food Processing and Preservation,2009,33(4):486-499.
    [52]Schilling S,Schmid S,Jaeger H,et al. CoMParative study of pulsed electric field and thermal processing of apple juice with particular consideration of juice quality and enzyme deactivation[J]. Journal of Agricultural and Food Chemistry,2008,56(12):4545-4554.
    [53]王山杉,李琳,李冰.磁场对酶学效应影响的研究进展[J].现代生物医学进展,2006(10):111-114.
    [54]Taboada-Puig R,Junghanns C,Demarche P,et al. Combined cross-linked enzyme aggregates from versatile peroxidase and glucose oxidase:production, partial characterization and application for the elimination of endocrine disruptors[J]. Bioresour Technol,2011, 102(11):6593-6599.
    [55]Gupta M N,Raghava S. Enzyme stabilization via cross-linked enzyme aggregates[J]. Methods Mol Biol,2011,679:133-145.
    [56]Cerdobbel A,De Winter K,Desmet T,et al. Sucrose phosphorylase as cross-linked enzyme aggregate:improved thermal stability for industrial applications[J]. Biotechnol J,2010,5(11):1192-1197.
    [57]Okutucu B,Zeytunluoglu A,Zihnioglu F. Conversion of trypsin to a copper enzyme: tyrosinase/catechol oxidase by chemical modification[J]. Prep Biochem Biotechnol,2010,40(1):88-96.
    [58]Wang P,Sergeeva M V,Lim L,et al. Biocatalytic plastics as active and stable materials for biotransformations[J]. Nat Biotechnol,1997,15(8):789-793.
    [59]Peters R,Sikorski R. Just one word:plastics[J]. Science,1997,277(5333):1849.
    [60]Wang L,Zhu G,Wang P,et al. Self-assembling of polymer-enzyme conjugates at oil/water interfaces[J]. Biotechnol Prog,2005,21(4):1321-1328.
    [61]Fadnavis N W,Babu R L,Vadivel S K,et al. Lipase catalyzed regio- and stereospecific hydrolysis:chemoenzymatic synthesis of both (r)- and (s)-enantiomers of alpha-lipoic acid[J]. Tetrahedron-Asymmetry,1998,9(23):4109-4112.
    [62]Ueji S.Tanaka H,Hanaoka T,et al. Effects of chemical modification of lipase on its enantioselectivity in organic solvents[J]. Chemistry Letters,2001 (10):1066-1067.
    [63]Gomes M,Clark R,Ledward D A. Effects of high pressure on amylases and starch in wheat and barley flours[J]. Food Chemistry,1998,63(3):363-372.
    [64]刘成梅,刘伟,高荫榆,等.微射流均质机的流体动力学行为分析[J].食品科学,2004(4):58-62.
    [65]Mermelstein N H. High-pressure pasteurization of juice[J]. Food Technology,1999,53 (4):86-90.
    [66]Feijoo S C,Hayes W W,Watson C E,et al. Effects of microfluidizer technology on bacillus licheniformis spores in ice cream mix[J]. J Dairy Sci,1997,80(9):2184-2187.
    [67]刘成梅,刘伟,林向阳,等Microfluidizer对膳食纤维溶液物理性质的影响[J].食品科学,2004(2):72-75.
    [68]刘成梅,刘伟,林向阳,等Microfluidizer对膳食纤维微粒粒度分布的影响[J].食品科学,2004(1):52-55.
    [69]刘成梅,黎冬明,钟业俊,等.瞬时高压作用对豆渣膳食纤维(SDF)在生理条件下对Cu~(2+)、Ca~(2+)、Mg~(2+)、Pb~(2+)吸附的影响[J].食品科学,2006(8):170-173.
    [70]涂宗财,张雪春,刘成梅,等.超高压微射流对花生蛋白结构的影响[J].农业工程学报,2008(9):306-308.
    [71]涂宗财,任维,阮榕生,等.超高压技术对大米淀粉物性影响初探[J].食品工业科技,2006(5):103-105.
    [72]Jenning V,Thunemann A F,Gohla S H. Characterisation of a novel solid lipid nanoparticle carrier system based on binary mixtures of liquid and solid lipids[J]. Int J Pharm,2000,199(2):167-177.
    [73]Bhandari B,Jafari S M,Yinghe H. Production of sub-micron emulsions by ultrasound and microfluidization techniques[J]. Journal of Food Engineering,2007,vol.82, no.4:478-488.
    [74]Tunick M H,Van Hekken D L,Cooke P H,et al. Effect of high pressure microfluidization on microstructure of mozzarella cheese[J]. Lebensmittel-Wissenschaft Und-Technologie-Food Science and Technology,2000,33(8):538-544.
    [75]厉英超,董蕾,贾皑,等.高压乳匀法制备中药固体脂质纳米粒(英文)[J].南方医科大学学报,2006(5):541-544.
    [76]梁栋材.X-射线晶体学基础[M].北京:科学出版社,1991
    [77]赵南明,周海梦.生物物理学[M].北京:施普林格出版社,2000
    [78]赵明莲.PHA颗粒结合蛋白的表达、结晶与X射线衍射分析[D].清华大学,2005,12
    [79]Balovsyak S V,Fodchuk I M. New approaches for simulation of total external x-ray reflection curves. Method of particles[J]. Metallofizika I Noveishie Tekhnologii,2009,31 (11):1493-1504.
    [80]Dabagov S B. X-ray waveguiding for micro- and nanofocusing[J]. Spectrochimica Acta Part B-Atomic Spectroscopy,2009,64(8Sp. Iss. SI):747-752.
    [81]Dabagov S,Uberall H. On x-ray channeling in narrow guides[J]. Nuclear Instruments & Methods in Physics Research Section B-Beam Interactions with Materials and Atoms,2008,266(17):3881-3887.
    [82]Petock J M,Wang Y F,Dubois G C,et al. Effects of different post-crystallization soaking conditions on the diffraction of mtcpl crystals[J]. Acta Crystallographica Section D-Biological Crystallography,2001,57(Part 5):763-765.
    [83]Zhu D W,Lorber B,Sauter C,et al. Growth kinetics, diffraction properties and effect of agarose on the stability of a novel crystal form of thermus thermophilus aspartyl-trna synthetase-1[J]. Acta Crystallogr D Biol Crystallogr,2001,57(Pt 4):552-558.
    [84]Chayen N E. Protein crystallization for genomics:throughput versus output[J]. J Struct Funct Genomics,2003,4(2-3):115-120.
    [85]刘会媛.紫外光谱在有机化学中的应用[J].唐山师专学报,2000(5):20-21.
    [86]曹红翠.紫外分光光度法测定蛋白质的含量[J].广东化工,2007(8):93-94.
    [87]Bechtel K L,Shih W C,Feld M S. Intrinsic raman spectroscopy for quantitative biological spectroscopy part ii:experimental applications[J]. Opt Express,2008,16(17):12737-12745.
    [88]Austin J C,Rodgers K R,Spiro T G. Protein structure from ultraviolet resonance raman spectroscopy[J]. Methods Enzymol,1993,226:374-396.
    [89]Ziegler L D,Hudson B. Resonance raman-scattering of benzene and benzene-d6 with 212.8-nm excitation [J]. Journal of Chemical Physics,1981,74(2):982-992.
    [90]Wei A P,Blumenthal D K,Herron J N. Antibody-mediated fluorescence enhancement based on shifting the intramolecular dimer<-->monomer equilibrium of fluorescent dyes[J]. Anal Chem,1994,66(9):1500-1506.
    [91]覃文武,包永军,龚国权,等.茜素荧光猝灭法测定蛋白质(英文)[J].兰州大学学报,2000(3):105-110.
    [92]杨频,杨斌盛.离子探针方法导论[M].北京:科学出版社,1994.
    [93]贾贞.稀土离子荧光探针在蛋白质分析中的应用[J].光谱实验室,2009(5):1356-1359.
    [94]范小娜,林杰,黄志勤,等.稀土离子(Ⅲ)与牛血清白蛋白结合作用的荧光光谱分析[J].赣南医学院学报,2002(3):233-236.
    [95]张朝平,王蓉燕.某些噻唑偶氮染料与过渡金属离子的三元配合物吸收光谱本性的研究(Ⅰ)[J].化学试剂,1989(5):260-266.
    [96]黄仲贤,杨力伟,周春儿.抗肿瘤活性化合物去甲基斑蟊-5-烯酸的金属配位能力的研究[J].化学学报,1988(4):398-401.
    [97]Thanh N T,Rosenzweig Z. Development of an aggregation-based immunoassay for anti-protein a using gold nanoparticles[J]. Anal Chem,2002,74(7):1624-1628.
    [98]Mank A,Molenaar E J,Lingeman H,et al. Visible diode-laser induced fluorescence detection in liquid-chromatography after precolumn derivatization of thiols[J]. Analytical Chemistry,1993,65(17):2197-2203.
    [99]Terpetschnig E,Szmacinski H,Ozinskas A,et al. Synthesis of squaraine-n-hydroxysuccinimide esters and their biological application as long-wavelength fluorescent labels[J]. Anal Biochem,1994,217(2):197-204.
    [100]Baars M J,Patonay G. Interfacing a high-sensitivity, near-infrared laser-induced fluorescence detector with a commercial capillary electrophoresis instrument[J]. Applied Spectroscopy,1998,52(12):1619-1622.
    [101]Bloustine J,Virmani T,Thurston G M,et al. Light scattering and phase behavior of lysozyme-poly(ethylene glycol) mixtures[J]. Phys Rev Lett,2006,96(8):87803.
    [102]Yamamoto E,Yamaguchi S,Nagamune T. Synergistic effects of detergents and organic solvents on protein refolding:control of aggregation and folding rates[J]. Journal of Bioscience and Bioengineering,2011,111(1):10-15.
    [103]Matsunami H,Fujita C,Ogawa K,et al. Static light scattering study of complex formation between protein and neutral water-soluble polymer[J]. Colloids Surf B Biointerfaces,2007,56(1-2):149-154.
    [104]Zhang F,Wu X,Zhan J. Resonance light scattering technique for determination of polychlorinated biphenyls with silver nanoparticles[J]. Luminescence,2011.
    [105]Wang X,Xu Y,Chen Y,et al. The gold-nanoparticle-based surface plasmon resonance light scattering and visual dna aptasensor for lysozyme[J]. Anal Bioanal Chem,2011.
    [106]Simon S,Pierrard X,Sjoblom J,et al. Separation profile of model water-in-oil emulsions followed by nuclear magnetic resonance (nmr) measurements:application range and coMParison with a multiple-light scattering based apparatus[J]. J Colloid Interface Sci,2011,356(1):352-361.
    [107]Sun S K,Wang H F,Yan X P. A sensitive and selective resonance light scattering bioassay for homocysteine in biological fluids based on target-involved assembly of polyethyleneimine-capped ag-nanoclusters[J]. Chem Commun (Camb),2011,47 (13):3817-3819.
    [108]Chen Y,Gao D,Tian Y,et al. Resonance light scattering technique for the determination of proteins with polymethacrylic acid (pmaa)[J]. Spectrochim Acta a Mol Biomol Spectrosc,2007,67(3-4):1126-1130.
    [109]鄢远,彭学军,许金钩,等.褶合曲线分析法用于同步荧光光谱法同时测定苯酚和对苯二酚[J].分析测试学报,1995(1):1-4.
    [110]Cui F L,Wang J L,Cui Y R,et al. Fluorescent investigation of the interactions between n-(p-chlorophenyl)-n'-(1-naphthyl) thiourea and serum albumin:synchronous fluorescence determination of serum albumin[J]. Anal Chim Acta,2006,571(2):175-183.
    [111]Militello V,Casarino C,Emanuele A,et al. Aggregation kinetics of bovine serum albumin studied by ftir spectroscopy and light scattering[J]. Biophys Chem,2004,107(2):175-187.
    [112]Murayama K,Tomida M. Heat-induced secondary structure and conformation change of bovine serum albumin investigated by fourier transform infrared spectroscopy[J]. Biochemistry,2004,43(36):11526-11532.
    [113]Navea S,Tauler R,Goormaghtigh E,et al. Chemometric tools for classification and elucidation of protein secondary structure from infrared and circular dichroism spectroscopic measurements[J]. Proteins,2006,63(3):527-541.
    [114]庄华梅,何德.核磁共振技术及其在生命科学中的应用[J].生物磁学,2005(4):58-61.
    [115]施蕴渝,吴季辉.核磁共振波谱研究蛋白质三维结构及功能[J].中国科学技术大学 学报,2008(8):941-949.
    [116]Kyogoku Y. [nmr studies on structure and interaction of proteins and nucleic acids in solution][J]. Tanpakushitsu Kakusan Koso,1995,40(3):327-339.
    [117]Hansen D F,Vallurupalli P,Kay L E. An improved 15n relaxation dispersion experiment for the measurement of millisecond time-scale dynamics in proteins[J]. J Phys Chem B,2008,112(19):5898-5904.
    [118]Mittag T,Forman-Kay J D. Atomic-level characterization of disordered protein ensembles[J]. Curr Opin Struct Biol,2007,17(1):3-14.
    [119]Kay L E. Nmr studies of protein structure and dynamics[J]. J Magn Reson,2005, 173(2):193-207.
    [120]Yoshimasu M,Honda M,Mikawa T,et al. Nmr approaches to investigate protein-protein and protein-nucleic acid complexes[J]. Riken Review,2002,no.46:32-35.
    [121]Goncharova I,Urbanova M. Vibrational and electronic circular dichroism study of bile pigments:complexes of bilirubin and biliverdin with metals[J]. Anal Biochem,2009,392(1):28-36.
    [122]Sreerama N,Woody R W. A self-consistent method for the analysis of protein secondary structure from circular dichroism[J]. Anal Biochem,1993,209(1):32-44.
    [123]Manavalan P,Johnson W J. Variable selection method improves the prediction of protein secondary structure from circular dichroism spectra[J]. Anal Biochem,1987,167(1):76-85.
    [124]Johnson W C. Analyzing protein circular dichroism spectra for accurate secondary structures[J].Proteins,1999,35(3):307-312.
    [125]Andrade M A,Chacon P,Merelo J J,et al. Evaluation of secondary structure of proteins from uv circular dichroism spectra using an unsupervised learning neural network[J]. Protein Eng,1993,6(4):383-390.
    [126]Provencher S W,Glockner J. Estimation of globular protein secondary structure from circular dichroism[J]. Biochemistry,1981,20(1):33-37.
    [127]Lobley A,Whitmore L,Wallace B A. Dichroweb:an interactive website for the analysis of protein secondary structure from circular dichroism spectra[J]. Bioinformatics, 2002,18(1):211-212.
    [128]段金友,方积年.圆二色谱在糖类化合物结构研究中的应用[J].天然产物研究与开发,2004(1):71-75.
    [129]Jaumot J,Eritja R,Navea S,et al. Classification of nucleic acids structures by means of the chemometric analysis of circular dichroism spectra[J]. Anal Chim Acta,2009,642 (1-2):117-126.
    [130]田素燕,李连之,高磊,等.圆二色光谱法研究环境因素对细胞红蛋白二级结构的影响[J].分析化学,2009(8):1097-1101.
    [131]Massa C,Degrassi G,Devescovi G,et al. Isolation, heterologous expression and characterization of an endo-polygalacturonase produced by the phytopathogen burkholderia cepacia[J]. Protein Expr Purif,2007,54(2):300-308.
    [132]Ge M,Mao Y J,Pan X M. Refolding of the hyperthermophilic protein ssh10b involves a kinetic dimeric intermediate[J]. Extremophiles,2009,13(1):131-137.
    [133]Schlepckow K,Wirmer J,Bachmann A,et al. Conserved folding pathways of alpha-lactalbumin and lysozyme revealed by kinetic cd, fluorescence, nmr, and interrupted refolding experiments[J]. J Mol Biol,2008,378(3):686-698.
    [134]Houry W A,Rothwarf D M,Scheraga H A. Circular dichroism evidence for the presence of burst-phase intermediates on the conformational folding pathway of ribonuclease a[J]. Biochemistry,1996,35(31):10125-10133.
    [135]Xu Q,Keiderling T A. Trifluoroethanol-induced unfolding of concanavalin a: equilibrium and time-resolved optical spectroscopic studies[J]. Biochemistry,2005,44 (22):7976-7987.
    [136]Liu W,Liu J,Liu C,et al. Activation and conformational changes of mushroom polyphenoloxidase by high pressure microfluidization treatment[J]. Innovative Food Science & Emerging Technologies,2009,10(2):142-147.
    [137]Liu W,Zhang Z,Liu C,et al. The effect of dynamic high-pressure microfluidization on the activity, stability and conformation of trypsin[J]. Food Chemistry,2010,123(3):616-621.
    [138]中华人民共和国行业标准.QB1502-92食品添加剂果胶酶制剂[S].北京:中国轻工出版社,1992
    [139]Sreerama N,Venyaminov S Y, Woody R W. Estimation of the number of alpha-helical and beta-strand segments in proteins using circular dichroism spectroscopy[J]. Protein Sci,1999,8(2):370-380.
    [140]Pedrolli D B,Gomes E,Monti R,et al. Studies on productivity and characterization of polygalacturonase from aspergillus giganteus submerged culture using citrus pectin and orange waste[J]. Appl Biochem Biotechnol,2008,144(2):191-200.
    [141]Federici F. Production, purification and partial characterization of an endo-polygalacturonase from cryptococcus albidus var. Albidus[J]. Antonie Van Leeuwenhoek,1985,51 (2):139-150.
    [142]Martins E S,Silva D,Da S R,et al. Purification and characterization of polygalacturonase produced by thermophilic thermoascus aurantiacus cbmai-756 in submerged fermentation[J]. Antonie Van Leeuwenhoek,2007,91(3):291-299.
    [143]Jyothi T C,Singh S A,Appu R A. The contribution of ionic interactions to the conformational stability and function of polygalacturonase from a. Niger[J]. Int J Biol Macromol,2005,36(5):310-317.
    [144]江霆,马永昆,叶华,等.温度协同超高压处理对洋葱的蒜氨酸酶的影响[J].食品工业,2008(2):17-19.
    [145]Fachin D,Smout C,Verlent I,et al. Inactivation kinetics of purified tomato polygalacturonase by thermal and high-pressure processing[J]. J Agric Food Chem,2004, 52(9):2697-2703.
    [146]Peeters L,Fachin D,Smout C,et al. Influence of beta-subunit on thermal and high-pressure process stability of tomato polygalacturonase[J]. Biotechnol Bioeng,2004, 86(5):543-549.
    [147]Verlent I,Van Loey A,Smout C,et al. Purified tomato polygalacturonase activity during thermal and high-pressure treatment[J]. Biotechnol Bioeng,2004,86(1):63-71.
    [148]Sieiro C,Sestelo A B,Villa T G. Cloning, characterization, and functional analysis of the ePG 1-2 gene:a new allele coding for an endopolygalacturonase in kluyveromyces marxianus[J]. J Agric Food Chem,2009,57(19):8921-8926.
    [149]Mohamed S A,Farid N M,Hossiny E N,et al. Biochemical characterization of an extracellular polygalacturonase from trichoderma harzianum[J]. J Biotechnol,2006,127 (1):54-64.
    [150]Jurick W M,Vico I,Mcevoy J L,et al. Isolation, purification, and characterization of a polygalacturonase produced in penicillium solitum-decayed 'golden delicious' apple fruit[J]. Phytopathology,2009,99(6):636-641.
    [151]Semenova M V,Grishutin S G,Gusakov A V,et al. Isolation and properties of pectinases from the fungus aspergillus japonicus[J]. Biochemistry (Mosc),2003,68(5):559-569.
    [152]Miyairi K,Okuno T,Sawai K. Purification and properties of endopolygalacturonase-i from stereum-purpureum, a factor inducing silver-leaf symptoms on apple-trees[J]. Agricultural and Biological Chemistry,1985,49(4):1111-1118.
    [153]Kaur G,Kumar S,Satyanarayana T. Production, characterization and application of a thermostable polygalacturonase of a thermophilic mould sporotrichum thermophile apinis[J]. Bioresour Technol,2004,94(3):239-243.
    [154]Saad N,Briand M,Gardarin C,et al. Production, purification and characterization of an endopolygalacturonase from mucor rouxii nrrl 1894[J]. Enzyme and Microbial Technology,2007,41(6-7):800-805.
    [155]张应玖,李爽,吴柏南,等.乙醇对聚半乳糖醛酸酶的活力及荧光光谱、CD光谱的影响[J].微生物学通报,1998(2):85-87.
    [156]Podkaminer K K,Shao X J,Hogsett D A,et al. Enzyme inactivation by ethanol and development of a kinetic model for thermophilic simultaneous saccharification and fermentation at 50 degrees c with thermoanaerobacterium saccharolyticum alk2[J]. Biotechnology and Bioengineering,2011,108(6):1268-1278.
    [157]Babu K R,Moradian A,Douglas D J. The methanol-induced conformational transitions of beta-lactoglobulin, cytochrome c, and ubiquitin at low ph:a study by electrospray ionization mass spectrometry[J]. J Am Soc Mass Spectrom,2001,12(3):317-328.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700