用户名: 密码: 验证码:
无锡蠡湖湖滨湿地植被修复与景观重建研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
湖滨湿地是湖泊水域生态系统和陆域生态系统之间的过渡带,在拦截陆域污染物、净化湖泊水体、保持湖泊生态系统和生物多样性稳定等方面发挥了积极作用,是湖泊生态系统的重要组成部分。近年来,无锡市对蠡湖湖滨湿地进行了一系列大规模的生态修复综合治理工作。论文研究了蠡湖湖滨湿地生态修复与景观重建原理与技术,探讨影响湖滨湿地生态系统退化的主要因素,在此基础上研究了蠡湖湖滨湿地植被生态修复和景观重建的生态学原理与景观适宜性评价。论文的主要研究结果如下:
     (1)针对蠡湖湖滨湿地水体中的氮、磷污染物特点,运用生态浮岛-生物膜技术、仿生植物-脱氮细菌技术、释放通道阻隔技术、浮游动物培育技术、滤食性渔类净化技术、人工促降技术、水生植物吸收存储技术、聚磷吸收沉降技术、底泥氮磷释放等措施,来消减和控制湖滨湿地水体的氮、磷含量,进一步改善湖滨湿地水质。同时针对湖滨湿地自然环境特征,采用生长床-沉水植物移植、浅根系沉水植被修复、深根系沉水植被修复,扎根浮叶植被修复等四种技术措施来进行湖滨湿地植被生态修复。
     (2)综合运用遥感技术对蠡湖湖滨湿地生态修复前后景观生态格局及演变进行分析,得出湖滨湿地区域内绿地、林地和水域面积以及水域破碎度都有所增加,这充分表明,经过实施生态修复工程,蠡湖湖滨湿地内的水体分布更为广泛,水体对周围环境的渗透也在增强,这无疑有利于维持蠡湖湖滨湿地整体的生态系统平衡。
     (3)从湖滨湿地景观稳定性、优美性、自然性以及服务性四个层面,开展湖滨湿地景观适宜性的预测和评价。经过综合分析得出蠡湖湖滨湿地多个区域的景观适宜性趋于高度适宜和中度适宜。因此,可以得出,经过实施生态修复与景观重建工程,蠡湖湖滨湿地景观正呈现出丰富、多样、协调趋势。
     (4)实施生态修复工程后,蠡湖湖滨湿地水质得到了一定程度的改善,悬浮物含量变动在8.4-20.7mg/L之间,总氮含量均值为1.47mg/L,处于地表水质标准(GB3838-2002)的IV类水标准范围,溶解性总氮(DTN)的均值为1.14mg/L,占总氮的78%,总磷的浓度均值为0.064mg/L。
Wetland is a transitional zone between the lake aquatic ecosystem and landecosystem, in the intercept pollutants purification of lake water, land, conservationof lake ecosystem and biodiversity plays an active role, is an important componentof the lake ecosystem. In recent years, Wuxi City, a series of large-scale ecologicalrestoration of comprehensive treatment of Lihu Lake wetland. The paper studies theprinciple and technology of Lihu Lake wetland ecological restoration and landscapereconstruction, to explore the influence factors of degraded lakeside wetlandecological system, on the basis of the research on ecology principle Lihu Lakewetland vegetation ecological restoration and landscape reconstruction andsuitability evaluation technology. The main results are as follows:
     (1) according to the characteristics of Lihu Lake Wetland nitrogen, phosphoruspollutants, using ecological floating island-biofilm technology, bionic-denitrification bacteria, release channel barrier technology, planktonic animalbreeding technology, filter-feeding fish purification technology, artificial and droptechnique, aquatic plants absorb storage technology, phosphorus absorption andsedimentation technique, nitrogen and phosphorus release from sediments and othermeasures, to control and reduce lakeside wetland water nitrogen, phosphorus content,to further improve the water quality of Lake wetland. Aiming at the lakeside wetlandnatural environment characteristics, the growth of submerged macrophyte bed-transplantation, shallow roots submerged vegetation restoration, deep rootssubmerged vegetation restoration, rooted floating vegetation restoration of fourtechnology measures for ecological restoration of wetland vegetation in the lake.
     (2) the integrated use of remote sensing technique to analyze the Lihu Lakewetland ecological restoration and landscape ecological pattern and evolution, thewetland area green space, an area of woodland and water as well as waterfragmentation increased, which indicates that, after the implementation of ecologicalrestoration project, water distribution Lihu Lake Wetland within the broaderinfiltration water, the surrounding environment is also enhanced, which willundoubtedly help maintain wetland lakeside Lihu lake ecosystem balance.
     (3) from the lakeside wetland landscape stability, graceful, natural and servicelevel Four, development of wetland landscape suitability evaluation and prediction.According to the analysis of Lihu Lake Wetland in many regions of the landscape tends to be highly appropriate and moderate suitable. Thus, can draw, after theimplementation of ecological restoration and landscape reconstruction project, LihuLake wetland landscape is showing a rich, diverse, coordination trend.
     (4) the implementation of ecological restoration projects, Lihu Lake wetland waterquality has been improved to a certain extent, suspended matter content between thechange in the8.4-20.7mg/L, the mean total nitrogen content is1.47mg/L, in thesurface water quality standard (GB38382002) class IV water standard range, totaldissolved nitrogen (DTN) and the mean1.14mg/L,78%of total nitrogen, totalphosphorus concentration mean0.064mg/L.
引文
[1]李佩成,薛惠锋.论水资源的永续供给[J].地下水,1995,17(4)141~148.
    [2]李佩成.试论人类活动的新思维[J].中国工程科学,2000,2(2):5~9.
    [3]陈灵芝,陈伟烈主编.中国退化生态系统研究.北京:中国科技出版社,1995.
    [4]冯国章,李佩成.论水文系统混沌特征的研究方向[J].西北农业大学学报.1997,25(4):97~101.
    [5]邓汉,何国富,邢和祥,等.河道水体富营养化污染综合治理的研究[J].环境科学,2008,31(2):132~135
    [6]许木启,黄玉瑶.受损水域生态系统恢复与重建研究[J].生态学报,18(5):547~558.
    [7]金相灿等.中国湖泊富营养化.北京:中国环境科学出版社,1990.
    [8]郭少聪,任海,季申芒等.华南植物园退化水体的恢复研究[J].生态科学,2000,17(3):1~5.
    [9]徐品,朱民.城市景观水体富营养化及其控制[J].环境科学与管理,2010,35(7):150~152
    [10]中国21世纪议程-中国21世纪人口、环境与发展白皮书.北京:中国环境科学出版社,1992.
    [11]刘建康主编.东湖生态学研究(一).北京:科学出版社,1990.
    [12]刘建康主摘.东湖生态学研究(二.)北京:科学出版社,1995.
    [13王玉杰.重庆长寿区城市河岸生态修复技术研究[D].北京林业大学博士论文,2011.
    [14]张甬元,陈锡涛等.鸭儿湖污染治理研究.水生生物集刊,1983,7(1):113~124.
    [15]颐丁锡.二十年来太湖生态环境状况的若干变化[J].上海师范学院学报,1983,50~59.
    [16]属清瑛等.巢湖~富营养研究.合肥:中国科学技术大学出版社.1990.
    [17]章申,店以剑等.白洋淀区城水污染控制研究(第~集),北京:科学出版杜,1995.
    [18]徐泉斌.三峡库区消落带土壤结构特征研究[D].重庆:西南大学,2010
    [19]李如忠.具湖水环境修复探讨[J].合肥工业大学学报,2002,16(5):l30~l33.
    [20]张报克,王苏民,吴瑞金.中国湖泊水资源问题与优化调控战略[J].自然资源学报,2001,16(1):~21.
    [21]郭焕庭.国外流城水污染治理经验及对我们的启示[J]].环境保护,2001,(8):39~40.
    [22]任海,彭少鹏编著.恢复生态学导论[M].北京:科学出版社,2002.
    [23]尹澄清,毛战坡.用生态工程技术控制农村非点派水污染[J].耳应用生态学报,2002,13(2):229~232.
    [24]韩秀娣.最佳管理措施在非点源污染防治中的应用[J].上海环境科学,2000,19(3):102~104,128.
    [25]吴晓磊.人工湿地废水处理机理[J].环境科学,1995,16(3):83~86.
    [26]尹澄清,兰智文,晏维金.白洋淀水陆交错带对陆浑营养物质的截留作用初步研究.应用生态学报,1995,69(1):76~80.
    [27]尹澄清,毛战坡.用生态工程技术控制农村非点源水污染[JI].应用生态学报,2002,13(2):229~232.
    [28]李如忠,巢湖水环境修复探讨[J].合肥工业大学学报.2002,l6(5):130~133.
    [29]朱季文,季子修等.太湖湖滨带的生态建设.湖泊科学,2002,14(l):77~82.
    [30]陈荷生,太湖生态修复治理工程[J].长江流域资源鱼环境,2001,10(2):173~178.
    [31]许秋瑾,李新瑞,苏东坡.城市小型湖泊河道生态治理的探讨.自然生态保护,2001,6:19~20.
    [32]韦朝海,肖美兰.水生生态调控及水污染治理中微生物的作用.应用基础与工程科学学报,1999,7(4):352~359.
    [33]洪瑞川,段小兰,陈欣虹等.石菖蒲对富营养化水体的净化效应[J].环境与开发,1997,12(1):10~12.
    [34]王国祥,濮培民,张圣照等.冬季水生高等植物对富营养化湖水的净化作用[J].中国环境科学,1999,19(2):106~109.
    [35]何池全,赵魁义,叶居新.石菖蒲净化富营养化水体的研究[J].南昌大学学报,1999,23(1):73~76.
    [36]种云霄,胡洪营,钱易.大型水生植物在水污染治理中的应用研究进展[J].环境污染治理技术与设备,2003,4(2):36~40.
    [37]钟哲科,高智慧,植物对环境的修复机理及其应用前景[J].世界林业研究,2001,14(3):23~28.
    [38]彭近新,陈惠君.水质富营养化与防治[M].北京:中国环境科学出版社,1986.
    [39]谢维民.污水除磷技术[J]环境科学,1989,l0(5):65~68.
    [40]磷对水生植物菱及睡莲叶生理活性的影响[J]南京师范大学报,2002,25(1):71~77.
    [41]赵晟,吴学灿,夏锋.滇池水生植物研究概述.云南环境科学,1999,18(3):4~8.
    [42]邱东茹,吴振斌,刘保元等.武汉东胡水生植物生态学研究[J].武汉植物学研究,1997,15(2):123~130.
    [43]黄文成,徐廷志.试论沉水植物在治理滇池草海中的作用.广西植物,1994,14(4):334~337.
    [44]宋福,陈艳卿,乔建荣等.常见沉水植物对草海水体(含底泥)总氮去除速率的研究[J].环境科学研究1997,10(4):47~50.
    [45]庄源益,赵凡,戴树桂等.高等水生植物对藻类的克制效应[J].环境科学进展,1995,3(6):44~49.
    [46]何池全,赵魁义.植物的生化他感效应及其在湿地研究中的应用[J].生态学杂志,1999,18(4):46~51.
    [47]孙文浩等,水葫芦对藻类的克制效应[J].环境科学学报,1990,16(3):303~309.
    [48]俞子文,孙文浩,郭克勤,余树文.几种高等水生植物的克藻效应.水生生物学报,1992,l6(1):1~7.
    [49]况琪军,夏宜.,吴振斌娜.人工模拟生态系统中水生植物与藻类的相关性研究[J].水生生物学报,1997,21(l):90~93.
    [50]庄潭益,赵凡,戴树桂,金朝辉.高等水生植物对藻类生长的克制效应.环境科学进展,1995,3(6):44~49.
    [51]吴振斌,成水平,贾禅等.垂直流人工湿地的涉及及净化功能研究.应用生态学报,2002,13(6):715~718.
    [52]陈伟烈,湿地及其利用与保护(上),生物学通报[J].1996,109~120.
    [53]徐颂,湿地生态系统的功能[J].生物学教学,1997,11.
    [54]杨永兴,国际湿地科学研究的主要特点、进展与展望.地理科学进展,2002,21(2):111~120.
    [55]张永泽等.自然湿地生态恢复研究综述[J].生态学报,2001,21(2):309~314.
    [56]夏汉平.人工湿地处理污水的机理与效率[J].生态学杂志.2002,21(4):51~59.
    [57]岳隽,王仰麟,彭建.城市河流的景观生态学研究[J].生态学报,2005,25(6):1422-1429.
    [58]张建春,彭补拙河岸带及其生态重建研究[J].地理研究,2002,21(3):374-383.
    [59]张建春,彭补拙.河岸带研究及其退化生态系统的恢复与重建[J].生态学报,2003,23(l):56-63.
    [60]杨红军.五里湖湖滨带生态恢复和重建的基础研究[D].上海交通大学博士论文,2008.
    [61] Brix H.Functions of macrophytes in constructed wetlands.Sci.Technol.1994,29,71~78.
    [62] Abe K.Comparison of useful terrestrial and aguatic plant species for removal of nitrogen andphosphorus from domestic.Soil SCI.Plant Nutr.,1998,44(4):599~607.
    [63] Tanner C.C.et al.Eeffect of load rate and planting on treatment of dairy farm wastewater inconstructed wetlands-I.Removal of oxygen demand suspended solids and faecal conliforms.Wat.Res.,1995,29(1):17~26.
    [64] Panswad T.&Chavalparit O.Water quality and occurrence of protozoa and metazon in two constructedwetlands treating different wastewater in Thailand.Water Science and Technology,1997,36(12):183~188.
    [65] Manfrinato, E.S.et al.Water supply system utilizing the edaphic-phytodepuration technique[A].In:Moshiri, G.A.(ed).Constructed Wetlands for Water Quality Improvement [C].Doca Raton, Florida:Lewis publishers,1993,331~340.
    [66] Seidel, K.Macrophytes and water purification[A].In:Tourbier, J.(eds).Biological Control of Waterpollution[C].philadelphia: University of Pennsylvania Press,1976,109~120.
    [67]Putnam AR, Tang CS, In Putnam AR, Tang CS.(eds).The science of allelopathy, wiley-Interscience.Now York.1986,1~2.
    [68] Scheffer M.Multiplicity of stable states in freshwater system.Hydrobiologia,1990,200/201:475~487.
    [69] Scheffer M,Van Den Berg m. Breukelaar A. Et al.Vegetated ares with clear water in turbid shallowlakes.Aquatic Botany,1994,49(3):193~196.
    [70] Schiver P, B, grestrand J, Jeppesen E, et al. Impact of submerged marophytes on fish-zooplankton-phytoplankton interactions: large enclosure experiments in a shallow eutrophic lake.freshwaterBiol,1995,33(2):255~270.
    [71] Drizo, A.et al.Phosphate and ammonium removal by constructed wetlands with horizontal subsurfaceflow, using shale as a substrate[J]Water Science and Technology,1997,35(5):95~102.
    [72] Environmental Protection Agency, Introduction to Phytore mediation.EAP report/600/R-99:107.2000.
    [73] Suominen L, Jussila M M, Macke lacinen K, et al. Evaluation of Galega-rhizobium gale gaesystem forthEbiore-mediation of oil-contaminated soil.Environmental Pollution,2000,107:239~244.
    [74] Newman L A, Doty S L, Gery K L.Phytore mediation of organic contaminants: A rewiew of phytoremediation re-search at University of Washington.Journal of soil Contamination,1998,7:531~542.
    [75] Phillips G.L.Eminson D.Moss B.A.mechanism to account for macrophyte decline in progressivelyentrophicated freshwater.Aguat Boi.1978,4(2):103~126.
    [76] Blindow I, Anderson G, Haregy A, et al.Long-term pattern of alternative stable states in two shalloweutrophic lakes.Freshwater Biol,1993,30(1):159~167.
    [77] Moss B.Engineering and biological approaches to the restoration for eutrophication of shallow lakes inwhich aguatic plant communitities are important components.Hydrobiologia,1990,200/201:367~377.
    [78] Gliwicz Z.M.Can ecological theroy be used to improve water quality. Hydrobiologia,1992,243/244:283~291.
    [79] Flathman P E, Lanza G R. Phytoremediation, current views on an emerginga green teehnology.JournalofSoil Con-tamination,1998,7:415~432.
    [80] Schnoor J L, Licht L A, Mccutcheon S C, et al. Phytomediation of organic and nutrientcontaminants.Environmen-tal Science and Technology,1995,29:318~323.
    [81] Lenab M V, Jonas D, Carsten L P, et al. Nutrient retained in rivers buffer strip[J].Ambio,1994.23(6):342-348.
    [82] Yin C-Q, Lan Z-W, Yan W-J.Reyention of allochthonous nutrients by ecotones in Baiyandian lake.Chin jAppl.Ecol,1995,6(1):76-80.
    [83] Michel F et al, Role of Manganese Peroxidases and Lignin Peroxidases of Phanerochaets chrysosporiumin the Decolorization of Kraft Plant Effulent.Appl.Environ. Microbial,1991,57(8):2368~2375.
    [84] Yin Chen qing and H.Bemhardt(ed).Ecological effects of pollution in Chao bu Lake, China, Journal ofEnvironmental sciences(China) Special Issue,1992,4(2):128.
    [85] Shapiro J.Biomanipulation:The next Phase-Makingit stable.Hydrobiologia,1990.200/201:13~27.
    [86] Hartig J H and Thomas R L.Development of Plnas to restore degrade dareas in the Greatlakes.Environ.Manage,1988,12:327~347.
    [87] SchelskeC.L.Capenter S R,Lake Mchigan: Restoration of Aquatic Ecosystems. Nat.Acad. Press.Washington,D.C.1992.380~392.
    [88] Edmondson W T.Recovery of Lake Washington from eutrophication: In Recovery and Restoration ofdamaged ecosystems.University Press of Virginia,Charlottesville.1977.102~109.
    [89] Lehman J T.Control of eutrophieation in Lake Washington.In Ecological knowledge and EnvironmentalProblem Solving.National Academy Press,Washington,D.C.1986.301~306.
    [90] Bjork S.Redevelopment of lake ecosystem~Acase study approach.Ambio,1988,17:90~98.
    [91] Lessmark O and Thormel of E.Liming in Swedeen.Water,Air,Soil pollut,1986,809~815.
    [92] Brown D J A,Howells G D.Loch fleet.Are search water shedliming Project.Water.Soil Pollut,1988,41:25~42.
    [93] Duncan A.A review: Limnological management and biomani pulation in the Lond on reservoirs.Hydrobiologia,1990.200/201:541~548.
    [94] U S National Research Council.Restoration of Aquatic Ecosystems.Nat.Aacd.PressWashington,D.C.1992.
    [95] Sparks R. The Upper Mississippi River:Restoration of AquaticEcosystems.Nat.Acad.Perss.Washington,D.C.1992.406~411.
    [96] Sparks R. The Illinnois River-floodplain Ecosystem: Restoration of AquaticEcosystem.Nat.Acard.press.Washington,D.C.1992.433~455.
    [97] Gameson A L H and Wheeler A.Restoration and Recovery of the Thames estuary:In Recovery andRestoration of Damaged Ecosystem.University Press of Virginia,Chariottesvlile.1977.72~101.
    [98] DoxatJ.The living Thames: the restoration of a great tidal river.HutchinsonBenham.London,England,1977.30~34.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700