用户名: 密码: 验证码:
扎龙湿地沉积物营养盐和重金属空间分异规律及潜在生态风险研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
湿地是地球上水陆相互作用形成的独特生境,随着人们对湿地资源的不合理利用以及湿地保护手段的缺乏,湿地生态破坏及污染越来越严重,湿地生态系统保护及污染防控的研究已成为当前湿地研究的重点和热点之一。沉积物是湿地生态系统主要环境要素之一,是营养物质的中心环节,也是营养盐和重金属等污染物的主要蓄积库;当环境条件变化时,营养盐和重金属等污染物从沉积物中释放出来,沉积物转成水体污染的“源”。因此,对湿地沉积物污染的研究具有重要的科学意义。
     本论文以扎龙湿地为研究对象,通过科学的野外采样和实验室测定,利用GIS技术和多种统计分析方法,系统研究了沉积物营养盐及重金属的分布规律、来源、控制因素及污染状况,从一个全新的视角反映扎龙湿地的污染情况。并在此基础上分析了沉积物重金属的生物有效性,筛选出吸附重金属性能良好的植物,探讨了重金属在沉积物——芦苇中的迁移模型。主要研究结果如下:
     研究区表层沉积物有机质(OM)、总氮(TN)和总磷(TP)的平均值分别为34554、1371和404mg·kg-1,均高于其在深层中的含量,存在明显的累积性,累积程度顺序为TN> OM> TP,并由生态毒性效应评价得出,沉积物已经受营养盐的污染,尤其是OM和TN污染明显,其内源负荷不容忽视。
     氮和磷的形态研究表明,总氮主要以有机氮(Org-N)的形态存在;总磷中无机磷(IP)含量稍高于有机磷(OP),但基本上各占一半,而无机磷以钙磷(Ca-P)为主。从空间分布格局整体上看,研究区表层沉积物中营养盐含量北部高于南部,西部高于东部,OM和TN高值区位于西南,TP的高值区位于东北。有机氮、有机磷与有机质存在显著相关性,其空间分布规律基本相同,高值区位于西南部,而无机磷不同于有机磷,其高值区位于研究区的东北部。
     碳-氮-磷耦合研究表明,沉积物中有机质和氮具有同源性,来源于湿地水生生物和陆源输入,而磷和有机质的来源不完全相同;在研究区西南部及部分核心区,N/P值大于10,且氮、磷的含量均较高,此区域发生富营养化的风险大,要控制此区域富营养化的发生或加剧,在削减沉积物氮含量的同时,关键是控制磷的含量;对于研究区的北部,要控制富营养化的发生或加剧,关键是控制氮的含量;研究区南部,目前,富营养化发生几率较低。
     研究区表层沉积物Hg、Cd、As、Cu、Pb、Zn和Cr的平均值分别0.065、0.198、10.26、18.20、21.35、52.08和46.47mg·kg-1,均超过松嫩平原土壤背景值。重金属含量分布因其来源的不同,分布规律存在明显的差异性。除Pb和Hg之外,Cd、As、Cu、Cr和Zn主要来源于工农业废水和生活污水,其空间分布规律基本相同。但从总体上看,整个研究区中,重金属含量北部高于南部,东部高于西部,核心区含量低,且东部含量最高,将作为今后重金属污染防治的重点区域。
     沉积物中重金属赋存形态表明,沉积物中Pb、Zn、Cr、Cu和As主要以残渣态形态存在,均具有较好的环境稳定性;而Cd和Hg的非残渣态含量较高,生物有效性强,潜在生态风险大。重金属各形态的含量除与其总量有关,还与沉积物理化性质(pH、有机质和粒度)有关,尤其是有机质,除As外,重金属可氧化态含量与有机质均呈极显著正相关。但目前扎龙湿地盐碱化加剧,沉积物中重金属释放风险加大,应该引起当地政府及有关部门的高度重视。
     基于重金属总量和形态学两种体系的评价方法得出扎龙湿地表层沉积物中7种重金属的污染程度不同,Cd属于中——重度污染,Hg属于轻——中度污染,As、Cu、Pb、Zn、Cr均属于无——轻度污染。从研究区的角度来看,沉积物重金属生态危害程度为实验区>缓冲区>核心区。
     研究区被采集的植物中芦苇、香蒲、光头野稗和苋菜对重金属吸附性能较好,且根部富集能力强于茎叶,尤其是苋菜,根部Cd的富集能力最强。利用多元回归分析方法拟合了重金属的迁移累积和植物有效性与沉积物重金属形态分布和土壤理化性质等环境因子的定量关系,结果表明芦苇重金属的迁移模型为对数线性模型,其中模型对Cd、Hg、Cu、Pb和Zn的拟合效果较好,对As模拟效果相对较差。说明本研究的对数线性迁移模型能够较好预测实际环境中沉积物——芦苇系统重金属的迁移累积,但也存在一些缺陷,有待进一步改进。
Wetland, formed by the interaction between water and land, is the specialecological environment in the earth. These years, pollution and destruction of thewetland ecological system has become more and more serious due to misuse thewetland resources and lack of protection. As a result, wetland ecological systemprotection and pollution prevention has become the core and hotspot of current wetlandresearch. Sediments are the major environmental elements of the wetland ecologicalsystem, the main accumulation reservoir of nutrients and heavy metals. When theenvironmental condition changed, nutrients and heavy metals will release from thesediments. The sediments become the source of water pollution. Therefore, research onthe pollution of wetland sediments has important scientific significance.
     Taking the Zhalong Wetland as the research object, and using GIS technique andmany statistic methods, this dissertation systematically analyzes the spatial distribution,sources, controlling factors, and pollution features of nutrients and heavy metals. Inaddition, this dissertation analyzes the biological availability of heavy metals in thesediments, selects plants which are good at absorbing heavy metals, and explores thetransferring model of heavy metals in the sediments and reed. The results can besummarized as followings:
     The average values of OM,TN and TP were34554,1371, and404mg·kg-1respectively, all above their values in the deep part of the sediments. It indicates thatthere is obvious accumulation by the order of TN> OM> TP. The evaluation ofbiological toxic effect indicates that the sediments have been polluted by nutrients,especially by OM and TN which should be paid attention to.
     The analysis of speciation of N and P indicates that TN mainly exists as Org-N.The concentration of IP is relatively higher than OP, both has almost the equal share ofTP. Their spatial distributions were distinctly different. The concentration of nutritivesalt in the north was higher than that in the south and the west was higher than the east.The high value zone of OM and TN is in the southeast and the high value zone of TP isin the northeast. Org-N, OP and OM have significant correlations. They have similarspatial distribution. The high value zone is in the southwest. While IP is different fromOP, the high value zone of IP is in the northeast.
     The coupling analysis of C, N and P shows that OM and N have the same sourcewhich is from aquatic biology and land input. N and OM have different source. In thesouthwest area and partial core zone, N/P is bigger than10. And the concentration of Nand P are high. These areas have big potential of eutrophication. In order to controleutrophication, it should cut the concentration of N, and put the concentration of P in areasonable scale. In the north part, it should pay attention to the concentration of N. Inthe other hand, the risk of entrophication in the south part is still relatively low.
     The concentrations of Hg, Cd, As, Cu, Pb, Zn and Cr were0.065,0.198,10.26,18.20,21.35,52.08and46.47mg·kg-1respectively, which were all above the soilbackground values of Songnen Plain. Their spatial distributions were distinctly different.Except Pb and Hg, Cd、As、Cu、Cr and Zn are mainly from industrial and agriculturalwaste water. The concentration of heavy metals in the north was higher than that in thesouth, and the east was higher than the west. And in the core zone, the concentrationwas relatively low. Particularly in the eastern region, the concentrations of Hg and Cdwere extremely high which should be treated as the major heavy metal pollutionprevention sites.
     The dominant proportion of Pb, Zn and Cr were in the residual fraction, suggestingthat they were environmental stable. The concentrations of Cu and Hg in the reduciblefraction were relatively high, indicating they had greater environmental effects. Thespeciation of heavy metals is related with not only the total quantity, but also thephysical and chemical features of the sediments such as pH and OM. Except for As, theconcentration of oxidizable fraction of heavy metals has significant correlation with OM.Currently the trend of salinization (of soil) in the wetland is becoming serious, meaningthat the risk of heavy metal release becomes bigger, which should be gain enoughattention by the local authority.
     The level of pollution of the7heavy metals in the sediments is different based ontwo different evaluation methods. Cd belongs to middle-serious pollution. Hg belongsto light-middle pollution. And As、Cu、Pb、Zn、Cr belong to none-light pollution. Ingeneral, the ecological risk of the heavy metals and metalloid by zone wereexperimental zone> buffering zone> ecological tourism zone> core zone.
     Among all the plants, reed, bulrush, bald weeds and edible amaranth haverelatively better ability of absorbing heavy metals. Their root is better than their leaf to absorb heavy metals. Especially for edible amaranth, its root has best absorbing ability. Iuse the multiple regression analysis to simulate the quantitative relations betweentransferring accumulation, biological availability, and speciation distribution and thesoil physical and chemical features. The result indicates that the transferring model ofreed heavy metal is log-linear model. The model has a better simulation result to Cd、Hg、Cu、Pb and Zn. However, it is weak to simulate As. The log-linear transferring model ofthis research can predict the accumulation of heavy metals in sediments-reed system. Inthe meanwhile, the model still has disadvantages, which should be put into futureresearch agenda.
引文
1陆健健.中国湿地[M].华东师范大学出版社,1990:78~89
    2J. A. Kusler. Wetlands [J]. Scientific American,1994,1:50~56
    3D. B. Kosolapov, P. Kusehk, M. B. Vainshyein, et al. Microbial Processes of heavymetal removal from carbon deficient effluents in constructed wetlands [J].Engineering in Life Sciences,2004,4(5):403~411
    4殷康前,倪晋仁.湿地研究综述[J].生态学报,1998,18(5):539~546
    5王宪礼.我国自然湿地的基本特点[J].生态学杂志,1997,16(4):64~67
    6A. D. Muscutt. Buffer zones to improve water quatity:a review of their potential usein U K agriculture [J]. Agriculture Ecosystem and Environment.1993,45:59~77
    7T. A. Dillaha, R. B. Reneau, S. Mostaghimi. Vegetative filter strips for agriculturalnon~point source pollution control [J]. Trans ASAE,1989,31:513~519
    8崔保山,杨志峰.湿地生态系统健康评价指标体系Ⅱ.方法与案例闭.生态学报,2002,22(8):1231~1239
    9邓培雁,陈桂珠.生态伦理与湿地保护闭.生态科学,2006,25(3):271~274
    10张元.北京湿地生态系统保护与管理对策研究:[博士学位论文].北京林业大学,2009:1~2
    11刘芳文,颜文,黄小平,等.珠江口沉积物中重金属及其相态分布特征[J].热带海洋学报,2003,22(5):16~24
    12F. Huan, J. Cochran, L. Honoratha, et a1. Distribution of Heavy Metal and PCBComtaminants in the Sediments of an Urban estuary: the Hudson River [J]. MarineEnvironmental Research,1998,45(1):69~88
    13刘文新,李向东.珠江口沉积物中痕量金属富集研究[J].环境科学学报,2005,23(3):338~344
    14任平,王小庆.沉积物中重金属元素的来源及其含量的影响因素[J].洛阳工业高等专科学校学报,2005,15(3):16~17
    15滑丽萍,华珞,高娟,等.中国湖泊底泥的重金属污染评价研究[J].土壤,2006,38(4):366~373
    16戴秀丽.太湖沉积物中重金属污染状况及分布特征探讨[J].上海环境科学,2001,20(2):71~74
    17郭跃东,何岩.扎龙湿地水体N, P营养物质空间异质性研究[J].环境科学研究,2005,18(2):51~56
    18王永洁,邓伟.扎龙湿地水环境可持续性度量研究[J].地理科学,2006,26(6):722~727
    19李玉文,梁晶,李智娟.扎龙湿地水体富营养化与治理措施研究[J].环境科学与管理,2009,34(2):165~168
    20刘建康,谢平.揭开武汉东湖蓝藻水华消失之谜.长江流域资源与环境,1999,8:312~319
    21S. O. Ryding, R.Walter. The control of eutrophication of lake and reservoirs. Paris:UNESCO and the Parthenon Publishing GrouP,1992.
    22D. W. Schindler, R. E. Hecky, D. L. Findlay, et al. Eutrophication of lakese annotbe controlled by reducing nitrogen input: results of a37year whole ecosystemexperiment. Proc Nat Acad Sci,2008,105:1124~1125
    23H. Sas. Lake restoration by reduction of nutrient loading: Expectations,experiences, extrapolations. St Augustin, Germany: Academia Ver Richarz,1989
    24P. Schultz, N. R. Urban. Effects of bacteria dynamics on organic matterdecomposition and nutrient release from sediments: A modeling study. Ecol model,2008(210):1~14
    25H. Macia, N. Bates, J. E. Neafus. Phosphorus release from sediments from LakeCarl Blackwell, Oklahoma. Water Res,1980,14:1477~1481
    26王晓明,王波,李小明.大明湖主要营养元素内外源负荷的分析与评价[J].济南大学学报(自然科学版),2010,24(3):262~267
    27P. Kelderman, F. Kansiime, M. A. Tola, et al. The role of sediments for phosphorusretention in the Kirinya wetland [J]. Wetland Ecol. Manage.,2007,15:481~488
    28K. J. Garber, R. T. Hartman. Internal phosphorus loading to shallow Edinbro Lakein northwestern Pennsylvania [J]. Hydrobiologia,1985,122(1):4552
    29I. Lambertus. Phosphorus accumulation in sediments and internal loading [J].Hydrobiol Bull,1986,20(1):213~214
    30薛滨,姚书春,王苏民,等.长江中下游不同类型湖泊沉积物营养盐蓄积变化过程及其原因分析[J].第四纪研究,2007,27(1):122~127
    31丁建华,王翠红,周新春,等.晋阳湖底泥中氮磷特征的初步研究[J].安全与环境学报,2008,8(3):14~17
    32L. P. James. The role of nutrient loading and eutrophication in estuarine ecology.Environment Health Perspectives,2001,109:699~706
    33张文斌.洪泽湖沉积物中营养盐和重金属分布特征、评价及其演化规律研究:[硕士学位论文].吉林建筑工程学院,2010:2~3
    34石晓勇,王修林,韩秀荣,等.长江口邻近海域营养盐分布特征及其控制过程的初步研究[J].应用生态学报,2003,14(7):1086~1092
    35Atif Mustafa, Miklas Scholz. Nutrient Accumulation in Typha latifolia L. andSediment of a Representative Integrated Constructed Wetland. Water Air SoilPollut,2011,219:329~341
    36李颖,蓸文志,张玉珍,等.九龙江流域上游浅水湖泊富营养化机制[J].中国环境科学,2012,32(5):906~911
    37林静,陈财珍,郑盛华,等.东山湾水体和沉积物中有机碳的春夏季分布特征[J].福建水产,2013,35(5):335~342
    38F. Keppler, R. Eiden, V. Niedan, et al. Halocarbons produced by natural oxidationprocesses during degration of organic matter [J]. Nature,2000,403:298~301
    39陈国元,李建秋,李清曼,等.武汉月湖沉积物不同形态氮含量与转换途径的垂直变化[J].湖泊科学,2008,20(4):463~469
    40袁旭音,许乃政,陶于祥,等.太湖底泥的空间分布和富营养化特征[J].资源调查与环境,2003,24(1):20~28
    41V. H. Smith, G. D. Tilman, J. C. Nekola. Eutrophication: impacts of excess nutrientinputs on freshwater marine, andterrestrial ecosystems. Environmental Pollution,1999,100:179~196
    42W. H. Schlesinger. Biogeochemistry: An Analysis of Global Change. California:Academic Press,1991
    43吴丰昌,万国江,黄荣贵.湖泊沉积物-水界面营养元素的生物地球化学作用和环境效应:Ⅰ界面氮循环及其环境效应[J].矿物学报,1996,16(4):403~409
    44R. Stepanauskas, L. Leonardson, L. J. Tranvik. Bioavailability of wetland derivedDON to fresh water and marine bacteria plankton [J]. Linnol Oceanogr,1999,44:1477~1485
    45G. J. LANG. Distribution of exchangeable, fixed, organic and total nitrogen ininterbedded turbiditic/pelagic sediments, of the madeira abyssal plain, easternNorth atlantic [J]. Marine geology,1992,109:95~114
    46王雨春,万国江,尹澄清,等.红枫湖、百花湖沉积物全氮,可交换态氮和固定铵赋存特征[J].湖泊科学,2002,14(4):301~309
    47李文霞,冯海艳,杨忠芳,等.水体富营养化与水体沉积物释放营养盐[J].地质通报,2006,25(5):602~608
    48康丽娟.淀山湖沉积物碳、氮、磷分布特征与评价[J].长江流域资源与环境,2012,21(1):105~110
    49付广义,俞盈,叶恒朋,等.广州城市河涌氮、磷污染研究[J].水资源与保护,2010,26(1):24~35
    50郭建宁,卢少勇,金相灿,等.低溶解氧状态下河网区不同类型沉积物的氮释放规律[J].环境科学学报,2010,30:614~620
    51吴丰昌,万国江,蔡玉蓉.沉积物—水界面的生物地球化学作用[J].地球科学进展,1996,11(2):191~197
    52蒋增杰,方建光,张继红,等.桑沟湾沉积物中磷的赋存形态及生物有效性[J].环境科学,2007,28:2783~2788
    53吴斯源,张丽君.江苏省苏州城区河道底泥中磷形态分布的研究[J].安徽农业科学,2011,39(16):9789~9790
    54朱广伟.浅水湖泊沉积物中磷的地球化学特征[J].水科学进展,2003,14(6):714~719
    55付永清,周易勇.沉积物磷形态的分级分离及其生态学意义[J].湖泊科学,1999,11(4):376~381
    56R. Pardo, G. Rauret, J. F. Lopez-Sanchez. Shortened screening method forPhosphorus fractionation in sediments A complementary approach to the standards,measurements and testing harmonised protocol [J]. Analytica Chimica Acta,2004,508:201~206
    57潘成荣,汪家权,郑志侠,等.巢湖沉积物中氮与磷赋存形态研究.生态与农村环境学报,2007,23(1):43~47
    58夏学惠,东野脉兴,周建民,等.滇池现代沉积物中磷的地球化学及其对环境影响[J].沉积学报,2012,20(3):416~420
    59朱广伟,秦伯强,高光,等.长江中下游浅水湖泊沉积物中磷的形态及其与水相磷的关系.环境科学学报,2004,24(3):381~388
    60汤宝靖,陈雷,姜霞,等.巢湖沉积物磷的形态及其与间隙水磷的关系.农业环境科学学报,2009,28(9):1867~1873
    61C. H. Jiang, J. W. Hu, X. F. Huang, et al. Phosphorus speciation in sediments ofLake Hongfeng, China [J]. Chinese Journal of Oceanology and Limnology,2011,29(1):53~62
    62J. J. Chen, S. Y. Lu, Y. K. Zhao, et al. Effects of overlying water aeration onphosphorus fractions and alkaline phosphatase activity in surface sediment [J].Journal of Environmental Sciences,2011,23(2):206~211
    63P. Wang, M. C. He, C. Y. Lin, et al. Phosphorus distribution in the estuarinesediments of the Daliao river, China [J]. Estuarine Coastal and Shelf Science,2009,84(2):246~52
    64J. K. Biswas, S. Rana, J. N. Bhakta, et al. Bioturbation potential of chironomidlarvae for the sediment-water phosphorus exchange in simulated pond systems ofvaried nutrient enrichment [J]. Ecological Engineering,2009,35:1444~1453
    65Carl Chr, Hoffmann, Brian Kronvang, et al. Evaluation of nutrient retention in fourrestored Danish riparian wetlands. Hydrobiologia,2011,674:5~24
    66姚志刚,鲍征宇,高璞.洞庭湖沉积物重金属环境地球化学[J].地球化学,2006,35(6):629~638
    67J. L. Liu, Y. L. Li, B. Zhang, et al. Ecological risk of heavy metals in sediments ofthe Luan Riversource water. Ecotoxicology,2009,18:748~758
    68S. Olivares-Rieumont, D. Rosa, L. Lima, et al. Assessment of heavy metal levels inAlmendares River sediments-Havana City, Cuba. Water Res,2005,39:3945~3953
    69W. Calmanl,W. Ah1f, U. Forster. Sediment quality assessment: chemical andbiological approaches. In:Calmano W,Forster U.,eds. Sediment and toxicsubstance: Environmental effects and ecotoxity [M]. Berlin:Springer,1995,1~36
    70A. Mudroch, D. M. Azcue. Manual of aquatic sediment sampling, Boca Raton [M].Lewis pubilication,1995:1~20
    71S. E. Taylor,G. F. Birch. The environmental implications of readily resuspendedcontaminated estuarine sediments [J]. International geological congress abstract,1996,(3):424~436
    72P. H. Santschi, P. Hoehener, G. Benoit. et al. Chemical processes at thesediment-water interface [J]. Mar. Chem.,1990,30(1-3),269~315
    73石浚哲,刘光玉.太湖沉积物重金属污染及生态风险评价[J].环境管理监测与技术,2001,13(3):24~26
    74田林锋,胡继伟,罗桂林,等.贵州百花湖沉积物重金属稳定性及潜在生态风险性研究.环境科学学报,2012,32(4):885~894
    75金相灿,徐南妮,吴淑岱,等.湘江悬浮沉积物对重金属的吸附、解吸动力学研究[A].环境中重金属研究文集.北京:科学出版社,1988
    76刘恩峰,沈吉,杨丽原,等.南四湖及主要入湖河流表层沉积物重属形态组成及污染研究[J].环境科学,2007,28(6):1377~1383
    77P. R. Teasdale, S. C. Apte, P. W. Ford. Geochemical cycling and speciation ofcopper in waters and sediments of Macquarie Harbour, Western Tasmania.Estuarine, Coastal and Shelf Science,2003,57:475~487
    78J. M. Townsend, C. C. Rimmer, C. T. Driscoll. Mercury concentrations in tropicalresident and migrant songbirds on Hispaniola. Ecotoxicology,2013,22:50~59
    79S. A. Zheng, X. Q. Zheng, C. Chen. Transformation of metal speciation in purplesoil as affected by waterlogging. Int J Environ Sci Tech,2013,10:351~358
    80朱维晃,黄廷林,柴蓓蓓,等.水源水库沉积物中重金属形态分布特征及其影响因素[J].环境化学,2010,29(4):629~635
    81Z. F. Yang, Y. Wang, Z. Y. Shen, et al. Distribution and speciation of heavy metalsin sediments from the mainstream, tributaries, and lakes of the Yangtze Rivercatchment of Wuhan, China. Journal of Hazardous Materials,2009,166:1186~1194
    82C. K. Jain. Metal fractionation study on bed sediments of River Yamuna, India.Water Research,2004,38:569~578
    83陈静生.铜在沉积物各相中分配的实验模拟与数值模拟研究——以都阳湖为例[J].环境科学学报,1987,7(2):140~149
    84王书航,王雯雯,姜霞,等.蠡湖沉积物重金属形态及稳定性研究[J].环境科学,2013,34(9):3562~3571
    85A. Lenart, K. Wolny-Ko adka. The effect of heavy metal concentration and soil pHon the abundance of selected microbial groups Within ArcelorMittal PolandSteelworks in Cracow. Bull Environ Contam Toxicol,2013,90:85~90
    86沈振国,刘良友.超量积累重金属植物研究进展.植物生理学通讯,1998,34(2):133~139
    87黄永杰,刘登义,王友保,等.八种水生植物对重金属富集能力的比较研究[J].生态学杂志,2006,25(5):541~545
    88孙万光,气候变化对扎龙湿地水文特性影响的研究,大连理工硕士论文,2006:11~19
    89东迎欣.扎龙湿地生态环境需水量研究.吉林大学硕士论文,2006:22
    90殷志强,秦小光,刘嘉麒,等.扎龙湿地的形成背景及其生态环境意义.地理科学进展,2006,25(3):31~38
    91许林书,姜明.扎龙保护区湿地扰动因子及其影响研究.地理科学,2003,23(6):692~698
    92王磊,章光新.扎龙湿地对乌裕尔河流域水文特征的响应.干旱区资源与环境,2006,20(6):94~98
    93白军红,邓伟,张勇,等.扎龙自然保护区湿地生物生境安全保护[J].西北林学院学报,2003,18(3):6~9
    94李枫,鲁长虎,杨红军,等.扎龙芦苇沼泽繁殖鸟类群落多样性研究[J].东北林业大学学报,1998,26(5):68~72
    95鲁如坤.土壤农业化学分析方法.北京:中国农业出版社,1999
    96奚旦立,孙裕生.环境监测.第四版.高等教育出版社,2010
    97L. Frankowski, J. BolaLek, A. Szostek. Phosphorus in bottom sediments ofPomeranian Bay (Southern Baltic-Poland)[J]. Estuarine, Coastal and ShelfScience,2002,54:1027~1038
    98V. Dauvalter, S. Rognerud. Heavy metal pollution in sediments of the Pasvik Riverdrainage [J]. Chemosphere,2001,42(1):9~18
    99胡珊珊,钱秀芳.微波消解技术在土壤重金属元素测定中的应用[J].安徽师范大学学报(自然科学版),2010,33(4):363~366
    100G. Rauret. J. F. Lopez-Sanehez. A. Sahuquillo, et al. Improvement of the BCRthree~step sequential extraction procedure prior to the certification of newsediment and soil reference materials [J]. J. Environ. monit.,1999,(1):57~61
    101Z. Vander, N. C. Roevros, L. Chou.Phosphorus speciation, transformation andretention in the Scheldt estuary from the freshwater tidal limits to the North Sea[J]. Marine Chemistry,2007,106:76~91
    102朱广伟,陈英旭,田光明.水体沉积物的污染控制技术研究进展[J].农业环境保护,2002,21(4):378~380
    103H. L. Golterman. Fractionation and bioavailability of phosphates in lacustrinesediments:a review [J]. Limnetica,2001,20(1):15~29
    104J. Eggleton, K. V. Thomas. A review of factors affecting the release andbioavailability of contaminants during sediment disturbance events. EnvironmentInternational,2004,30:973~980
    105金相灿,姜霞,徐玉慧等.太湖东北部沉积物可溶性氮、磷的季节性变化[J].中国环境科学,2006,26(4):409~413
    106王永华,钱少猛,徐南妮,等.巢湖东区底泥污染物分布特征及评价[J].环境科学研究,2004,17(6):23~26
    107杨志敏,熊海灵,张晟,等.重庆长寿湖富营养化评价及氮磷平衡研究.水土保持学报,2005,19(2):73~75
    108袁旭音,许乃政,陶于祥,等.太湖底泥的空间分布和富营养化特征,2008,24(1):20~28
    109魏明蓉,姜应和,张华,等.南湖表层沉积物中有机质、氮和磷的污染现状与评价.安徽农业科学,2010,38(4):2004~2005
    110高兴东.岱海湖泊营养盐的环境地球化学特征研究[D].呼和浩特:内蒙古大学,2006
    111袁和忠,沈吉,刘恩峰,等.太湖水体及表层沉积物磷空间分布特征及差异性分析[J].环境科学,2010,31(4):954~960
    112王永华,刘振宇,刘伟,等.巢湖合肥区底泥污染物分布评价与相关特征研究[J].北京大学学报(自然科学版),2003,39(4):501~506
    113余辉,张文斌,卢少勇,等.洪泽湖表层底质营养盐的形态分布特征与评价[J].环境科学,2010,31(4):961~968
    114张晓晶,李畅游,张生,等.乌梁素海表层沉积物营养盐的分布特征及环境意义[J].农业环境科学学报,2010,29(9):1770~1776.
    115卢少勇,许梦爽,金相灿等.长寿湖表层沉积物氮磷和有机质污染特征及评价[J].环境科学,2012,33(2):393~398
    116李青芹,霍守亮,昝逢宇,等.我国湖泊沉积物营养盐和粒度分布及其关系研究[J].农业环境科学学报,2010,29(12):2390~2397
    117高丽,宋鹏鹏,史衍玺,等.天鹅湖沉积物中营养盐和重金属的分布特征[J].水土保持学报,2010,24(4):99~102
    118X. Y. Zhang, Y. Y. Sui,X. D. Zhang,et al. Spatial variability of nutrientproperties in black soil of northeast China. Pedosphere,2007,17:19~29
    119REGALADO C M, RITTER A. Geostatistical tools for characterizing the spatialvariability of soil water repellency parameters in a laurel forest watershed[J].SoilScience Society of America,2006,70(4):1071-1081.
    120董张玉,刘殿伟,王宗明,等.基于空间分析的东北地区湿地优先恢复[J].应用生态学报,2013,24(1):170-175.
    121A. Facchinelli, E. Sacchi, L. Mallen. Multivariate statistical and GIS-basedapproach to identify heavy metal sources in soil. Environmental Pollution,2001,114:313~324
    122S. S. Huang, Q. L. Liao, M. Hua, et al. Survey of heavy metal pollution andassessment of agricultural soil in Yangzhong district, Jiangsu Province, China.Chemosphere,2007,67:2148~2155
    123王俊杰,朱德清,臧淑英.松嫩平原中西部湖泊底泥营养盐的空间变异特征.地理与地理信息科学,2011,27(2):92~95
    124贺冉冉,高永霞,王芳,等.天目湖水体与沉积物中营养盐时空分布及成因[J].农业环境科学学报,2009,28(2):353~360
    125孙惠民,何江,吕昌伟,等.乌梁素海氮污染及其空间分布格局[J].地理研究,2006,25(6):1003~1012.
    126Rani Menon, R. Colin. Jackson, et al. The Influence of Vegetation on MicrobialEnzyme Activity and Bacterial Community Structure in Freshwater ConstructedWetland Sediments. Wetlands,2013,33:365~378
    127H. P. Jarvie, J. W. Richaard. Role of bed sediments as sources and sinks ofphosphorus across two major atrophic UK river basins: the Hampshire Av on andHerefordshire Wyes [J]. Journal of Hydrology,2005(304):51~74
    128A. M. Zhou, H. X. Tang, D. S. Wang. Phosphorus adsorption on naturalsediments: modeling and effects of Ph and sediment composition [J]. Water Rws.,2005(39):1245~1254
    129Q. X. Zhou,C. E. Gibson,Y. M. Zhu.Evaluation of phosphorus bioavailabilityin sediments of three contrasting lakes in China and the UK. Chemosphere,2001,42(2):221~225
    130X. L. Bai,S. M. Ding,C. X. Fan,et al. Organic phosphorus species in surfacesediments of a large, shallow, eutrophic lake, Lake Taihu, China. EnvironmentalPollution,2009,157:2507~2513
    131V. Ruban, J. F. Lopezsanchez, P. Papdo, et al. Harmonized protocol and certifiedreference material for the determination of extractable contents of phosphorus infreshwater sediments:A synthesis of recent works [J]. Fresenius Journal ofAnalitical Chemistry,2001,370:224~228
    132章婷曦,王晓蓉,金相灿.太湖不同营养水平湖区沉积物中磷形态的分布特征.农业环境科学学报,2007,26(4)1:207~1213
    133E. Gomez, C. Durillon, G. Rofes, et al. Phosphate adsorption and release fromsediments of brackish lagoons: pH, O2and loading influence. Water Research,1999,33(10):2437~2447
    134许林书,姜命.扎龙保护区湿地扰动因子及其影响研究.地理科学,2003,23(6):692~698
    135徐德兰,雷泽湘,王洪君,等.太湖滨岸带芦苇区沉积物磷的特征[J].湿地科学,2007,5(2):133~139
    136李长友.黑龙江扎龙国家级自然保护区管理局课题组.扎龙湿地生态系统保护对策研究[M].2002,12:10~13
    137J. Armstrong, W. Armstrong. Phragmites austrails reliminary study of soiloxidizing sites and internal gas transport path ways. New phytol,1988,108:372~382
    138徐德兰,刘正文,曾勇.芦苇对太湖沉积物的影响[J].中国矿业大学学报,2005,34(2):148~151
    139李军,刘丛强,王仕禄,等.太湖五里湖表层沉积物中不同形态磷的分布特征.矿物学报,2004,24(4):405~410
    140O. G. Olila, K. R. Reddy. Influence of pH on phosphorus retention in oxidizedlake sediments [J]. Soil Sci Soc Am J,1995,59:946~959
    141张晓晶,李畅游,张生等.乌梁素海表层沉积物营养盐的分布特征及环境意义[J].农业环境科学学报,2010,29(9):1770~1776
    142W. E. Dean. The carbon cycle and biogeochemical dynamics in lake sediments [J].Journal of Paleolimnology,1999,21(4):375~393
    143P. Meyers. A preservation of elemental and isotopic source identification ofsedimentary organic matter. Chemical Geology,1994,114(3):289~302
    144万国江,白占国,王浩然等.洱海近代沉积物中碳-氮-硫-磷的地球化学记录[J].地球化学,2000,29(2):189~197
    145冯峰,王辉,方涛,等.东湖沉积物中微生物量与碳、氮、磷的相关性[J].中国环境科学,2006,26(3):342~345
    146R. V. Krishnaumurhy, S. K. Bhallacharya, S. Kusumgar. Palaeoclimatic changesdeduced from13C/12C and C/N ratios of Karewa Lake sediments, India [J]. Nat,1986,323(11):150~152
    147杨丽原,王晓军,刘恩峰.南四湖表层沉积物营养元素分布特征[J].海洋湖沼通报,2007,(2):40~44
    148A. Mudroch, J. Azcue. Manual of aquatic sediment sampling [M]. Boca Raton,Florida: Lewis Publishers,1995
    149李延生.黑龙江省扎龙湿地土壤地球化学特征及生态环境意义[J].物探与化探,2010,34(4):512~516
    150范成新,朱育新,吉志军,等.太湖宜溧河水系沉积物的重金属污染特征[J].湖泊科学,2002,14(3):235~241
    151程永前,蒋大和,马红梅,等.常州市河流重金属污染评价[J].环境保护科学,2007,33(2):76~78
    152B. Steiger, R. Webster, R. Schulin, et al. Mapping heavy metals in polluted soil bydisjunctive kriging [J]. Environmental Pollution,1996,94(2):205~215
    153D. Karamanis, K. Stamoulis, K. Ioannides, et al. Spatial and seasonal trends ofnatural radioactivity and heavy metals in river waters of Epirus, Maeedonia andThessalia [J]. Desalillation,2008,224:250~260
    154P. Ratha, U. C. Pandab, D. Bhattac, et al. Use of sequential leaehing, mnineralogy,morphology and multivariate statistica lteehnique for quantifying metal pollutioninhighly polluted aquatic sediments–A case study: Brahmani and NadiraRivers, India [J]. Journal of Hazardous Materials,2009,163:632~644
    155G. Billon, B. Ouddane, P. Recourt, et al. Depth variability and some geochemicalcharacteristics of Fe, Mn, Ca, Mg, Sr, S, P, Cd and Zn in anoxic sediments fromAuthie Bay (Northern France)[J]. Estuarine Coastal and Shelf science,2002,55:167~181
    156陈富荣.巢湖沉积物镉等重金属地球化学分布、赋存特征及危害性研究[J].安徽地质,2009,19(3):200~203
    157L. Y. Su, J. L. Liu, P. Christensen. Spatial distribution and ecological riskassessment of metals in sediments of Baiyangdian wetland ecosystem [J].Ecotoxicology,2011,20(5):1107~1116
    158刘志杰,李培英,张晓龙,等.黄河三角洲滨海湿地表层沉积物重金属区域分布及生态风险评价[J].环境科学,2012,33(4):1182~1187
    159Y. J. Yi, Z. F. Yang, S. H. Zhang. Ecological risk assessment of heavy metals insediment and human health risk assessment of heavy metals in fishes in themiddle and lower reaches of the Yangtze River basin [J]. Environmental Pollution,2011,159:2575~2585
    160陈春霄,姜霞,战玉柱,等.太湖表层沉积物中重金属形态分布及其潜在生态风险分析[J].中国环境科学,2011,31(11):1842~1848
    161J. L. Liu, Y. L. Li, B. Zhang, et al. Ecological risk of heavy metals in sediments ofthe Luan River source water [J]. Ecotoxicology,2009,18:748~758
    162李健,郑春江.环境背景值数据手册.中国环境科学出版社,1989,343
    163D. S. Manta, E. M. Angelon, A. Bellanca, et al. Heavy metals in urban soils: acase study from the city of Palemo (Sicily), Italy. The Science of TotalEnvironment,2002,300:229~243
    164L. P. Wilding. Spatial variability: its documentation, accommodation andimplication to soil surveys. In: Nielsen D.R., Bouma J.,(eds.). Soil SpatialVariability. Wageningen: Pudoc,1985
    165J. Byzitter, K. Lukowiak, V. Karnik, et al. Acute combined exposure to heavymetals (Zn, Cd) blocks memory formation in a freshwater snail. Ecotoxicology,2012,21:860~868
    166C. M. Regalado, A. Ritter. Geostatistical tools for characterizing the spatialvariability of soil water repellency parameters in a laurel forest watershed [J].Soil Science Society of America,2006,70(4):1071~1081
    167程先富,史学正,于东升,等.基于GIS的土壤全氮空间分布估算——以江西省兴国县为例[J].地理研究,2007,26(1):110~116
    164C. A. Cambardella, T. B. Moorman, J. M. Novak, et al. Field-scale variability ofsoil properties in central Iowa soils [J]. Soil Science Society of America Journal,1994,8(5):501~1511
    168魏丹,迟凤琴,史文坟,等.黑龙江南部黑土区土壤重金属空间分异规律研究[J].农业系统科学与综合研究,2007,23(l):65~68
    169T. C. Dang, P. O. Jeffrey. Metal speciation in coastal marine sediments fromSingapore using a modified BCR-sequential extraction procedure [J]. AppliedGeochemistry,2006,21(8):1335~1346
    170李宇庆,陈玲,仇雁翎,等.上海化学工业区土壤重金属元素形态分析[J].生态环境,2004,13(2):254~155
    171STM. Annual Book of ASTM. Standards,1983,11(l)
    172M. Y. Wang, L. Zhang, Y. W. Qin, et al. Speciation of heavy metals in sedimentsfrom Xiang River and analysis of their environmental factors. Acta ScientiaeCircumstantiate,2011,31(11):2447~2458
    173P. J. Li, X.Wang, G. Allinson, et al. Risk assessment of heavy metals in soilpreviously irrigated with industrial wastewater in Shenyang, China. Journal ofHazardous Materials,2009,161:516~521
    174X. D. Feng, Z. Dang, W. L. Huang, et al. Chemical speciation of fine particlebound trace metals. Int J Environ Sci Technol,2009,6(3):337~346
    175C. X. Lu, J. M. Cheng. Speciation of heavy metals in the Sediments from differentEutrophic Lakes of China. Procedia Engineering,2011,18:318~323
    176D. Malferrari, M. F. Brigatti, A. Laurora, et al. Heavy metals in sediments fromcanals for water supplying and drainage: mobilization and control strategies. JHazard Mater,2009,161:723~729
    177I. Christl, C. J. Milne, D. G. Kinniburgh, et al. Relating ion binding by fulvic andhumic acids to chemical composition and molecular size.2. Metal binding.Environ Sci Technol,2001,35:2512~2517
    178B. C. Bostick, C. M. Hansel, M. J. La Force, et al. Seasonal fluctuations in zincspeciation within a contaminated wetland. Environ Sci Technol,2001,35::3823~3829
    179Y. Liang, M. H. Wong. Spatial and temporal organic and heavy metal pollution atMai Po Marshes Nature Reserve. Hong Kong Chemosphere,2003,52:1647~1658
    180朱维晃,黄廷林,柴蓓蓓,等.水源水库沉积物中重金属形态分布特征及其影响因素[J].环境化学,2010,29(4):629~635
    181王晓阳,傅瓦利,张蕾,等.三峡库区消落带土壤重金属Zn的形态分布特征.地球与环境,2011,39(1)
    182S. B. O. Wiese, C. L. Macleod, J. N. Lester. A recent history of metalaccumulation in the sediments of the Thames Estuary, United Kingdom [J].Estuaries,1997,20(3):483~493
    183M. Jayaprakash, M. P. Jonathan, S. Srinivasalu, et al. Acid-leachable tracesmetals in sediments from an industrialized region of Chennai City, SE coast ofIndia: An approach towards regular monitoring [J]. Estuar Coast Shelf Sci,2007,22:1~12
    184路永正.自然水体多相介质中重金属的分布特征及迁移转化特征[D].吉林大学博士学位论文,2006,06
    185吴吉春,张景飞.水环境化学[M].中国水利水电出版社,2009
    186刘霞,刘树庆,王胜爱,等.河北主要土壤中Cd和Pb的形态分布及其影响因素[J].土壤学报,2003,40(3):393~401
    187符建荣.土壤中铅的积累及污染的农业防治[J].农业环境保护,1993,12(5):223~232
    188F. A. Galley, O. L. L. Lloyd. Grass and surface soils as monitors of atmosphericmetal pollution in central Scotland [J]. Water, Air and Soil Pollution,1985,24(1)::1~18
    189刘德鸿,王发园,周文利,等.洛阳市不同功能区道路灰尘重金属污染及潜在生态风险[J].环境科学,2012,33(1):256~259
    190G. S. Zhang, D. Y. Liu, H. F. Wu, et al. Heavy metal contamination in the marineorganisms in Yantai coast, northern Yellow Sea of China. Ecotoxicology,2013,2:1726~1733
    191G Muller. Index of geoaccum ulation in sedim ents of the Rhine River [J].Geojournal,1969,2:108~118
    192L. Hakanson. An ecological risk index for aquatic pollution control: asedimentological approach [J]. Water Research,1980,14(8):975~1001
    193L. A. Grabowski, J. L. J. Houpis, W. I. Woods, et al. Seasonal bioavailability ofsediment~associated heavy metals along the Mississippi river floodplain [J].Chemosphere,2001,45:643~651
    194M. Machado,, M. F.Carvalho, R. E. Santelli, et al. Reactive sulfides relationshipwith metals in sediments from eutrophicated estuary in Southeast Brazil [J].Marine Pollution Bulletin,2004,49:89~92
    195王鹏,贾学秀,涂明,等.北京某道路外侧土壤重金属形态特征与污染评价[J].环境科学与技术,2012,35(6)
    196王鸣宇,张雷,秦延文,等.湘江表层沉积物重金属的赋存形态及其环境影响因子分析[J].环境科学学报,2011,31(11):2447~2458
    197刘峰,胡继伟,吴迪,等.基于形态学分析红枫湖沉积物中重金属的分布特征及污染评价[J].环境化学,2011,30(2):440~446
    198张潮海,华村章,邓汉龙,等.水稻对污染土壤中镉、铅、铜、锌的富集规律的探讨.福建农业学报[J].2013,15(3):147~150
    199毕春娟,陈振楼,许世远,等.长江口潮滩植物根际重金属的分布与累积矿物岩石地球化学通报[J],2003,22:38~41
    200Y. Q. Zu, Y. Li, S. Christian, et al. Accumulation of Pb, Cd, Cu and Zn in plantsand hyperaccumulator choice in Lanping lead~zincmine area. China Environ Int,2004,30(4):567~576
    201简敏菲,弓晓峰,游海,等.水生植物对铜、铅、锌等重金属元素富集作用的评价研究.南昌大学学报[J],2011,26(1):85~88
    202达良俊,陈鸣.凤眼莲不同部位对重金属的吸收、吸附作用研究.上海环境科学,2012,22(11):765~767
    203孔牧,任天样.植物体内元素吸收积累初步研究[J].物探与化探,1999,23(1):33~37
    204M. A. Kashem, B. R. Singh. Metal availability in contaminated soil:Ⅱ Uptake ofCd, Ni and Zn in rice Plants grown under flooded culture with organic matteraddition. Nutrient Cycling in Agroecosystems,200l,61:257~266
    205Z. W. Li, L. Q. Li, G. X. Pan, et al. Bioavailability of Cd in a soil-rice system inChina: soil type versus genotype effects. Plant and soil,2005,271:165~173
    206A. Tessier, P. G. C. Campbell, M. Bisson. Sequential extraction Procedure for thespeciation of particulate trace metals. Analytical Chemistry,1979,51:844~851
    207J. J. Sloan, R. H. Dowdy, M. S. Dolan. Recovery of biosolids-applied heavymetals sixteen years after application. Journal of Environmental Quality,2008,27:1312~1317
    208M. J. McLaughlin, L. T. Palmer, K. G. Tiller, et al. Increased soil salinity causeselevated cadmium concentrations in field-grown potato tubers. Journal ofEnvironmental Quality,1994,23:1013~1018
    209J. Yanai, F. J.Zhao, S. McGrath, et al. Effect of soil characteristics on Cd uptakeby the hyperaceumulator Thlaspi caerulescens. Environmental pollution,2006,139:167~175
    210M. Karami, M. Afyuni, A. H. Khoshgoftarmanesh, et al. Grain zinc, iron, andcopper concentrations of wheat grown in central Iran and their relationships withsoil and climate variables. Journal of agricultural and food chemistry,2009,57:10876~10882
    211M. Murakami, F. Nakagawa, N. Ae, et al. Phyto extraction by rice capable ofaccumulating Cd at high levels: Reduction of Cd content of rice grain.Environmental Seience&Technology,2009,43:5878~5883
    212M. K. Zhang, Z. Y. Liu, H. Wang. Use of single extraction methods predictbioavailability of heavy metals in polluted soils to rice. Communications in SoilScience and Plant Analysis,2012,41:820~831
    213汤丽玲.作物吸收Cd的影响因素分析及籽实Cd含量的预测.农业环境科学学报,2007,26(2):699~703
    214S. Dudka, M. Piotrowska, H. Terelak. Transfer of cadmium, lead, and zinc fromindustrially coniaminated soil to crop plants: A field study. EnvironmentalPollution,2011,94:181~188
    215J. M. Townsend, C. C. Rimmer, C. T. Driscoll, et al. Mercury concentrations intropical resident and migrant songbirds on Hispaniola. Ecotoxicology,2013,22:50~59
    216T. Chen, X. M. Liu, X. Li, et al. Heavy metal sources identification and samplinguncertainty analysis in a field-scale vegetable soil of Hangzhou, China.Environmental Pollution,2009,157:1003~1010
    217宋明义,刘军保,周涛发,等.杭州城市土壤重金属的化学形态及环境效应.生态环境,2008,17(2):665~670
    218C. Z. Yan, Q. Z. Li, X. Zhang, et al. Mobility and ecological risk assessment ofheavy metals in surface sediments of Xiamen Bay and its adjacent areas, China.Environ Earth Sci,2010,60:1469~1479

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700