用户名: 密码: 验证码:
基于辛空间的解析奇异单元及其在断裂力学中的应用
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
众所周知,裂纹问题普遍存在于工程结构中,如飞行器、火箭、轮船、锅炉、桥梁等,它所引起的破坏事故往往会造成巨大的损失,因此断裂力学的研究对预防和控制裂纹引起的事故具有重大的实际意义。断裂力学中通常采用应力强度因子来衡量裂纹尖端场的强弱,并使用相应的应力强度因子准则来判断裂纹是否会发生失稳扩展。同时,在一些基于内聚力模型的裂纹问题中, COD准则被用作判断裂纹是否向前扩展的依据。因此,准确有效的计算出含裂纹结构的应力强度因子以及COD等参数是工程实用结构强度分析十分关心的课题。
     虽然断裂力学基础理论部分的研究已经得到比较完善的发展,但仍然存在一些复杂的情况并没有得到很好的解决,如裂纹表面受任意荷载的情况、由多种各向异性材料组成的多材料裂纹情况等。这主要是由于在传统求解体系下相应的求解步骤过于复杂,导致理论求解无法实现。应用力学辛求解体系的提出使得很多以往无法求解的复杂问题得到解析求解,这其中也包括断裂问题。本文首先在辛求解体系下研究了一些复杂的裂纹问题,并求解出相应的解析辛本征解和特解。然后,基于这些解析解和特解,构建了一系列奇异单元,分别用于处理不同情况下的含裂纹结构问题的分析。本文主要的工作内容如下:
     (1)在平面极坐标辛求解体系下,给出了平面单材料、双材料裂纹表面受任意荷载所对应的特解。通过将荷载近似的展开为多项式叠加的形式,解析求解出每一个展开项所对应的特解,从而可以得到任意荷载作用下所对应的特解。同时,建立了反平面裂纹问题的辛求解体系,并给出了反平面裂纹表面受任意荷载情况下的解析辛本征解和特解。通过坐标转换的手段,简化了多材料反平面裂纹问题的分析过程,并提供了几个具体问题的应力奇异性特征方程。此外,本文还研究了在普通辛体系下无法直接解决的由多种各向异性材料组成的反平面裂纹问题。通过将子域法与辛方法相结合,提出了一种可以近似求解出反平面裂纹尖端应力奇异性阶数的方法,并通过数值算例验证了本方法的有效性。
     (2)基于辛体系所提供的平面单材料、双材料裂纹以及反平面裂纹的解析辛本征解以及特解,构造了一系列解析奇异单元。通过在裂纹尖端使用奇异元,而在结构的其它区域使用常规单元,可以对含裂纹结构进行有效的数值分析,并通过展开项系数与应力强度因子之间的关系,不需要借助任何后处理手段,可以直接高精度地给出Ⅰ,Ⅱ以及Ⅲ型应力强度因子,从而保证了求解的精度。同时,证明了奇异元的刚度阵与其半径大小无关,这一特点保证了数值计算的稳定性。作为一个尝试,本文还将所构建的奇异单元用于疲劳裂纹扩展问题的分析,从而可以得到更加精细的裂纹扩展路径以及更加准确的结构疲劳寿命的估计值。数值算例表明,所构建的奇异元具有非常好的数值求解精度和稳定性,是含裂纹结构分析的一种非常有效的数值方法。
     (3)基于辛体系所给出的平面裂纹问题的解析辛本征解以及特解,构造了用于分析单材料和双材料Ⅰ+Ⅱ混合型Dugdale裂纹问题的奇异单元。它与常规单元相结合,可有效用于混合型Dugdale模型单材料、双材料裂纹问题的数值分析,并通过迭代可以得到包括塑性区长度,裂纹尖端张开/滑开位移,虚拟裂纹上作用的内聚力大小在内的全部参数。同时,证明了奇异元的刚度阵与其半径大小无关,这一特点保证了数值计算的稳定性。此外,该奇异元还可以应用到双材料含桥联力Ⅰ型Dugdale裂纹问题的分析。数值算例验证了本文方法具有精度高,迭代收敛速度快的优点。所提出的解析奇异单元可有效应用于弹塑性材料含裂纹问题的数值分析,并具有明显的实用价值。
     本文所构建的系列奇异单元有效提高了含裂纹结构问题求解的精度和效率,并且具有非常好的数值稳定性。同时,它不需要过渡单元,具有较强的通用性以及兼容性,可以直接集成到大多数已有结构有限元程序系统中,充分发挥其在实际工程结构分析中的应用价值。
It's well known that fracture problems arise frequently in many engineering structures, such as in aircrafts, rockets, ships, boilers, bridges, etc. The study on fracture mechanics including prevention and control has significant meaning since destroy accidents caused by fractures could always bring huge loses. Stress intensity factors are usually employed to judge the strength of stress and displacement fields around crack tips, and the corresponding strength criterion of instability propagation was proposed. Meanwhile, COD criterions are used in the crack problems based on cohesive models. Hence, calculating the parameters such as stress intensity factors and COD accurately and efficiently are very attractive research subjects in the strength analysis of engineering practicle structures.
     The basic theoretical study of fracture problems is well developed, but there are still some complex cases left unsolved, such as cracks with arbitrary tractions, anisotropic multi-material cracks, etc. The solving procedure for such complex problems in traditional methods is always too complex to achieve. With the presence of symplectic dual approach for applied mechanics, many complex problems previously considered impossible can be solved analytically, such as crack problems. In this study, some complex crack problems are considered in symplectic solving system, and analytical symplectic eigen solutions and special solutions are specified. Then, based on these analytical solutions and special solutions, a series of singular finite element are constructed for the numerical analysis of different crack problems. The main contents of the present study are expressed as follows:
     (1). The special solutions for arbitrary crack tractions acting on single material and bimaterial cracks under plane assumptions are specified in symplectic solving system. Crack tractions are expressed approximately in terms of polynomial expansion, and special solution of each expanding term is specified analytically. In this way, the final special solutions for arbitrary crack tractions can be obtained accordingly. Simultaneously, the symplectic solving system for antiplane crack problem is proposed, analytical symplectic eigen solution and special solution for antiplane cracks with arbitrary tractions are specified. The analysis procedure of multi-material antiplane crack problem is simplified using the coordinate transform technique. Some specific cases are considered as an example, and the corresponding eigen equation of stress singularity orders are given. Besides, multi-material anisotropic antiplane crack problem which couldn't be solved by traditional sympectic approach is considered in this study. By combining subfield method and symplectic method, a new approximate approach for the stress singularity analyze of multi-material anisotropic antiplane crack is proposed, and this new approach is illustrated by numerical examples.
     (2). A series of singular finite element are constructed, respectively, based on analytical symplectic eigen solutions and special solutions for single material, bimaterial cracks under plane assumptions and those of antiplane cracks. Using the singular element around crack tips and conventional elements in the other area, cracked structures can be analyzed numerically with high efficiency. According to the relationship between expanding coefficients and stress intensity factors, stress intensity factors for mode Ⅰ,Ⅱ and Ⅲ can be obtained directly without any post process, hence the computational accuracy is ensured. Simultaneously, stiffness matrix of the singular finite elements are proved to be independent on element sizes, this feature is helpful to improve the stability of numerical calculation. As an attempt, the singular finite element for plane cracks is further applied on fatigue crack growth in order to get more precise growth path and more accurate estimated fatigue life. Numerical examples imply that the singular finite element which possesses good caltulation accuracy and stability is very effective for numerical analysis of cracked structures.
     (3). Based on analytical symplectic eigne solution and special solutions of plane cracks obtained using symplectic system, singular finite elements respectively for single material and bimaterial Ⅰ+Ⅱ mixed-mode Dugdale model based cracks are constructed. Using the singular element around crack tips and conventional elements in the other area, mixed-mode Dugdale crack problems can be solved numerically. Simultaneously, length of plastic zone, crack tip opening/sliding displacement, cohesive stress acting on virtual crack and other parameters in mixed-mode Dugdale model can all be specified by iteration. The stiffness matrix is proved to be independent on element size, and this feature of the singular finite element is helpful to ensure the stability of calculation. Furthermore, the singular element is applied on analyze of mode Ⅰ bimaterial Dugdale cracks with bridging tractions. Numerical examples imply that the present method possesses high calculation accuracy and fast iteration speed, etc. The singular element presented in this study has significant practical value, and it can be applied on the numerical analysis of cracks in elastro-plastic materials with high efficiency.
     A series of singular finite element are constructed, and the new method which has good stability of calculation has impoved the calculation accuracy and efficiency of numerical analysis of cracked structures. Also, transition elements are not required which has improved the commonality and compatibility of the present elements, hence, the singular finite elements can be integrated into most existing FEM softwares directly to make the most of its practical value in the analysis of engineering structures.
引文
[1]. Inglis CE. Stresses in a plate due to the presence of cracks and sharp corners. Transactions Institution of Naval Architects.1913,55:219-239.
    [2]. Lawn B. Fracture of brittle solids. Cambridge, UK:Cambridge University Press,1993.
    [3]. Griffith AA. The phenomena of rupture and flow in solids. Philosophical transactions of the royal society of London. Series A, containing papers of a mathematical or physical character.1921, 221:163-198.
    [4]. Irwin GR. Fracture dynamics. Fracturing of Metals, American Society for Metals.1948,147-166.
    [5].中国航空研究院主编.应力强度因子手册.北京:科学出版社,1993.
    [6]. Sih GC. Handbook of stress-intensity factors. Bethlehem, PA:Institute of Fracture and Solid Mechanics, Lehigh University,1973.
    [7].王自强,陈少华.高等断裂力学.北京:科学出版社,2009.
    [8].赵诒枢.复合型裂纹扩展的有效应力准则.机械强度.1992,14:51-53.
    [9].田常海,任明法.复合型裂纹脆断主应变因子准则.大连理工大学学报.2001,41:139-143.
    [10].龚俊,郎福元,王珉,李建华,刘展.基于统一强度理论的复合型裂纹断裂准则.机械强度.2003,25:347-351.
    [11]. Dugdale DS. Yielding of steel sheets containing slits. Journal of the Mechanics and Physics of Solids. 1960,8:100-104.
    [12]. Barenblatt GI. The mathematical theory of equilibrium cracks in brittle fracture. Advances in Applied Mechanics.1962,7:55-129.
    [13]. Narita F, Shindo Y. Mode I crack growth rate for yield strip model of a narrow piezoelectric ceramic body. Theoretical and Applied Fracture Mechanics.2001,36:73-85.
    [14]. Crapps J, Daniewicz SR. Weight function based Dugdale model for mixed-mode crack problems with arbitrary crack surface tractions. Engineering Fracture Mechanics.2010,77:793-802.
    [15]. Chernyakov YA, Grychanyuk V, Tsukrov I. Stress-strain relations in elastoplastic solids with Dugdale-type cracks. Engineering Fracture Mechanics.2003,70:2163-2174.
    [16]. Ferdjani H. Study of an infinite strip containing a Dugdale crack parallel to its boundaries under antiplane shear loading. European Journal of Mechanics-A/Solids.2009,28:347-353.
    [17]. Jin X, Chaiyat S, Keer LM, Kiattikomol K. Refined Dugdale plastic zones of an external circular crack. Journal of the Mechanics and Physics of Solids.2008,56:1127-1146.
    [18]. Neimitz A, Modification of Dugdale model to include the work hardening and in-and out-of-plane constraints. Engineering Fracture Mechanics.2004,71:1585-1600.
    [19]. Jia L. A Dugdale-Barenblatt model for a plane stress semi-infinite crack under mixed mode concentrated forces. International Journal of Fracture.1997,88:153-166.
    [20]. Elices M, Guinea GV, Gomez J, Planas J. The cohesive zone model:advantages, limitations and challenges. Engineering Fracture Mechanics.2002,69:137-163.
    [21]. Chandra N, Li H, Shet C, Ghonem H. Some issues in the application of cohesive zone models for metal-ceramic interfaces. International Journal of Solids and Structures.2002,39:2827-2855.
    [22]. Sun CT, Jin ZH. Modeling of composite fracture using cohesive zone and bridging models. Composites Science and Technology.2006,66:1297-1302.
    [23]. Jin ZH, Sun CT. Cohesive zone modeling of interface fracture in elastic bi-materials. Engineering Fracture Mechanics.2005,72:1805-1817.
    [24]. Wang JL. Cohesive zone model of intermediate crack-induced debonding of FRP-plated concrete beam. International Journal of Solids and Structures.2006,43:6630-6648.
    [25]. Wang JL. Debonding of FRP-plated reinforced concrete beam, a bond-slip analysis. I. Theoretical formulation. International Journal of Solids and Structures.2006,43:6649-6664.
    [26]. Wang JL. Cohesive zone model of FRP-concrete interface debonding under mixed-mode loading. International Journal of Solids and Structures.2007,44:6551-6568.
    [27]. Wang JL. Cohesive-bridging zone model of FRP-concrete interface debonding. Engineering Fracture Mechanics.2007,74:2643-2658.
    [28].杨卫.宏微观断裂力学.北京:国防工业出版社,1995.
    [29].黄克智,余寿文.弹塑性断裂力学.北京:清华大学出版社.1985.
    [30].匡震邦,马法尚.裂纹端部场.西安:西安交通大学出版社,2002.
    [31].沈成康.断裂力学.上海:同济大学出版社,1996.
    [32].范天佑.断裂理论基础.北京:科学出版社,2003.
    [33].王铎.断裂力学.哈尔滨:哈尔滨工业大学出版社,1987.
    [34].程靳,赵树出.断裂力学.北京:科学出版社,2006.
    [35]. Rice JR. Elastic fracture mechanics concepts for interfacial cracks. Journal of Applied Mechanics. 1988,55:98-103.
    [36]. Zywicz E, Parks DM. Elastic yield zone around an interfacial crack tip. Journal of Applied Mechanics. 1989,56:577-584.
    [37]. Zywicz E, Parks DM. Elastic-plastic analysis of frictionless contact at interfacial crack tips. International Journal of Fracture.1990,42:129-143.
    [38]. Williams ML. The stresses around a fault or crack in dissimilar media. Bulletin of the Seismological Society of America.1959,49:199-204.
    [39]. Asaro RJ, O'Dowd NP, Shih CF. Elastic-plastic analysis of cracks on bimaterial interfaces:interface with structure. Materials Science & Engineering. A, Structural Materials:Properties, Microstructure and Processing.1993,162:175-192.
    [40]. Shih CF, Suresh S. Mixed-mode inelastic crack-tip fields:homogeneous solids and bimaterial interfaces. Scripta Metallurgica et Materialia.1991,25:1017-1022.
    [41]. Wang TC. Elastic-plastic asymptotic fields for cracks on bimaterial interfaces. Engineering Fracture Mechanics.1990,37:527-538.
    [42].夏霖,王自强.弹塑性双材料界面裂纹的渐近分析.固体力学学报.1992,13:191-200.
    [43]. Shih CF, Asaro RJ. Elastic-plastic analysis of cracks on bimaterial interfaces:part Ⅰ—small scale yielding. Journal of Applied Mechanics.1988,55:299-316.
    [44]. Shih CF, Asaro RJ. Elastic-plastic analysis of cracks on bimaterial interfaces:Part Ⅱ—Structure of small-scale yielding fields. Journal of Applied Mechanics.1989,56:763-779.
    [45]. Shih CF, Asaro RJ, O'Dowd NP. Elastic-plastic analysis of cracks on bimaterial interfaces:part Ⅲ-large-scale yielding. Journal of Applied Mechanics.1991,58:450-463.
    [46]. Pan J, Shih CF. Elastic-plastic analysis of combined mode Ⅰ and Ⅲ crack-tip fields under small-scale yielding conditions. Journal of the Mechanics and Physics of Solids.1990,38:161-181.
    [47].许金泉.界面力学.北京:科学出版社,2006.
    [48]. Comninou M. The interface crack. Journal of Applied Mechanics.1977,44:631-636.
    [49].钟万勰.弹性力学求解新体系.大连:大连理工大学出版社,1995.
    [50].钟万勰.弹性平面扇形域问题及哈密顿体系.应用数学和力学.1994,15:1057-1066.
    [51].张洪武,钟万勰,李云鹏.基于哈密顿原理的两种材料界面裂纹奇性研究.固体力学学报.1996,17:19-30.
    [52].张洪武,钟万勰,李云鹏.界面裂纹无摩擦接触裂尖应力场.上海力学.1996,17:1-9.
    [53].吕念春,程云虹,田修波,程靳.Ⅲ型界面裂纹Dugdale模型的动态扩展问题.应用数学和力学.2005.26:1105-1113.
    [54].肖万伸,唐国金.双材料界面裂纹的弹塑性问题.固体火箭技术.2002,25:55-57.
    [55]. Erdogan F, Cook TS. Antiplane shear crack terminating at and going through a bimaterial interface. International Journal of Fracture.1974,10:227-240.
    [56]. Long YQ, Cen S, Long ZF. Advanced finite element method in structural engineering. Beijing: Tsinghua University press,2009.
    [57]. Ting TCT. Elastic wedge subjected to antiplane shear tractions-a paradox explained. The Quarterly Journal of Mechanics and Applied Mathematics.1985,38:245-255.
    [58]. Shahani AR. Mode Ⅲ stress intensity factors in an interfacial crack in dissimilar bonded materials. Archive of Applied Mechanics.2006,75:405-411.
    [59]. Chue CH, Liu TJC. Electro-elastic analysis of a bimaterial piezoelectric wedge with an interface crack under antiplane concentrated forces and inplane surface charges. International Journal of Solids and Structures.2004,41:4179-4196.
    [60]. Ma CC, Hour BL. Antiplane problems in composite anisotropic materials with an inclined crack terminating at a bimaterial interface. International Journal of Solids and Structures.1990, 26:1387-1400.
    [61]. Choi SR, Chong CH, Chai YS. Interfacial edge crack in two bonded dissimilar orthotropic quarter planes under anti-plane shear. International Journal of Fracture.1994,67:143-150.
    [62]. Lee KW, Earmme YY. An interfacial edge crack in anisotropic bimaterial under anti-plane singularity. International Journal of Fracture.2000,104:15-22.
    [63]. Li JL, Wang X. Interface end stress field of antiplane of orthotropic bimaterials. Applied Mathematics and Mechanics.2009,30:1153-1159.
    [64]. Shahani AR. On the antiplane shear deformation of finite wedges. Applied Mathematical Modelling. 2007,31:141-151.
    [65]. Kargarnovin MH, Fariborz SJ. Analysis of a dissimilar finite wedge under antiplane deformation. Mechanics research communications.2000,27:109-116.
    [66]. Chen CH, Wang CL. A solution for an isotropic sector under anti-plane shear loadings. International Journal of Solids and Structures.2009,46:2444-2452.
    [67]. Ting TCT. Explicit solution and invariance of the singularities at an interface crack in anisotropic composites. International Journal of Solids and Structures.1986,22:965-983.
    [68]. Ping XC, Chen MC, Xie JL. Singular stress states in tips of anisotropic multi-material wedges and junction subjected to antiplane shear. Acta Mechanica Solida Sinica.2005,193-198 (In Chinese).
    [69]. Faal RT, Fotuhi AR, Fariborz SJ, Daghyani HR. Antiplane stress analysis of an isotropic wedge with multiple cracks. International Journal of Solids and Structures.2004,41:4535-4550.
    [70]. Matbuly MS, Nassar M. Analysis of multiple interfacial cracks in an orthotropic bi-material subjected to anti-plane shear loading. Engineering Fracture Mechanics.2009,76:1658-1666.
    [71]. Lin RL, Ma CC. Theoretical full-field analysis of dissimilar isotropic composite annular wedges under anti-plane deformations. International Journal of Solids and Structures.2004,41:6041-6080.
    [72]. Ting TCT. Stress singularities at the tip of interfaces in polycrystals. Rotterdam, Netherlands: Proceedings of First International Conference on Damage and Fracture of Interface.1997,75-82.
    [73].张安哥,朱成九,陈梦成.疲劳,断裂与损伤.成都:西南交通大学出版社,2006.
    [74]. Paris PC, Erdogan F. A critical analysis of crack propagation laws. Journal of Basic Engineering. 1963,85:528-534.
    [75]. Xu Y, Yuan H. Computational analysis of mixed-mode fatigue crack growth in quasi-brittle materials using extended finite element methods. Engineering Fracture Mechanics.2009,76:165-181.
    [76]. Xu Y, Yuan H. Computational modeling of mixed-mode fatigue crack growth using extended finite element methods. International journal of fracture.2009,159:151-165.
    [77]. Infante V, Silva JM. Case studies of computational simulations of fatigue crack propagation using finite elements analysis tools. Engineering Failure Analysis.2011,18:616-624.
    [78]. Sabuncuoglu B, Dag S, Yildirim B. Three dimensional computational analysis of fatigue crack propagation in functionally graded materials. Computational Materials Science.2012,52:246-252.
    [79]. Shi J, Chopp D, Lua J, Sukumar N, Belytschko T. Abaqus implementation of extended finite element method using a level set representation for three-dimensional fatigue crack growth and life predictions. Engineering Fracture Mechanics.2010,77:2840-2863.
    [80]. Ktari A, Haddar N, Koster A, Toure A. Numerical computation of thermal fatigue crack growth of cast iron. Fatigue & Fracture of Engineering Materials & Structures.2011,34:498-509.
    [81]. Zhang GB, Yuan H. Computational Analysis of Fatigue Crack Propagation at Elevated Temperature for IN718. Applied Mechanics and Materials.2012,110:29-32.
    [82]. Giner E, Sukumar N, Denia FD, Fuenmayor FJ. Extended finite element method for fretting fatigue crack propagation. International Journal of Solids and Structures.2008,45:5675-5687.
    [83]. Chen MC, Sze KY. A novel hybrid finite element analysis of bimaterial wedge problems. Engineering Fracture Mechanics.2001,68:1463-1476.
    [84]. Chen MC, Ping XC. A novel hybrid finite element analysis of in-plane singular elastic field around inclusion corners in elastic media. International Journal of Solids and Structures.2009,46:2527-2538.
    [85]. Zienkiewicz JZ, Zhu OC. Accuracy and adaptivity in FE analysis:The changing face of practical computations. Computational Mechanics.1991,1:3-12.
    [86].应隆安.计算应力强度因子的无限相似单元法.中国科学.1977,6:517-535.
    [87].应隆安.无限元方法.北京:北京大学出版社,1992.
    [88].应隆安,潘灏.用无限相似单元法计算拱形试样的K,和柔度.固体力学学报.1981,1:99-106.
    [89]. Fleming M. Chu YA, Moran B, Belytschko T, Lu YY, Gu L. Enriched element free Galerkin methods for crack tip fields. International Journal for Numerical Methods in Engineering.1997,40:1483-1504.
    [90]. Portela A. Dual boundary-element method:Simple error estimator and adaptivity. International Journal for Numerical Methods in Engineering.2011,86:1457-1480.
    [91]. Lu B, Cheng X, Huang J, McCammon JA. An adaptive fast multipole boundary element method for Poisson- Boltzmann electrostatics. Journal of Chemical Theory and Computation.2009,5:1692-1699.
    [92]. Bapat MS, Shen L, Liu YJ. Adaptive fast multipole boundary element method for three-dimensional half-space acoustic wave problems. Engineering analysis with boundary elements.2009, 33:1113-1123.
    [93].陈英杰,付宝连.角点悬空弯曲厚矩形板的边界积分法.计算力学学报.2009,722-726.
    [94]. Aliabadi MH. Boundary element formulations in fracture mechanics. Applied Mechanics Reviews. 1997,50:83-96.
    [95].卢炎麟,贾虹,周国斌,李俊源,王晨.求解三维裂纹前缘SIF分布时间历程的通用权函数法和有限变分法.应用力学学报.2009,699-704.
    [96]. Wu XR, Carlsson J. Weight functions and stress intensity factor solutions. Oxford:Pergamon Press, 1991.
    [97].徐德福,罗景文.用边界配置法计算正交各向异性材料单边裂纹试件的应力强度因子.固体力学学报.1982,2:283-291.
    [98].范海荣,张可学.解多裂纹弹性柱体扭转问题的边界配置法.上海建材学院学报.1991,4:192-201.
    [99].崔振源,陈宜周.用边界配置法计算带裂纹扭转杆的抗扭刚度和第三型应力强度因子.固体力学学报.1981,4:503-511.
    [100].黎在良,王元汉,李廷芥.断裂力学中的边界数值方法.北京:地震出版社,1996.
    [101].曾攀.有限元分析及应用.北京:清华大学出版社,2004.
    [102]. ANSYS.11.0 Documentation. Houston, USA:Ansys Inc.2005.
    [103].段静波,李道奎,雷勇军.断裂力学分析的奇异有限元法研究综述.机械强度.2012,2:262-269.
    [104]. Benzley SE. Representation of singularities with isoparametric finite elements. International Journal for Numerical Methods in Engineering.1974,8:537-545.
    [105]. Pageau SS, Joseph PF, Biggers Jr SB. A finite element analysis of the singular stress fields in anisotropic materials loaded in antiplane shear. International Journal for Numerical Methods in Engineering.1995,38:81-97.
    [106]. Pageau SS, Biggers Jr SB. Finite element evaluation of free-edge singular stress fields in anisotropic materials. International Journal for Numerical Methods in Engineering.1995,38:2225-2239.
    [107]. Pageau SS, Joseph PF, Biggers SB. Finite element analysis of anisotropic materials with singular inplane stress fields. International Journal of Solids and Structures.1995,32:571-591.
    [108]. Pageau SS, Biggers SB. A finite element approach to three-dimensional singular stress states in anisotropic multi-material wedges and junctions. International Journal of Solids and Structures.1996, 33:33-47.
    [109]. Pageau SS, Biggers SB. Enriched finite elements for regions with multiple, interacting singular fields. AIAA Journal.1996,34:1927-1933.
    [110]. Pageau SS, Biggers Jr SB. Enrichment of finite elements with numerical solutions for singular stress fields. International Journal for Numerical Methods in Engineering.1997,40:2693-2713.
    [111]. Pageau SS, Joseph PF, Biggers SB. The order of stress singularities for bonded and disbonded three-material junctions. International Journal of Solids and Structures.1994,31:2979-2997.
    [112]. Tan MA, Meguid SA. Analysis of bimaterial wedges using a new singular finite element. International Journal of Fracture.1997,88:373-391.
    [113]. Chen EP. Finite element analysis of a bimaterial interface crack. Theoretical and Applied Fracture Mechanics.1985,3:257-262.
    [114]. Bayram YB, Nied HF. Enriched finite element-penalty function method for modeling interface cracks with contact. Engineering Fracture Mechanics.2000,65:541-557.
    [115]. Hilton PD, Kiefer BV. The enriched element for finite element analysis of three-dimensional elastic crack problems. Journal of Pressure Vessel Technology.1980,102:347.
    [116]. Ayhan AO, Nied HF. Stress intensity factors for three-dimensional surface cracks using enriched finite elements. International Journal for Numerical Methods in Engineering.2002,54:899-921.
    [117]. Ayhan AO. Stress intensity factors for three-dimensional cracks in functionally graded materials using enriched finite elements. International Journal of Solids and Structures.2007,44:8579-8599.
    [118]. Tracey DM. Finite elements for determination of crack tip elastic stress intensity factors. Engineering Fracture Mechanics.1971,3:255-265.
    [119]. Stern M, Becker EB. A conforming crack tip element with quadratic variation in the singular fields. International Journal for Numerical Methods in Engineering.1978,12:279-288.
    [120]. Stern M. Families of consistent conforming elements with singular derivative fields. International Journal for Numerical Methods in Engineering.1979,14:409-421.
    [121]. Astiz MA. An incompatible singular elastic element for two-and three-dimensional crack problems. International Journal of Fracture.1986,31:105-124.
    [122]. Gifford Jr N, Hilton PD. Stress intensity factors by enriched finite elements. Engineering Fracture Mechanics.1978,10:485-496.
    [123].李尧臣,王自强.在裂纹尖端引入位移协调奇异单元的有限单元法.上海力学.1983,3:79-99.
    [124].王志超,张理苏.一种新的准协调有限元列式方法及在断裂力学中的应用.方学学报.1990,22:458-462.
    [125].闻邦椿,曹宗杰,王志超.一种计算三维裂纹应力强度因子的新方法.力学季刊.2004,22:401-407.
    [126].曹宗杰,王铭伟,全吉成.基于奇异有限元法对大曲率缺口断裂问题的数值分析.空军工程大学学报.2006,7:85-89.
    [127].柳春图,蒋持平.板壳断裂力学.北京:国防工业出版社,2000.
    [128].曹宗杰,王铭伟,全吉成.缺陷压电结构电弹性问题断裂分析.吉林大学学报.2009,9:157-160.
    [129].曹宗杰,匡震邦.缺一种新的缺陷压电体奇异准协调单元及其断裂分析.航空学报.2006,27:403-407.
    [130]. Barsoum RS. Application of quadratic isoparametric finite elements in linear fracture mechanics. International Journal of Fracture.1974,10:603-605.
    [131]. Henshell RD, Shaw KG. Crack tip finite elements are unnecessary. International Journal for Numerical Methods in Engineering.1975,9:495-507.
    [132]. Ariza MP, Saez A, Dominguez J. A singular element for three-dimensional fracture mechanics analysis. Engineering Analysis with Boundary Elements.1997,20:275-285.
    [133]. Barsoum RS. Further application of quadratic isoparametric finite elements to linear fracture mechanics of plate bending and general shells. International Journal of Fracture.1975,11:167-169.
    [134]. Akin JE. The generation of elements with singularities. International Journal for Numerical Methods in Engineering.1976,10:1249-1259.
    [135]. Barsoum RS. Triangular quarter-point elements as elastic and perfectly-plastic crack tip elements. International Journal for Numerical Methods in Engineering.1977,11:85-98.
    [136]. Hughes TJR, Akin JE. Techniques for developing'special'finite element shape functions with particular reference to singularities. International Journal for Numerical Methods in Engineering.1980, 15:733-751.Lynn PP, Ingraffea AR. Transition elements to be used with quarter-point crack-tip elements. International Journal for Numerical Methods in Engineering.1978,12:1031-1036.
    [137]. Lynn PP, Ingraffea AR. Transition elements to be used with quarter-point crack-tip elements. International Journal for Numerical Methods in Engineering.1978,12:1031-1036.
    [138]. Wang KJ, Hsu C, Kao H. Calculation of stress intensity factors for combined mode bend specimens. Science in China:series A.1978,4:56-60.
    [139].吴永礼,徐纪林.等参数奇异元周围的过渡单元和普通单元.水利学报.1984,4:56-60.
    [140].李翠华.计算应力强度因子的奇异单元法.西安交通大学学报.1991,25:23-28.
    [141]. Phan AV. ANSYS tutoral-2-D fracture analysis. University of South Alabama. Website: http://www.southalabama.edu/engineering/mechanical/phan/ANSYS_LEFM02.pdf.
    [142]. Tong P, Pian THH, Lasry SJ. A hybrid-element approach to crack problems in plane elasticity. International Journal for Numerical Methods in Engineering.1973,7:297-308.
    [143]. Kuna M, Zwicke M. A mixed hybrid finite element for three-dimensional elastic crack analysis. International Journal of Fracture.1990,45:65-79.
    [144]. Lee J, Gao HJ. A hybrid finite element analysis of interface cracks. International Journal for Numerical Methods in Engineering.1995,38:2465-2482.
    [145]. Chen MC, Sze KY, Wang H. Analysis of singular stresses in bonded bimaterial wedges by computed eigen solutions and hybrid element method. Communications in Numerical Methods in Engineering. 2001,17:495-507.
    [146]. Chen MC, Zhu JJ, Sze KY. Electroelastic singularities in piezoelectric-elastic wedges and junctions. Engineering Fracture Mechanics.2006,73:855-868.
    [147]. Chen MC, Ping XC. A novel hybrid element analysis for piezoelectric-parent material wedges. Computational Mechanics.2007,40:13-24.
    [148].赵毅强,龙驭球.分区混合有限元法求混合型应力强度因子.计算力学学报.1984,1:47-55.
    [149].傅向荣,龙驭球.分区混合元法分析平面裂纹问题.工程力学.2001,18:39-46.
    [150].赵毅强,龙驭球.分区混合有限元法求混合型应力强度因.计算力学学报.1984,1:47-55.
    [151]. Huang MF, Long YQ. Calculation of stress intensity factors of cracked Reissner plates by the sub-region mixed finite element method. Computers & Structures.1988,30:837-840.
    [152].龙驭球,钱俊.表面裂纹的分区混合元分析.航空学报.1992,13:358-365.
    [153]. Long YQ, Qian J. Calculation of stress intensity factors for surface cracks in a three-dimensional body by the sub-region mixed FEM. Computers & structures.1992,44:75-78.
    [154]. Moes N, Dolbow J, Belytschko T. A finite element method for crack growth without remeshing. International Journal for Numerical Methods in Engineering.1999,46:131-150.
    [155]. Bordas S, Nguyen PV, Dunant C, Guidoum A, Nguyen-Dang H. An extended finite element library. International Journal for Numerical Methods in Engineering.2007,71:703-732.
    [156]. Sukumar N, Huang ZY, Prevost JH, Suo Z. Partition of unity enrichment for bimaterial interface cracks. International Journal for Numerical Methods in Engineering.2004,59:1075-1102.
    [157]. Belytschko T, Parimi C, Moes N, Sukumar N, Usui S. Structured extended finite element methods for solids defined by implicit surfaces. International Journal for Numerical Methods in Engineering. 2003,56:609-635.
    [158]. Menk A, Bordas S. Numerically determined enrichment functions for the extended finite element method and applications to bi-material anisotropic fracture and polycrystals. International Journal for Numerical Methods in Engineering.2010,83:805-828.
    [159]. Belytschko T, Lu YY, Gu L. Element-free Galerkin methods. International Journal for Numerical Methods in Engineering.1994,37:229-256.
    [160]. Silling SA, Askari E. A meshfree method based on the peridynamic model of solid mechanics. Computers & structures.2005,83:1526-1535.
    [161]. Liew KM, Ng TY, Wu YC. Meshfree method for large deformation analysis-areproducing kernel particle approach. Engineering Structures.2002,24:543-551.
    [162]. Zhang LT, Wagner GJ, Liu WK. A parallelized meshfree method with boundary enrichment for large-scale CFD. Journal of Computational Physics.2002,176:483-506.
    [163]. Liu GR, Gu YT. A meshfree method:meshfree weak-strong (MWS) form method, for 2-D solids. Computational Mechanics.2003,33:2-14.
    [164]. Kim NH, Choi KK, Botkin ME. Numerical method for shape optimization using meshfree method. Structural and Multidisciplinary Optimization.2002,24:418-429.
    [165], Rabczuk T, Belytschko T. Cracking particles:a simplified meshfree method for arbitrary evolving cracks. International Journal for Numerical Methods in Engineering.2004,61:2316-2343.
    [166]. Rabczuk T, Belytschko T. A three-dimensional large deformation meshfree method for arbitrary evolving cracks. Computer Methods in Applied Mechanics and Engineering.2007,196:2777-2799.
    [167]. Nguyen VP, Rabczuk T, Bordas S, Duflot M. Meshless methods:a review and computer implementation aspects. Mathematics and Computers in Simulation.2008,79:763-813.
    [168]. Bordas S, Rabczuk T, Zi G. Three-dimensional crack initiation. propagation, branching and junction in non-linear materials by an extended meshfree method without asymptotic enrichment. Engineering Fracture Mechanics.2008,75:943-960.
    [169].董春迎,谢志成,姚振汉,杜庆华.边界积分方程中超奇异积分的解法.力学进展.1995,25:424-429.
    [170].张明,姚振汉,杜庆华,楼志文.双材料界面裂纹应力强度因子的边界元分析.应用力学学报,1999,16:21-27.
    [171].姚振汉,杜庆华.边界无法应用的若干近期研究及国际新进展.清华大学学报:自然科学版,2001,41:89-93.
    [172].秦飞,岑章志,杜庆华.多裂纹扩展分析的边界元方法.固体力学学报.2002,23:431-438.
    [173]. Gao XW. A meshless BEM for isotropic heat conduction problems with heat generation and spatially varying conductivity. International Journal for Numerical Methods in Engineering.2006, 66:1411-1431.
    [174].王燕昌,郑静,高效伟.径向积分边界元法确定非均质土石坝渗流自由面.计算力学学报.2010,27:1011-1015.
    [175]. Gao XW. The radial integration method for evaluation of domain integrals with boundary-only discretization. Engineering Analysis with Boundary Elements.2002,26:905-916.
    [176].孙焕纯.无奇异边界元法.大连:大连理工大学出版社,1999.
    [177]].孙焕纯,杨海天,吴京宁,杨贺先.虚边界元法的应用及其求解方法.应用力学学报.1994,11:28-36.
    [178].徐俊东,王朋波,姚振汉,危银涛,尹伟奇.用于大规模断裂分析的快速多极边界元法.清华大学学报.2009,48:896-899.
    [179]. Blandford GE, Ingraffea AR, Liggett JA. Two-dimensional stress intensity factor computations using the boundary element method. International Journal for Numerical Methods in Engineering. 1981,17:387-404.
    [180]. Raveendra ST, Banerjee PK. Computation of stress intensity factors for interfacial cracks. Engineering Fracture Mechanics.1991,40:89-103.
    [181]. Pan E, Amadei B. Boundary element analysis of fracture mechanics in anisotropic bimaterials. Engineering Analysis with Boundary Elements.1999,23:683-691.
    [182]. Yukki R, Cho SB. Efficient boundary element analysis of stress intensity factors for interface cracks in dissimilar materials. Engineering Fracture Mechanics.1989,34:179-188.
    [183]. Matsumto T, Tanaka M, Obara R. Computation of stress intensity factors of interface cracks based on interaction energy release rates and BEM sensitivity analysis. Engineering Fracture Mechanics. 2000,65:683-702.
    [184].肖洪天,岳中琦.用边界元方法分析复合材料中的裂纹问题.计算力学学报.2003,20:721-724.
    [185].肖洪天,岳中琦.梯度材料中矩形裂纹的对偶边界元方法分析.力学学报.2008,840-848.
    [186].郝巨涛,刘光廷.层体边界元法在二维层体断裂分析中的应用.力学学报.1998,30:635-640.
    [187].汪冬华,龚朴,谭运猛.对偶边界元法在裂纹问题中的应用.西南交通大学学报.1998,33:88-91.
    [188].柯黎,王乘,詹福良.裂纹分析中的单节点二次边界元.固体力学学报.2002,23:54-64.
    [189].刘清,岑章志,徐秉业.Galerkin边界元法用于弹塑性分析的准高次元方法.方学学报.1997,29:745-750.
    [190].童丽萍,吴伟.用边界元法分析工程结构中的裂纹.郑州大学学报.1998,30:15-20.
    [191].柯建仲,许世孟,陈昭旭,冀树勇.基于边界元法各向异性岩石的裂纹传播路径分析.岩石力学与工程学报.2010,29:34-42.
    [192].邵永波,岑章志,李涛,杜之富.边界元分区子域法研究混凝土构件的断裂特性.工程力学.2009,107-115.
    [193]. Yao WA, Zhong WX, Lim CW. Symplectic elasticity. Singapore:World Scientific Publisher,2009.
    [194]. Xing YF, Liu B. New exact solutions for free vibrations of rectangular thin plates by symplectic dual method. Acta Mechanica Sinica.2009,25:689-698.
    [195]. Lim CW, Cui S, Yao WA. On new symplectic elasticity approach for exact bending solutions of rectangular thin plates with two opposite sides simply supported. International Journal of Solids and Structures.2007,44:5396-5411.
    [196]. Lim CW, Lu CF, Xiang Y, Yao WA. On new symplectic elasticity approach for exact free vibration solutions of rectangular Kirchhoff plates. International Journal of Engineering Science.2009, 47:131-140.
    [197]. Lim CW, Yao WA, Cui S. Benchmark symplectic solutions for bending of corner-supported rectangular thin plates. IES Journal Part A:Civil and Structural Engineering.2008,1:106-115.
    [198]. Yao WA, Hu XF, Xiao F. Symplectic system based analytical solution for bending of rectangular orthotropic plates on Winkler elastic foundation. Acta Mechanica Sinica.2011,929-937.
    [199]. Hu XF, Yao WA, Fang ZX, Cai ZY. Vibration solutions of rectangular orthotropic plates by symplectic geometry method. IES Journal Part A:Civil and Structural Engineering.2012(In press).
    [200]. Zhang HW, Zhong WX. Hamiltonian principle based stress singularity analysis near crack corners of multi-material junctions. International Journal of Solids and Structures.2003,40:493-510.
    [201]. Yao WA, Xu C. A restudy of the paradox on an elastic wedge based on the Hamiltonian system. Journal of Applied Mechanics.2001,68:678-681.
    [202]. Yao WA, Li XC. Symplectic duality system on plane magnetoelectroelastic solids. Applied Mathematics and Mechanics.2006,27:195-205.
    [203]. Li XC. Saint Venant solutions in symmetric deformation for rectangular transversely isotropic magnetoelectroelastic solids. Advanced Materials Research.
    [204]. Xu XS, Leung AYT, Gu Q, Yang H, Zheng JJ.3D symplectic expansion for piezoelectric media. International Journal for Numerical Methods in Engineering.2008,74:1848-1871.
    [205]. Zhou ZH, Xu XS, Leung AYT. The mode III stress/electric intensity factors and singularities analysis for edge-cracked circular piezoelectric shafts. International Journal of Solids and Structures. 2009,46:3577-3586.
    [206]. Chang HH, Tarn JQ. Three-Dimensional elasticity solutions for rectangular orthotropic plates. Journal of Elasticity.2011,1-18.
    [207]. Tarn JQ, Chang HH, Tseng WD. A Hamiltonian state space approach for 3D analysis of circular cantilevers. Journal of Elasticity.2010,101:207-237.
    [208]. Chen WQ, Bian ZG, Ding HJ. Three-dimensional vibration analysis of fluid filled orthotropic FGM cylindrical shells. International Journal of Mechanical Sciences.2004,46:159-171.
    [209]. Lim CW, Xu XS. Symplectic elasticity:theory and applications. Applied Mechanics Reviews.2010, 63:050802.
    [210].王承强.平面弹塑性断裂分析的解析与有限元结合解法及其在混凝土断裂力学中的应用.博士学位论文.2004.
    [211].王承强,郑长良.平面裂纹应力强度因子的半解析有限元法.工程力学.2005,22:33-37.
    [212]. Wang CQ, Zheng CL. Semi-analytical finite element method for fictitious crack model in fracture mechanics of concrete. Applied Mathematics and Mechanics.2004,25:1265-1270.
    [213].王承强,郑长良.裂纹扩展过程中线性内聚力模型计算的半解析有限元法.计算力学学报.2006,23:146-151.
    [214].王承强,郑长良.混凝土双K断裂参数计算的半解析有限元法.力学学报.2004,36:414-418.
    [215].王承强,姚伟岸.哈密顿体系在断裂力学Dugdale模型中的应用.应用力学学报.2003,20:151-154.
    [216].于长永.粘聚力模型下准脆性材料断裂分析的半解析有限元法.硕士学位论文.2007.
    [217]. Yao WA, Wang S. An analytical singular element for Kirchhoff plate bending with V-Shaped notches. Journal of Applied Mechanics.2012,79:051016.
    [218]. Yao WA, Wang S. An analytical singular element for interface cracks in bi-material Kirchhoff plate bending. Engineering Fracture Mechanics.2012,91:103-116.
    [1]. Irwin GR. Fracture dynamics. Fracturing of Metals, American Society for Metals.1948,147-166.
    [2]. Williams ML. The stresses around a fault or crack in dissimilar media. Bulletin of the Seismological Society of America.1959,49:199-204.
    [3].王自强,陈少华.高等断裂力学.北京:科学出版社,2009.
    [4].许金泉.界面力学.北京:科学出版社,2006.
    [5].钟万勰.弹性力学求解新体系.大连:大连理工大学出版社,1995.
    [6]. Yao WA, Zhong WX, Lim CW. Symplectic elasticity. Singapore:World Scientific Publisher,2009.
    [7]. Lim CW, Cui S, Yao WA. On new symplectic elasticity approach for exact bending solutions of rectangular thin plates with two opposite sides simply supported. International Journal of Solids and Structures.2007,44:5396-5411.
    [8]. Lim CW, Lu CF, Xiang Y, Yao WA. On new symplectic elasticity approach for exact free vibration solutions of rectangular Kirchhoff plates. International Journal of Engineering Science.2009, 47:131-140.
    [9]. Lim CW, Yao WA, Cui S. Benchmark symplectic solutions for bending of corner-supported rectangular thin plates. IES Journal Part A:Civil and Structural Engineering.2008,1:106-115.
    [10]. Yao WA, Hu XF, Xiao F. Symplectic system based analytical solution for bending of rectangular orthotropic plates on Winkler elastic foundation. Acta Mechanica Sinica.2011,929-937.
    [11]. Hu XF, Yao WA, Fang ZX, Cai ZY. Vibration solutions of rectangular orthotropic plates by symplectic geometry method. IES Journal Part A:Civil and Structural Engineering.2012,1:1-11.
    [12].蔡智宇,姚伟岸,胡小飞.矩形正交各向异性薄板弯曲受迫振动问题的分析解.2011,1:12-17.
    [13]. Zhang HW, Zhong WX. Hamiltonian principle based stress singularity analysis near crack corners of multi-material junctions. International Journal of Solids and Structures.2003,40:493-510.
    [14]. Yao WA, Xu C. A restudy of the paradox on an elastic wedge based on the Hamiltonian system. Journal of Applied Mechanics.2001,68:678-681.
    [15]. Wang JS, Qin QH. Symplectic model for piezoelectric wedges and its application in analysis of electroelastic singularities. Philosophical Magazine.2007,87:225-251.
    [16]. Zhou ZH, Xu XS, Leung AYT. The mode Ⅲ stress/electric intensity factors and singularities analysis for edge-cracked circular piezoelectric shafts. International Journal of Solids and Structures.2009, 46:3577-3586.
    [17]. Chen WQ, Zhao L. The symplectic method for plane elasticity problem of functionally graded materials. Acta Mechanica Sinica.2009,41:588-594.
    [18]. Xu XS, Leung AYT, Gu Q, Yang H, Zheng JJ.3D symplectic expansion for piezoelectric media. International Journal for Numerical Methods in Engineering.2008,74:1848-1871.
    [19]. Yao WA, Li XC. Symplectic duality system on plane magnetoelectroelastic solids. Applied Mathematics and Mechanics.2006,27:195-205.
    [20]. Li XC. Saint Venant solutions in symmetric deformation for rectangular transversely isotropic magnetoelectroelastic solids. Advanced Materials Research.
    [21].王承强.平面弹塑性断裂分析的解析与有限元结合解法及其在混凝土断裂力学中的应用.博士学位论文.2004.
    [1]. Ting TCT. Elastic wedge subjected to antiplane shear tractions-a paradox explained. The Quarterly Journal of Mechanics and Applied Mathematics.1985,38:245-255.
    [2]. Ma CC, Hour BL. Antiplane problems in composite anisotropic materials with an inclined crack terminating at a bimaterial interface. International Journal of Solids and Structures.1990, 26:1387-1400.
    [3]. Choi SR, Chong CH, Chai YS. Interfacial edge crack in two bonded dissimilar orthotropic quarter planes under anti-plane shear. International Journal of Fracture.1994.67:143-150.
    [4]. Lee KW, Earmme YY. An interfacial edge crack in anisotropic bimaterial under anti-plane singularity. International Journal of Fracture.2000,104:15-22.
    [5]. Shahani AR. Mode Ⅲ stress intensity factors in an interfacial crack in dissimilar bonded materials. Archive of Applied Mechanics.2006,75:405-411.
    [6]. Shahani AR. On the antiplane shear deformation of finite wedges. Applied Mathematical Modelling. 2007,31:141-151.
    [7]. Chue CH, Liu TJC. Electro-elastic analysis of a bimaterial piezoelectric wedge with an interface crack under antiplane concentrated forces and inplane surface charges. International Journal of Solids and Structures.2004,41:4179-4196.
    [8]. Li JL, Wang X. Interface end stress field of antiplane of orthotropic bimaterials. Applied Mathematics and Mechanics.2009,30:1153-1159.
    [9]. Ting TCT. Stress singularities at the tip of interfaces in polycrystals. Rotterdam, Netherlands: Proceedings of First International Conference on Damage and Fracture of Interface.1997,75-82.
    [10]. Zhang HW, Zhong WX. Hamiltonian principle based stress singularity analysis near crack corners of multi-material junctions. International Journal of Solids and Structures.2003,40:493-510.
    [11]. Irwin GR. Fracture dynamics. Fracturing of Metals, American Society for Metals.1948,147-166.
    [12]. Long YQ, Cen S, Long ZF. Advanced finite element method in structural engineering. Beijing: Tsinghua University press,2009.
    [13]. Linkov AM, Koshelev VF. Multi-wedge points and multi-wedge elements in computational mechanics:evaluation of exponent and angular distribution. International Journal of Solids and Structures.2006,43:5909-5930.
    [14]. Ma CC, Hour BL. Analysis of dissimilar anisotropic wedges subjected to antiplane shear deformation. International Journal of Solids and Structures.1989,25:1295-1309.
    [1]. Leung AYT, Xu XS, Zhou ZH, Wu YF. Analytic stress intensity factors for finite elastic disk using symplectic expansion. Engineering Fracture Mechanics.2009,76:1866-1882.
    [2]. Xu XS, Zhou ZH, Leung AYT. Analytical stress intensity factors for edge-cracked cylinder. International Journal of Mechanical Sciences.2010,52:892-903.
    [3]. Leung AYT, Xu XS, Zhou ZH. Hamiltonian approach to analytical thermal stress intensity factors—Part 1:thermal intensity factor. Journal of Thermal Stresses.2010,33:262-278.
    [4]. Chang HH, Tarn JQ. Three-Dimensional elasticity solutions for rectangular orthotropic plates. Journal of Elasticity.2011,1-18.
    [5]. Tarn JQ, Chang HH, Tseng WD. A Hamiltonian state space approach for 3D analysis of circular cantilevers. Journal of Elasticity.2010,101:207-237.
    [6]. Chen WQ, Bian ZG, Ding HJ. Three-dimensional vibration analysis of fluid filled orthotropic FGM cylindrical shells. International Journal of Mechanical Sciences.2004,46:159-171.
    [7].许金泉.界面力学.北京:科学出版社,2006.
    [8]. Sih GC. Handbook of stress-intensity factors. Bethlehem, PA:Institute of Fracture and Solid Mechanics, Lehigh University,1973.
    [9]. Fleming M, Chu YA, Moran B, Belytschko T. Enriched element-free Galerkin methods for crack tip fields. International Journal for Numerical Methods in Engineering.1997,40:1483-1504.
    [10]. ANSYS.11.0 Documentation. Houston, USA:Ansys Inc.2005.
    [11]. Murakami Y. Stress intensity factors handbook. New York:Pergamon Press,1987.
    [12]. Miyazaki N, Ikeda T, Soda T, Munakata T. Stress intensity factor analysis of interface crack using boundary element method-Application of contour-integral method. Engineering fracture mechanics. 1993,45:599-610.
    [1]. Dugdale DS. Yielding of steel sheets containing slits. Journal of the Mechanics and Physics of Solids. 1960.8:100-104.
    [2]. Barenblatt GI. The mathematical theory of equilibrium cracks in brittle fracture. Advances in Applied Mechanics.1962,7:55-129.
    [3]. Elices M, Guinea GV, Gomez J, Planas J. The cohesive zone model:advantages, limitations and challenges. Engineering Fracture Mechanics.2002,69:137-163.
    [4]. Narita F, Shindo Y. Mode I crack growth rate for yield strip model of a narrow piezoelectric ceramic body. Theoretical and Applied Fracture Mechanics.2001,36:73-85.
    [5]. Ferdjani H. Study of an infinite strip containing a Dugdale crack parallel to its boundaries under antiplane shear loading. European Journal of Mechanics-A/Solids.2009,28:347-353.
    [6]. Jin X, Chaiyat S, Keer LM, Kiattikomol K. Refined Dugdale plastic zones of an external circular crack. Journal of the Mechanics and Physics of Solids.2008,56:1127-1146.
    [7]. Neimitz A. Modification of Dugdale model to include the work hardening and in-and out-of-plane constraints. Engineering Fracture Mechanics.2004,71:1585-1600.
    [8]. Crapps J, Daniewicz SR. Weight function based Dugdale model for mixed-mode crack problems with arbitrary crack surface tractions. Engineering Fracture Mechanics.2010,77:793-802.
    [9]. Jia L. A Dugdale-Barenblatt model for a plane stress semi-infinite crack under mixed mode concentrated forces. International Journal of Fracture.1997,88:153-166.
    [10]. Chernyakov YA, Grychanyuk V, Tsukrov 1. Stress-strain relations in elastoplastic solids with Dugdale-type cracks. Engineering Fracture Mechanics.2003,70:2163-2174.
    [11].王承强,姚伟岸.哈密顿体系在断裂力学Dugdale模型中的应用.应用力学学报.2003,20:151-154.
    [12]. He M, Cox BN. Crack bridging by through-thickness reinforcement in delaminating curved structures. Composites Part A:Applied Science and Manufacturing.1998,29:377-393.
    [13]. Crapps J, Daniewicz SR. Weight function based Dugdale model for mixed-mode crack problems with arbitrary crack surface tractions. Engineering Fracture Mechanics.2010,77:793-802.
    [14]. Howard IC, Otter NR. On the elastic-plastic deformation of a sheet containing an edge crack. Journal of the Mechanics and Physics of Solids.1975,23:139-149.
    [15].肖万伸,唐国金,周建平.双材料界面裂纹的弹塑性问题.固体火箭技术.2002,25:55-57.
    [1].张安哥,朱成九,陈梦成.疲劳,断裂与损伤.成都:西南交通大学出版社,2006.
    [2]. Paris PC, Erdogan F. A critical analysis of crack propagation laws. Journal of Basic Engineering.1963, 85:528-534.
    [3]. Sabuncuoglu B, Dag S, Yildirim B. Three dimensional computational analysis of fatigue crack propagation in functionally graded materials. Computational Materials Science.2012,52:246-252.
    [4].王自强,陈少华.高等断裂力学.北京:科学出版社,2009.
    [5]. Shi J, Chopp D, Lua J, Sukumar N, Belytschko T. Abaqus implementation of extended finite element method using a level set representation for three-dimensional fatigue crack growth and life predictions. Engineering Fracture Mechanics.2010,77:2840-2863.
    [6]. Xu Y, Yuan H. Computational analysis of mixed-mode fatigue crack growth in quasi-brittle materials using extended finite element methods. Engineering Fracture Mechanics.2009,76:165-181.
    [7]. Xu Y, Yuan H. Computational modeling of mixed-mode fatigue crack growth using extended finite element methods. International journal of fracture.2009,159:151-165.
    [8]. Ktari A, Haddar N, Koster A, Toure A. Numerical computation of thermal fatigue crack growth of cast iron. Fatigue & Fracture of Engineering Materials & Structures.2011,34:498-509.
    [9]. Infante V, Silva JM. Case studies of computational simulations of fatigue crack propagation using finite elements analysis tools. Engineering Failure Analysis.2011,18:616-624.
    [10]. Zhang GB, Yuan H. Computational Analysis of Fatigue Crack Propagation at Elevated Temperature for IN718. Applied Mechanics and Materials.2012,110:29-32.
    [11]. Giner E, Sukumar N, Denia FD, Fuenmayor FJ. Extended finite element method for fretting fatigue crack propagation. International Journal of Solids and Structures.2008,45:5675-5687.
    [12]. Duflot M, Nguyen-Dang H. A meshless method with enriched weight functions for fatigue crack growth. International Journal for Numerical Methods in Engineering.2004,59:1945-1961.
    [13]. Bordas S, Nguyen PV, Dunant C, Guidoum A, Nguyen-Dang H. An extended finite element library. International Journal for Numerical Methods in Engineering.2007,71:703-732.
    [14].闫德俊.高速列车底架用铝合金焊接接头疲劳裂纹扩展特性.博士学位论文.2011.
    [15]. Singh IV, Mishra BK, Bhattacharya S, Patil RU. The numerical simulation of fatigue crack growth using extended finite element method. International Journal of Fatigue.2011,36:109-119.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700