用户名: 密码: 验证码:
小麦白粉病抗性基因类似物的克隆和分析
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
小麦是世界上最重要的粮食作物之一。小麦白粉病是由白粉菌Blumeria graminis f. sp. tritici .(Bgt)引起的世界性真菌病害。利用小麦自身的抗性是控制白粉病最有效、经济和安全的途径。克隆植物抗病基因,通过转基因的方法增强植物抗性,是控制植物病害的新方法。为了解小麦抗白粉病的机制,本文开展了对小麦白粉病抗性基因类似物的克隆研究。
     Pm3b是世界上第一个被克隆的小麦白粉病抗性基因,在采用图位克隆法克隆Pm3b的过程中,发现Pm3b是成簇排列的NBS-LRR类抗病基因家族的一员。克隆Pm3b所在基因家族的其它成员,对于研究NBS-LRR类抗病基因的进化及抗病机制具有重要的意义。本研究以近等基因系Ulka/XX194/8*Chancellor(Pm2)和Chancellor为材料,利用Pm3b与其它已克隆抗病基因的保守序列设计简并引物,利用PCR为基础的同源克隆法获得11个抗病基因类似物(RGA),并利用生物信息学软件进行了分析,同时对长片段扩增的体系进行了优化。获得的主要结果如下:
     1.与普通PCR相比,长片段PCR需要较高的pH值,TaKaRa公司生产的LA Taq酶所带GC buffer的pH值较低,需适当调高其pH值才可以从复杂基因组DNA中高效扩增长片段。
     2.培养温度对于长片段克隆的稳定传代有较大影响,长片段克隆在37℃条件下培养容易引起插入片段的全部或部分缺失,30℃条件下培养则有助于长片段克隆的稳定传代。
     3.共获得11个RGA,且均已在GenBank注册,登录号为EF157980—EF157990。所获得的11个RGA与Pm3位点的复等位基因有很高的相似性,其中3个是假基因,8个是蛋白质编码基因。种系分析发现,8个蛋白质编码基因组成一个单系群,它们与Pm3位点的复等位基因是并系关系。由于PCR扩增所用引物主要参考Pm3b设计,所以推测11个RGA来自于Pm3所属基因家族。
     4.大多数正向选择位点分布在LRR区,与其它结构域相比,LRR区承受着更大的正向选择压力。
     5.初步推测NBS-LRR类抗病基因的进化模式如下:当抗病基因的祖基因经复制而出现多个拷贝以后,大多数进化事件首先发生在LRR区,随后,发生在其它区的进化事件所占比例会逐渐提高;发生在LRR区的进化事件首先发生在β-折叠以外的其它结构上,其次才发生在β-折叠上。
Wheat (Triticum aestivum L., 2n=42, AABBDD) is one of the most important food crops in the world. Powdery mildew, caused by the biotrophic fungus Blumeria graminis f. sp. tritici (Bgt), is a prevalent world-wide wheat disease. Cultivation of varieties with natural resistance is the most effective, economic and safe way to control powdery mildew disease. It is a new strategy for disease controlling to clone the resistance genes and transfer it into plants for the improvement of disease resistance.
     Pm3b is the first powdery mildew resistance gene isolated from hexaploid wheat. Pm3b is a member of a large NBS-LRR class gene family cluster. The isolation of other members of the gene family plays a very important role in the study of the evolution of NBS-LRR class resistance gene and the mechanism of disease resistance. In this study, wheat near-isogenic lines in Chancellor background Ulka/XX194/8*Chancellor (Pm2) and Chancellor were employed and degenerate primers were designed based on the conservation of 5’-terminus and 3’-terminus of Pm3b. Eleven resiatance gene analogues (RGAs) were acquired by PCR-based cloning in this study, and the characteristic of them were analyzed by bioinformatics programs. And meanwhile, we optimized the PCR conditions for long products. The main results were as follows:
     1. In comparison with the amplification of short fragment, the pH value of long PCR condition should be higher. But the pH value of GC buffer bought with LA Taq from TaKaRa was not high enough and should be adjusted higher properly so as to amplify long DNA fragment effectively from high-complexity templates.
     2. Temperature played an important role in the stable multiplication of the bacteria clone with long fragments. The bacteria clone with long fragment insertion was prone to lose its insertion completely or partially when multiplying in 37℃, but under the condition of 30℃, the clone would be more stable.
     3. Eleven RGAs were acquired in this study, and registered in GenBank respectively (accession number: EF157980-EF157990). The 11 RGAs shared high similarity with Pm3 alleles. And among them, three RGAs were pseudogenes and the others were protein encoding genes. Phylogenetic analysis revealed that the eight protein encoding genes formed a monophyletic group, and they were paraphyletic with Pm3 alleles. Given that the primers were designed mostly from Pm3b, we inferred that the 11 RGAs were from the large Pm3 family.
     4. Most positively selected sites distributed in LRR domain, which suggested that LRR domain bore more positive selection pressure than other domains.
     5. We preliminarily inferred that the evolution mode of NBS-LRR resistance gene was as follows: after the ancestor gene diverged, the majority of evolution events occurred in LRR domain at first, and then, after a period of time, the proportion of evolution events occurred in other domains would increase; the evolution events in LRR domain occurred in other secondary structures firstly, and then inβ-sheet.
引文
[1] 布坎南,格鲁依森姆,琼斯著. 瞿礼嘉,顾红雅,白书农,赵进东译. 植物生物化学与分子生物学. 北京:科学出版社,2004.
    [2] 封德顺. 体细胞杂种小麦与供体高冰草的高分子量麦谷蛋白亚基克隆及基因分析. 山东大学博士论文,2004.
    [3] 冯福民,鲍作义,庄道民等. 河南省分离的 HIV-1 B-Thai 亚型流行株全基因组克隆及序列分析. 中华实验和临床病毒学杂志,2004,18(4):356-359.
    [4] 韩德俊,李振岐,曹莉,陈耀锋. 大麦抗白粉病基因 mlo 的研究进展. 西北植物学报,2003,23(3):496-502
    [5] 李振岐,曾士迈. 中国小麦锈病. 北京:中国农业出版社,2002.
    [6] 刘建伟,徐湘民. 长片段 PCR 技术. 生命的化学,1996,16(4):37-39.
    [7] 罗敏,末友林,余潮等. 植物抗病基因的克隆及其结构与功能. 遗传,2000,6:429-434.
    [8] 秦跟基. 根据抗病基因保守区克隆小麦抗病基因及其小麦抗赤霉病基因双单倍体作图群体的构建. 南京农业大学博士论文,2001.
    [9] 王心宇. 分子标记技术在小麦抗白粉病育种及指纹图谱分析中的应用研究. 南京农业大学博士论文,2001。
    [10] 吴乃虎. 基因工程原理(第二版)上册,北京:科学出版社,1998.
    [11] 姚景侠. 小麦细胞与分子遗传研究. 2000,南京出版社。
    [12] 易图永,谢丙炎,张宝午等. 植物抗病基因同源序列及其在抗病基因克隆与定位中的应用. 生物技术通报,2002, 2: 16-20
    [13] 张岚岚,徐春燕,徐昌杰. 大肠杆菌感受态细胞转化能力的影响因素. 细胞生物学杂志,2004,26:429-432.
    [14] 张增艳,陈孝,张超等. 分子标记选择抗白粉病基因 Pm4b、Pm13和 Pm21 聚合体. 中国农业科学,2002,35(7):789-793.
    [15] Aarts M G M, Hekkert B T L, Holub E B, et al. Identification of R-gene homologous DNA fragments genetically linked to disease resistance loci in Arabidopsis thaliana. MPMI, 1998, 11(4): 251-258.
    [16] Altschul S F, Madden T L, Sch?ffer A A, et al. Gapped BLAST andPSI-BLAST: a new generation of protein database search programs. Nucleic Acids Res, 1997, 25: 3389-3402.
    [17] Anderson P A, Lowrence G J, Moorish B C, et al. Inactivation of the flax rust resistence gene M associated with loss of a repeated unit within the leucine-rich repeat coding region. Plant Cell, 1997, 9:641-651.
    [18] Axtell M J, Staskawicz B J. Initiation of RPS2-specified disease resistance in Arabidopsis is coupled to the AvrRpt2-directed elimination of RIN4. Cell, 2003, 112, 369-377.
    [19] Bai J, Pennill L A, Ning J, et al. Diversity in nucleotide binding site-leucine-rich repeat genes in cereals. Genome Res, 2002, 12: 1871-1884.
    [20] Bennett, F G A. Resistance to powdery mildew in wheat: A review of its use in agriculture and breeding programmes. Plant Pathol, 1984, 33: 279–300.
    [21] Bent A F, Kunkel B N, Dahlbeck E, et al. RPS2 of Arabidopsis thaliana:A leucine-rich repeat class of plant disease resistance genes. Science, 1994, 265:1856-1860.
    [22] Bent A F. Plant disease resistance genes: function meets structure. Plant Cell, 1996, 8:1757-1771.
    [23] Belkhadir Y, Subramaniam R, Dangl J L. Plant disease resistance protein signaling: NBS-LRR proteins and their partners. Current Opinion in Plant Biology, 2004, 7: 391-399.
    [24] Bittner-Eddy P D, Crute I R, Beynon J L, et al. RPP13 is a simple locus in Arabidopsis thaliana for alleles that specify downy mildew resistance to different avirulence determinants in Peronospora parasitica. Plant J, 2000, 21 (2): 177-188.
    [25] Bonas U, Lahaye T. Plant disease resistance triggered by pathogen-derived molecules: refined models of specific recognition. Current Opinion in Microbiology, 2002, 5 (1): 44-50.
    [26] Boyes D C, Nam J, Dangl J, et al. The Arabidopsis thaliana RPM1disease resistance gene product is a peripheral plasma membrane protein that is degrade coincident with the hypersensitive response. Proc Natl Acad Sci USA, 1998, 95: 15849-15854.
    [27] Brandwagt B F, Mesbah L A, Takken F L, et al. A longevity assurance gene homolog of tomato mediates resistance to Altemaria alternata f. sp. lycopersici toxins and fumonisin B1. PNAS, 2000, 97: 4961-4966.
    [28] Bryan G T, Wu K S, Farrall L. A single amino acid difference distinguishes resistant and susceptible alleles of the rice blast resistance gene Pi-to. Plant Cell, 2000, 12: 2033-2046.
    [29] Büschges R, Hollrichner K, Panstruga R. The barely Mlo gene: A novel control element of plant pathogen resistance. Cell, 1997, 88: 695-705.
    [30] Büttner D, Bonas U. Common infection strategies of plant and animal pathogenic bacteria. Current Opinion in Plant Biology, 2003, 6: 312-319
    [31] Caicedo A L, Schaal B A, Kunkel B N. Diversity and molecular evolution of the RPS2 resistance gene in Arabidopsis thaliana. Proc Natl Acad Sci USA, 1999, 96: 302-306.
    [32] Chantret N, Pavoine M T, Doussinault G. The race-specific resistance gene to powdery mildew, MIRE, has a residual effect on adult plant resistance of winter line RE714. Phytopathology, 1999, 89: 533-539.
    [33] Chisholm S T, Dahlbeck D, Nandini K, et al. Molecular characterization of proteolytic cleavage sites of the Pseudomonas syringae effector Avr-Rpt2. PNAS, 2005, 102(6):2087-2092.
    [34] Dangl J L, Jones J D. Plant pathogens and integrated defense responses to infection. Nature, 2001, 411: 826-833.
    [35] Deslandes L, Olivier J, Theulieres F. Resistance to Ralstonia solanacearum in Arabidopsis thaliana is conferred by the recessive RRSl -R gene, a member of a novel family of resistance genes. Proc Natl Acad Sci USA, 2002, 99: 2404-2409.
    [36] Deslandes L, Oliver J, Peeters N, et al. Physical interaction between RRS1-R, a protein conferring resistance to bacterial wilt, and PopP2, atype Ⅲ effector targeted to the plant nucleus. Proc Natl Acad Sci USA, 2003, 100: 8024-8029.
    [37] De Wit P J. Molecular characterization of gene-for-gene systems in plant fungus interactions and the application of avirulence genes in control of plant pathogens. Ann Rev Phytopath, 1992, 30: 391-418.
    [38] Dixon M S, Jones D A, Keddie J S, et al.The tomato Cf-2 disease resistance locus comprises two functional genes encoding leucine-rich repeat proteins. Cell, 1996, 84(9):451-459.
    [39] Doron-Faigenboim A, Stern A, Mayrose I, et al. Selecton: a server for detecting evolutionary forces at a single amino-acid site. Bioinformatics, 2005, 21: 2101-2103.
    [40] Ellis J, Lawrence G J, Luck J E, et al. Identification of regions in alleles of the flax rust resistance gene L that determine differences in gene-for-gene specificity. The Plant Cell, 1999, 11: 495-506.
    [41] Ellis J, Dodds P, Pryor T. The generation of plant disease resistance gene specificities. Trends Plant Sci, 2000, 5: 373-379.
    [42] Fantl W J, Johnson D E, Williams L T. Signalling by receptol tyrosine kinases. Ann Rev Biochem, 1993, 62: 453-481.
    [43] Flor H H. Current status of the gene-for-gene concept. Ann Rev Phyopathol, 1971, 9: 275-296.
    [44] Gabriel D W, Rolfe B G. Working models of specific recognition in plant –microbe interaction. Ann Rev phytopathol, 1990, 28: 365-391.
    [45] Gill K S, Gill B S, Endo T R, et al. Identification and high-density mapping of gene-rich regions in chromosome groupⅠ of wheat. Genetics 1996.144:1883-1891.
    [46] Graham M A, Marek L F, Lohnes D, et al. Expression and genome organization of resistance gene analogs in soybean. Genome, 2000, 43: 86-93.
    [47] Grant M R, Godiard L, Straube E, et al. Structure of the Arabidopsis RPM1 gene enable dual specificity disease resistance. Science, 1995, 269:843-846.
    [48] Gregory B M, Bromnmonccenkel S H, Chunwongse J, et al. Map based cloning of a protein kinase gene conferring disease resistance in tomato. Science, 1993, 262: 1432-1436.
    [49] Griffey C A, Das M K, & Stromberg E L. Effectiveness of adult-plant resistance in reducing grain yield loss to powdery mildew in winter wheat. Plant Dis, 1993, 77: 618–622.
    [50] Hammond-Kosack K, Parker J. Deciphering plant-pathogen communication: fresh perspectives for molecular resistance breeding. Current Opinion Biotechnology, 2003, 14, 177-193.
    [51] Harrison C J and Langdale J A. A step by step guide to phylogeny reconstruction. Plant J, 2006, 45: 561-572.
    [52] Hautea R A, Coffman W R, Sorrells M E et al. Inheritance of partial resistance to powdery mildew in spring wheat. Theor Appl Genet, 1987, 73: 609–615.
    [53] Hsam S L K & Zeller F J. Evidence of allelism between genes Pm8and Pm17and chromosomal location of powdery mildewand leaf rust resistance genes in the common wheat cultivar ''Amigo''. Plant Breeding, 1997, 116: 119–122.
    [54] Hsam S L K, Huang X Q, Ernst F. Chromosomal location of genes for resistance to powdery mildew in common wheat (Triticum aestivum L. em. Thell.). 5. Alleles at the Pm1 locus. Theor Appl Genet, 1998, 96: 1129–1134.
    [55] Huang X Q, Hsam S L K & Zeller FJ. Chromosomal location of two novel genes for resistance to powdery mildew in Chinese landraces (Triticum aestivum L. em. Thell.). J Genet & Breed, 2000, 54: 311–317.
    [56] Huang X Q, Hsam S L K & Zeller F J. Chromosomal location of genes for resistance to powdery mildew in Chinese wheat lines Jieyan 94-1-1 and Siyan 94-1-2. Hereditas, 2002, 136: 212–218.
    [57] Huang, X Q & R?der M S. Molecular mapping of powdery mildewresistance genes in wheat: A review. Euphytica 2004, 137: 203–223.
    [58] Hulbert S H, Webb C A, Smith S M, et al. resistance gene complexes: evolution and utilization. Annu Rev Phytopathol, 2001, 39: 285-312.
    [59] Jia Y L, McAdams S A, Bryan G T, et al. Direct interaction of resistance gene and avirulence gene products confers rice blast resistance. EMBO J, 2000, 19: 4004-4014.
    [60] Johal G S, Briggs S P. Reductase activity encoded by the HM1 disease resistance gene in maize. Science, 1992, 258:985-987.
    [61] Jones D A, Thomas C M, Hammond-Kosack K E, et al. Isolation of the tomato Cf-9 gene for resistance to Cladosporium fulvum by transposon tagging. Science, 1994, 266: 789-793.
    [62] Jones D A, Jones J D G. The role of leucine-rich repeat proteins in plant defences. Adv Bot Res, 1997, 24: 90-167.
    [63] Kawchuk L M, Hachey J, Lynch D R, et al. Tomato Ve disease resistance genes encode cell surface-like receptors. PNAS, 2001, 98: 6511-6515.
    [64] Keen N T. The molecular biology of disease resistance. Plant molecular Biology, 1992, 19: 109-122.
    [65] Kim M C, Lee S, Kim J. Mlo, a modulator of plant defense and cell death, is a novel calmodulin-binding protein. Journal Biology Chemistry, 2002, 277: 19304-19314.
    [66] Kim H S, Desveaux D, Singer A U, et al. The seudomonas syringae effector AvrRpt2 clesves its C-terminally acylated target, RIN4, from Arabidopsis membranes to block RPM1 activation. PNAS, 2005,102,18: 6496-6501.
    [67] Kobe B and Reisenhofer J. The leucine-rich repeat: A versatile binding motif. Trends Biochem Sci, 1994, 19: 415-421.
    [68] Kobe B and Deisenhofer J. The leucine-rich repeat—a versatile binding motif. TIBS, 1994, 19: 415-421.
    [69] Koonin E V, Rogozin I B. Getting positive about selection. Genome Biology, 2003, 4: 331.
    [70] Kotanides H, Reich N C. Requirement of tyrosine phosphorylation for rapid activation of a DNA binding factor by IL-4. Science, 1993, 262: 1265-1267.
    [71] Lahaye T, Bonas U. Molecular secrets of bacterial type Ⅲ effector proteins. Trends Plant Sci, 2001, 6: 479-485.
    [72] Lamb C I, Lawton M A, Dron M, et al. Signals and lransduction mechanisms for activation of plant defense against microbial. Cell, 1989, 56:215-224.
    [73] Laugé R, de Wit J G M. Fungal Genetics and Biology, 1998, 24: 285-297.
    [74] Law C N & Wolfe M S. Location of genetic factors for mildew resistance and ear emergence time on chromosome 7B of wheat. Can J Genet Cytol, 1966, 8: 462–479.
    [75] Lawrence G J, Finnegan E J, Ayliffe M A, et al. The L6 gene for flax rust resistance is related to the Arabidopsis bacterial resistance gene RPS2 and the tobacco viral resistance gene. Plant Cell, 1995, 7:1195 一 1206.
    [76] Lebsock K L & Briggle L W. Gene Pm5 for resistance to Erysiphe graminis f. sp. tritici in Hope wheat. Crop Sci, 1974, 14: 561– 563.
    [77] Leister D, Kurth J, Laurice D, et al. RFLP-and physical mapping of resistance gene homologues in rice (O. sativa) and Barley (H. vulgare).Theor Appl Genet, 1999, 98: 509-520.
    [78] Li W H, Wu C I, Luo C C. A new method for estimating synonymous and nonsynonymous rates of nucleotide substitution considering the relative likelihood of nucleotide and codon changes. Mol Biol Evol, 1985, 2: 150-174.
    [79] Lupas A, Van Dyke M, Stock J. Predicting coiled coils from protein sequences. Science, 1991, 252: 1162-1164.
    [80] Mackey D, Holt B F, Wiig A, et al. RIN4 interacts with Pseudomonas syringae type Ⅲ effector molecules and is required for RPM1-mediated resistance in Arabidopsis. Cell, 2002, 108: 743-754.
    [81] Macky D, Belkhadir Y, Alonso J M, et al. Arabidopsis RIN4 is a target ofthe type Ⅲ virulence effector AvrRpt2 and modulates RPS2-mediated resistance. Cell, 2003, 112: 379-389.
    [82] Martin G B, Brommonschenkel S H, Chunwongse J, et al. Map-based cloning of a protein kinase gene conferring disease resistance in tomato. Science, 1993, 262: 1432-1436.
    [83] Meyers B C, Dickerman A W, Michelmore R W, et al. Plant disease resistance gene encode members of an ancient and diverse protein family within the nucleotide binding superfamily. Plant J, 1999, 20 (3): 317-332.
    [84] Meyers B C, Kozik A, Kuang H, et al. Genome-wide analysis of NBS-LRR-encoding genes in Arabidopsis. Plant cell, 2003, 15: 809-834.
    [85] Milligan S B, Bodeau J, Yaghoobi J, et al. The root knot nematode resistance gene Mi from tomato is a member of the leucine zipper, nucleotide binding, leucine-rich repeat family of plant genes. The Plant Cell, 1998, 10: 1307-1319.
    [86] Miranda L M , Murphy J P, Marshall D, et al. Pm34: a new powdery mildew resistance gene transferredfrom Aegilops tauschii Coss. to common wheat. Theor Appl Genet 2006, 113:1497–1504.
    [87] Nass H, Pedersen W, MacKenzie D, et al. The residual effects of some defeated' powdery mildew resistance genes in isolines of chancellor winter wheat. Phytopathol, 1981, 71: 1315-1318.
    [88] Nicholas C, Jeff D, Michael A, et al. Molecular characterization of the maize Rpl-D rust resistance haplotype and its mutants. Plant Cell, 1999, 11: 1365 一 1376.
    [89] Parker J E, Colernan M J, Szabo V, et al. The Arabidopsis downy mildew resistance gene RPP5 shares similarity to the toll and interleukin-1 receptors with N and L6. The Plant Cell, 1997, 9: 879~894.
    [90] Robe P & Doussinault G. Genetic analysis of powdery mildew resistance of a winter-wheat line, RE714, and identifica-tion of a new specific-resistance gene. Plant Breed, 1995, 114: 387–391.
    [91] Roberts J J, & Caldwell R M. General resistance (slow mildewing) to Erysiphe graminis f. sp. tritici in ''Knox'' wheat. Phytopathology, 1970, 60: 1310.
    [92] Roelfs A P. Foliar fungal diseases of wheat in the People's Republic of China. Plant Dis Rep, 1977, 61: 836-841.
    [93] Rong J K, Millet E, Manisterski J, et al. A new powdery mildew resistance gene: Introgression from wild emmer.222 into common wheat and RFLP-based mapping. Euphytica, 2000, 115: 121–126.
    [94] Salmeron J M, Oldroyd G E, Rommens C M, et al. Tomato Pif is a member of the Leucine-rich repeat class of plant disease resistance genes and lies embedded within the Pto kinase gene cluster. Cell, 1996, 86:123-133.
    [95] Scofield S R, Tobias C M, Rathjen J P, et al. Molecular basis of gene-for-gene specificity in bacterial speck disease of tomato. Science, 1996, 274: 2063~2065.
    [96] Seah S, Spielmeyer W, Jahier J, et al. Resistance gene analogs within an introgressed chromosomal segment derived from Triticum ventricosumthat confers resistance to nematode and rust pathogens in wheat. MPMI, 2000, 13(3): 334-341.
    [97] Shen K A, Meyers B C, Islam-Faridi M N, et al. Resistance gene candidates identified by PCR with degenerate oligonucleotide primers map to clusters of resistance genes in lettuce. MPMI, 1998, 8: 815-823.
    [98] Simmons M P, Ochoterena H and Freudenstein J. Amino acids vs. nucleotide characters: challenging preconceived notions. Mol Phy Evol, 2002a, 24: 78-90.
    [99] Simmons M P, Ochoterena H and Freudenstein J. Conflict between amino acid and nucleotide characters. Cladistics, 2002b, 18: 200-206.
    [100] Singrün, C, Hsam S L K, Hartl L, et al. Powdery mildew resistance gene Pm22 in cultivar Virest is a member of the complex Pm1 locus in common wheat (Triticum aes-tivum L. em Thell.). Theor Appl Genet,2003, 106: 1420–1424.
    [101] Singrün C, Hsam S L K, Zeller F J, et al. Localization of a novel recessive powdery mildew resistance gene from common wheat line RD30 in the terminal region of chromosome 7AL. Theor Appl Genet, 2004, 109: 210–214.
    [102] Song W Y, Wang G L, Chen L L, et al. A receptor kinase-like protein encoded by the rice disease resistance gene, Xa21. Science, 1995, 270: 1804-1806.
    [103] Song W Y, Pi L Y, Wang G L, et al. Evolution of the rice Xa2l disease resistance gene family. The Plant Cell, 1997, 9: 1279-1287.
    [104] Srichumpa P, Brunner S, Keller B, et al. Allelic series of four powdery mildew resistance genes at the Pm3 locus in hexaploid bread wheat. Plant Physiol, 2005, 139: 885-895.
    [105] Srnic G, Murphy J P, Lyerly J H Inheritance and chromosomal assignment of powdery mildew resistance genes in two winter wheat germplasm lines. Crop Sci 2005, 45: 1578-1586.
    [106] Tao Y, Yuan F, Leister R T, et al. Mutational analysis of the Arabidopsis nucleotide binding site-leucine-rich repeat resistance gene RPS2. Plant cell, 2000, 12: 2541-2554.
    [107] Tatusova T A, Madden T L. Blast 2 sequences: a new tool for comparing protein and nucleotide sequences. FEMS Microbiol Lett, 1999, 174: 247-250.
    [108] Thomas C M, Jones D A, Parniske M, et al. Characterization of the tomato Cf-4 gene for resistance to Cladosporium fulvum identifies sequences that determine recognitional specificity in Cf-4 and Cf-9. The Plant Cell, 1997, 9: 2209-2224.
    [109] Tosa Y, Tsujimoto H & Ogura H. A gene involved in the resistance of wheat to wheatgrass powdery mildew fungus. Genome, 1987, 29: 850–852.
    [110] Tosa Y, Tsujimoto H & Ogura H. Identification of a gene for resistanceto wheatgrass powdery mildew fungus in the common wheat cultivar Chinese Spring. Genome, 1988, 30: 612–614.
    [111] Tosa Y & Sakai K. The genetics of resistance of hexaploid wheat to the wheatgrass powdery mildew fungus. Genome, 1990, 33: 225–230.
    [112] Van der Hoorn R A, De Wit P J, Joosten M H. Balancing selection favors guarding resistance proteins. Trends Plant Science, 2002, 7: 67-71.
    [113] Van’t Slot K A E, Van den Burg H A, Kloks C P A M. Solution structure of the plant disease resistance-triggering protein NIP1 from the fungus Rhynchosporium secalis shows a novel-sheet fold. J Bio Chem, 2003, 278 (46): 45730-45736.
    [114] Wang Z X, Yano M, Yamanouchi U, et al. The Pi-b gene for rice blast resistance belongs to the nucleotide binding and leucine-rich repeat class of plant disease resistance gene. The plant Journal, 1999, 19:55-64.
    [115] Whitham S, Dinesh-kumar S P, Chol D, et al. The product of the tobacco mosaic virus resistance gene N: similarity to Toll and the Interleukin-1 receptor. Cell, 1994, 78: 1101-1115.
    [116] Xiao S, Ellwood S, Calis O, et al. Broad-spectrum mildew resistance in Arabidopsis thaliana mediated by RPW8. Science, 2001, 291: 118-120.
    [117] Yahiaoui N, Srichumpa P, Dudler R, et al. Genome analysis at different ploidy levels allows cloning of the powdery mildew resistance gene Pm3b from hexaploid wheat. Plant J, 2004, 37: 528-538.
    [118] Yahiaoui N, Brunner S, Keller B. Rapid generation of new powdery mildew resistance genes after wheat domestication. Plant J, 2006, 47: 85-98.
    [119] Yao G Q, Zhang J L, Ma Z Q, et al. Genetic mapping of two powdery mildew resistance genes in einkorn(Triticum monococcum L.) accessions.Theor Appl Genet, 2006, 114: 351-358.
    [120] Yoshimata S, Yamanouchi U, Katayose Y, et al. Expression of Xa1 a bacterial blight-resistance gene in rice, is induced by bacterial inoculation. Froc Natl Acad Sci USA, 1998, 95:1663-1668.
    [121] Yu J, Hu S N, Wang J, et al. A draft sequence of the rice genome (Oryza sativa L. ssp. indica).Science, 2002, 296: 79-91.
    [122] Zeller FJ, Hsam S L K. Progress in breeding for resistance to powdery mildew in common wheat (Triticum aestivum L.). In: Slinkard AE (ed) Proceedings of the 9th international wheat genetics symposium, vol 1. University Extension Press, Saskatoon, 1998, 178–180.
    [123] Zhang X C, Gassmann W. RPS4-mediated disease resistance requires the combined presence of RPS4 transcripts with full-length and truncated open reading frames. The Plant Cell, 2003, 15: 2333-2342

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700