用户名: 密码: 验证码:
木材和竹材的断裂与损伤
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
木材和竹材是是植物中可用作结构材料的两种,同时也是具有明显细观结构、可在多尺度下研究的生物复合材料,由于非均匀、各向异性和“天然”存在的微观甚至宏观的缺陷或损伤(裂纹),受荷后这些初始缺陷或损伤的不规则演化行为决定着木、竹材的宏观力学行为。本文以多种木材和毛竹为试材,对木、竹材结构的力学特征和损伤断裂行为、以及材料强韧机制进行了研究,主要工作如下:
     1、首先在理论上对线弹性断裂力学原理在木材中应用的特殊性作了讨论,证实当裂纹沿纤维方向自相似扩展时,木材的断裂行为可以用线弹性断裂力学方法来描述,其顺纹断裂韧性可以应用各向同性材料断裂韧性实验方法来测试,并且采用紧凑拉伸试件所测得的断裂韧性值,不受该试件几何尺寸和裂纹长度影响。在此基础上,又分析研究了木材顺纹理裂纹断裂的应力强度因子与能量释放率之间的关系。
     应用分形理论,研究了木材顺纹理断裂表面的分形特征,测量了断口表面的分形维数,首次建立了木材顺纹理断面的分形维数与顺纹断裂韧性之间的关系,该关系有助于揭示出木材抗顺纹理断裂性能与木材细观构造的内在联系。
     设计制作了测试Ⅲ型断裂韧性的实验装置,首次测试了云杉木材对Ⅲ型裂纹顺纹理扩展的阻力。
     2、应用有限元法分析了木构件含横纹理裂纹时裂纹尖端附近的应力场特征,采用切向比正应力准则研究了木材横裂纹的启裂方向,并测试了木材启裂时临界应力强度因子。研究结果表明含横纹理裂纹木构件侧向启裂时的临界应力强度因子基本上不受试件尺寸的影响,作为一种名义断裂韧性可以视之为木材的一种基本属性,但由此建立的K准则不宜作为木构件的强度设计准则。木材因其多胞及纤维增强的多层胞壁结构,而具有很强的抗横断韧性,通过对木材横弯断裂试验表明,含Ⅰ型横纹理裂纹木构件在沿顺纹向启裂后仍具有很高的继续承载能力,说明木材具有很强的抗横断韧性,含此类裂纹的木制构件不会因裂尖应力奇异性而发生低工作应力破坏的现象,这一点已通过对多种木材(云杉、落叶松、杨木、红锥)的弯曲、冲击、拉伸的三组对比试验给予充分证明。所以,在对含有Ⅰ型横纹理裂纹的木材构件进行安全评估和强度设计时,若以启裂时的临界载荷并以K准则作为木梁构件的设计准则,必然会造成强度余量上的浪费,故建议采用除去裂纹的净尺寸下的常规强度即可。即:
     木材的顺纹理断裂,宜采用断裂力学准则(K或G准则);
     木材的横纹理断裂,宜采用净应力准则。
     虽然横纹理裂纹不影响木材净面积下的常规强度,但侧向裂纹的扩展仍是一种受到关注的损伤破坏模式,为此本文通过解析法推得了木梁Ⅰ型顺纹层间开裂过程中的应变能释放率计算公式,该式可以用于木胶合板弯曲脱层损伤的分析。最后从界面弱化和多层胞壁细观结构的角度阐述了木材抗横断的强韧机制。
     3、提出木材细观损伤基本构元的概念,并对木材的损伤基元作了初步界定。在此基础上,首次应用声发射技术对木材构件在承载过程中不同类型损伤、断裂的萌生与发展作了辨识。试验表明木材在载荷作用下,材料内部损伤和断裂的不同机制可引起不同程度的能量释放,从而产生丰富的AE信号。无缺陷试件在加载初期声发射事件发展较为缓慢,且出现的主要是一些低振幅的AE信号,而大量高振幅AE信号出现在峰值载荷附近及断裂阶段。利用声发射监测含裂纹试件在弯曲载荷下的损伤并断裂全过程,可以明显地识别裂纹尖端启裂和扩展的不同阶段。声发射信号的特征与木材损伤模式有关,胞壁断裂对应的AE特征为高幅值、高能量及长持续时间,而胞壁界面损伤与层裂损伤和细胞屈服与压溃损伤对应的AE特征为低幅度、低能量及短持续时间。木材在重复载荷作用下,在低水平载荷下呈现Kaiser效应、在高水平载荷下呈现Feliciy效应,应用声发射的Felicity比能够较好地反映出木结构的损伤程度。
     4、分析、阐述了竹结构的力学特征,并通过对竹壁节间材建立的简化并联模型,应用复合材料细观力学的混合定律测试分析了竹材的纤维束和基本组织的强、刚度。又通过剥离后的纤维束测试了其强度,并应用剪滞理论测试了该纤维束的弹性模量。
     5、研究了毛竹材的Ⅰ型(张开型)和Ⅱ型(面内剪切型)层间断裂行为。由于竹材在宏观力学行为上可视之为单轴向的长纤维增强复合材料,并在强度和刚度方面展示了强烈的各向异性性质,因此,由外部施加或因环境条件变化而引起的横向张力与剪切力极易引发起竹材构件沿顺纹方向层裂的起始,随后分层的传播不是由横纹方向的强度控制,而是由竹材的层间断裂韧性控制。为此,基于能量原理,首次采用双悬臂梁(DCB)试样和端部切口弯曲梁(ENF)试样分别测定了毛竹材顺纹向的Ⅰ型和Ⅱ型层间断裂韧性,并对实验方法及影响因素作了探索。借助扫描电镜分析了Ⅰ型和Ⅱ型层间断口形貌,阐述了竹材层间断裂的机制。
     6、作为一种具有强烈结构特征的纤维增强生物复合材料,竹材在横向断裂的不同阶段或过程中,会因竹纤维束在基本组织中的应力传递模型和断裂机理不同而有多种能量吸收机制发生。为此,通过竹材在横断过程中所表现的不同失效方式面而建立的细观力学模型,测算了各失效模式对竹材横弯断裂的增韧贡献,并通过扫描电镜图片分析了断口形貌,阐述了竹材抗横断的强韧机制。
Wood and Bamboo are very only two types of plant which capable of structural materials in all plant kingdom, and is a bio-composites with obvious meso-structure and could be research on multi-scales. Because of the properties of inhomogeneous, anisotropic and some defects or fractures existent in microcosmic even in macroscopic levels, the irregular evolvement behavior of these defects or fractures when under load determined the macroscopic mechanics behavior of wood and bamboo. In this paper, some kinds of wood and moso bamboo were selected as testing materials to research the mechanics character, fracture rupture behavior and mechanism of strong toughness. The main works were as follow:
     1 .First the particularity of applying the principles of linear-elastic fracture mechanics (LEFM) to wood was expounded in theory, it had confirmed that when the crack self-similar propagate along the direction of fiber, the fracture behavior could be described with LEFM, the fracture toughness parallel to grain could be tested with the same experiment methods in isotropic materials, and the value could be adopted from compact tensile samples, which not influenced by the dimension and the length of crack. Base on this research, the relationship between the stress intensity factor parallel to grain and the rate of energy release were also analyzed.
     The fractal character of fracture surface parallel to grain were researched by applying fractal theory, then the fractal dimension of fracture surface of 5 kinds of wood were measured, based on these work the relationship between the fractal dimension of fracture surface parallel to grain and fracture toughness parallel to grain were established for the first time, the relationship would help reveal the internal relations between meso-structure and anti-fracture capability parallel to grain of wood.
     The experiment equipment of fracture toughness in model III were designed, then for the first time we test the resistance to crack expanded parallel to grain in model III of spruce.
     2. Application of finite element method analyzed the stress field characteristics near the crack tip of the wood components texture with crack perpendicular to grain. "Tangential normal stress ratio criterion" were adopted to research the starting direction of crack perpendicular to grain, the factor of critical stress intensity were also test at the beginning of crack. The study result indicate that the critical stress intensity factor in lateral crack of the wood components texture with crack perpendicular to grain didn't influenced by the dimension of specimens, as an nominal fracture toughness could be seemed as essential property of wood, so the K-criterion established on these couldn't become the strength design criterion of the wood components. Because of the structure of cell and the cell wall enhanced by fiber, wood could resist the fracture perpendicular to grain strongly. The testing of fracture in bending strength perpendicular to grain revealed that: after the crack perpendicular to grain crack along the grain, the wood components still presented high carrying capacity , this account for wood could resist the fracture perpendicular to grain strongly, the wood components with model I crack perpendicular to grain couldn't be fractured by stress singularity the low working stress because of the oddity in crack tip, this conclusion had be fully proved through the contrast test of bending, toughness and tensile in many species of wood(spruce, larch, poplar and prick). So, when the wood components with model I crack perpendicular to grain were carried through safety evaluation and intensity design, it was suggested adopting the remained dimension exclude crack in general intensity. Otherwise if the design criterion followed the critical load and set K criterion as its criterion it could cause waste in intensity margin. Consequently it will bring the waste of so, the exclusion of the general strength of crack under dressed size is suggested, i.e.
     For model I crack parallel to grain, the LEFM criterion (K criterion or G criterion) is adapted.
     For model I crack perpendicular to grain, the net section stress criterion is adapted.
     Although the fracture perpendicular to grain didn't influence the conventional strength under net section of wood, the crack in the side direction was still an attention destructive model. So, the formula to calculate the strain energy release rate in the process of model I interlaminar crack parallel to grain were derived by analytic method in the research. This formula could used to analyze the delamination damage when bending in plywood.
     Finally the mechanism of strong toughness of wood resist fracture perpendicular to grain were expatiated through the point of interface weakening and the multilayer cell wall meso-structure.
     3. The concept of meso-damage basic elements of wood had been proposed. and the basic elements in wood damage were defined initially. Based on these, by using acoustic emission technology the initiation and development of different kinds of damage and fracture of wood components under loading were distinguished for the first time. The results showed that the different mechanism of damage and fracture in the internal of materials under loading could cause different degree of energy release, and then abundant AE signal produced. The occurrence of acoustic emission event under load in non-defect specimens developed very slowly, and the amplitude of AE signals most were low, the abundance AE signals with high amplitude occurred near the peak value of load and fracture process. When the process of fracture under bending load of specimens with crack was monitored by acoustic emission, the different stage of the beginning and the expansion of the crack tip could be obviously distinguished. The character of acoustic emission was related with the scathe of wood, the AE character of cell wall fracture were high amplitude, high energy and long duration, the AE character of cell wall interface damage, interlaminar crack and cell wall yield and collapse damage were low amplitude , low energy and short duration. When wood under repeating load, it presented Kaiser effect under low load, it presented Felicity effect under high load, and by using the acoustic emission the Felicity effect could reflect the damage degree of wood preferably.
     4. The mechanics character of bamboo structure were analyzed and expatiated, through predigest parallel connection model established on cell wall between internodes, by applying the mixing rule of meso-mechanics of composite material to test the intensity and stiffness of bamboo fasciculi and basic tissue. And the intensity of bamboo fiber bundle was test after peeled of, and modulu of elasticity of the bamboo fiber bundle was test by shear-lag theory.
     5. The opining and shear interlaminar fracture behaviors of Moso bamboo have been studied in this paper. Because bamboo was seemed as single axial and long fiber compound material, and was intense anisotropism in intensity and stiffness, it was easy to initiated the beginning of interlaminar fracture parallel to grain under the transverse tensile force and cut force which caused by outer force and the change of environment condition, then the spread in divided layer didn't controlled by the intensity perpendicular to grain, but by interlaminar fracture toughness. Based on the energy concept, double-cantilever beam (BCD) sample and end notched flexure (ENF) sample were applied to measure the Model I and Model II interlaminar fracture toughness of Moso bamboo, and the experiment method and influencing factor were explored. The morphologies of rupture surface of Model I and Model II interlaminar fracture were analyzed by using SEM. then the mechanism of interlaminar fracture of bamboo have been expatiated.
     6. As an bio-composite materials which were enhanced by fiber, with intense structure character ,there were many energy -absorb mechanism in bamboo in different stage or process of fracture perpendicular to grain, because of the different mechanism of bamboo fiber bundle in the stress transfer and fracture in basic tissue. So the meso-mechanics model were established according to the different disable manner in the processes offracture perpendicular to grain to calculate the contribution of enhancing toughness ofdifferent disable model, and the morphologies of rupture surface were analyzed by SEM toexpatiate the mechanism of strong toughness in resisting fracture perpendicular to grain ofbamboo.
引文
[1.1]赵建生.断裂力学及断裂物理.武汉:华中科技大学出版社,2003
    [1.2]匡震邦,马法尚.裂纹端部场.西安:西安交通大学出版社,2002
    [1.3]Griffith A A,.The phenomenon of rupture and flow in solid.Trans.Roy.Soc(London).A221:163-198.
    [1.4]李洪升,周承芳.工程断裂力学.大连:大连理工大学出版社,1990
    [1.5]Gordon JE.The new science of strong Mateeerials or why you don't fall through the floor.Haromondsworth,England:Penguin Books Limited,1968
    [1.6]Porter A W.On the Mechanics of fracture in wood.Forest Products Journal,1964,ⅩⅣ(8),325-331
    [1.7]Larsen HJ,Gustafsson PJ The fracture energy of wood in tension perpendicular to the grain.23th CIB-W18 A meeting(1990).Lisbon Portugal.Paper 23-19-2
    [1.8]Stanzl-Tschegg SE,Tschegg EK,Teischinger A Fracture energy of spruce wood after different drying procedures.Wood and Fiber Science(1994)26:467-478
    [1.9]Ewing PD,Williams JG Thickness and moisture content effect in the fracture toughness of Scots Pine.J.Mat.Sci.(1979) 14±12:2959-2966
    [1.10]Barrett JD,Foschi RO Mode Ⅱ Stress-Intensity Factors for Cracked Wood Beams.Engineering Fracture Mechanics(1977)9:371-378
    [1.11]邵卓平,江泽慧,任海青.线弹性断裂力学原理在木材中应用的特殊性及木材顺纹理断裂.林业科学,2002,39(6)
    [1.12]Wu E M.Application of fracture Mechanics to anisotropic plates.Journal of Applied Mechanics.1967,34:967-974
    [1.13]Wu E M.Fraciure Mechanics of Anisotropic Plate Composite Material Workshop.ed S.W.Tsai,Technomic Publishing company,1968.p23
    [1.14]Mindness S..J.S.Nadeau and J.D.Barrett.1976.Stow crack growth in Douglas-fir.Wood Sci.S(1):389-396
    [1.15]Barrett,J.D.and R.O.Foschi.Model Ⅱ stress-intensity factors for cracked wood beams.Eng.Fract.Mech,1976,9(2):371-378
    [1.16]Schnewind,A.P.Fracture toughness and duration of load factor 11.Duration factor for cracks propagating perpendicular to grain.Wood and fiber.1977.9(3):216-226
    [1.17]Smith,T.W.and D.T.Penny.Fracture mechanics of butt joints in laminated wood beams.Wood Sci,.1980.12(4):227-235
    [1.18]White,M.S.and D.W.Green.Effect of substrate on the fracture toughness of wood-adhesive bonds.Wood Sci. 1980.12(3): 149-153
    [1.19] Triboulot, P., Jodin, P. and Pluvinage G. Validity of Fracture Mechanics Concepts Applied to Wood by Finite Element Calculation. Wood Science and Technology, (1984)18(1), 51-58.
    [1.20] Boatright S W J. and Garrentt G G. The effect of microstructure and stress state on the fracture behaviour of wood. J.of Materials Sci., 1983,18:2181-2199
    [1.21] Murphy, J. F. Strength of wood beams with end splits. Res. Pap. FPL 347. USDA Forest Serv.,Prod. Lab. Madison, Wis. 1979,12pp
    [1.22]Foschi, R.O. and Barrett, J.D. Stress Intensity Factors in Anisotropic Plates Using Singular Isoparametric Elements. International Journal for Numerical Methods in Engineering,(1976).10(6), 1281-1287
    [1.23] CDNADIAN STANARDS ASSOCIATION. Engineering design in wood (working stress design).1984,CAN3-086-M84
    [1.24] Stefanie E. Stanzl-Tschegg. Microstructure and fracture mechanical response of wood. Int J Fract (2006)139:495-508
    [1.25] Knuffel.W.E. 1988 Acoustic Emission as Strength predictor in structural timber.Holzforschung 1988,42: 336-348
    [1.26] Ansell,M.P.Acoustic Emission from softwood in tension. Wood Science and Technology 1982,16(1):35-3
    [1.27] Sato,K.T.Okano, L.Asano and M.Fushitani. Application of AE to mechanical testing of wood.Proc.2nd Int ,Conf,on Acoustic Emission Lake tahoe, 1985,240-243
    [1.28]Ogino, S., Kaino, K., Suzuki, M. Prediction of lumber checking during drying by means of acoustic emission technique. J. Acoustic Emission 1986.5(2): 61-65
    [1.29] Suzuki,M. and A.P.Schniewind. Relationship betewwn fracture toughness and Acoustic Emission during ckeavage failure in adhesive joints Wood Science Technology. 1987, 21:121-130
    [1.30] Rice RW, Skarr C. Acoustic emission patterns from the surfaces of red oak wafers under transverse bending stress. Wood sci technol, 1990,24:123-129
    [1.31] Niemz P, Luhmann A. Anwendung der schallemissionsanalyse zur Berteilung des bruchverhaltens von holz und holzwerkstoffen. Holz roh-werkstoff (1992) 50:191-194
    [1.32] Ando K,Sato K,Fushitani M. Fracturetoughness and acoustic emission Characteristics of Wood II.J Japan Wood Research Society,(1992) 38:342-349
    [1.33] Schniewind AP, Quarles SL, Lee S-H (1996) Wood fracture, acoustic emission.and the drying process part 1.Acoustic emission associated with fractre. Wood si technol 30:273-281
    [1.34] Reiterer A, Stanzl-Tschegg S E, Tschegg E. Mode 1 fracture and acoustic emission of softwood and hardwood Wood Sci. Techol.2000.34..417-439
    [1.35]Ando K,Hirashima Y,Sugihara M,Hirao S,Sasaki Y.Microscopic processes of shearing fracture of old wood,examined using the acoustic emission technique.J Wood Sci(2006) 52:483-489
    [1.36]鹿振友.断裂力学在木材加工上的应用北京林业大学学报 1988年10卷3期:49-56
    [1.37]范文英,徐虹木材断裂韧性KIC测定方法的研究南京林业大学学报 1993年17卷3期:80-82
    [1.38]孙艳玲,鹿振友用有限元计算水曲柳裂纹尖端应力强度因子北京林业大学学报 1999年21卷3期:53-57
    [1.39]江泽慧,胡一贯.木材断裂过程的研究.核技术,2000,23(8):572-576
    [1.40]任海青 江泽慧.人工林杉木、马尾松木材的断裂特性.林业科学 2001,37(3):118-121
    [1.41]王丽宇 鹿振友白桦材LT型裂纹的演化与增长行为的研究2002年24卷2期 59-61
    [1.42]费本华,张东升.木材断裂裂纹及应力场的分形研究.木材工业,2003,17(3):7-9,12
    [1.43]费本华,覃道春.杨忠木材断口分形的初步研究.林业科学,2006,42(3):104-107
    [1.44]费本华,赵勇,覃道春,杨忠,侯祝强,赵荣军.应用CT技术研究木材断口形态特征.林业科学,2007,43(4):137-140
    [1.45]巩翠芝,刘一星,崔永志.利用环境扫描电子显微镜原位监测木材的断裂过程.东北林业大学学报,2007,35(6):7-9
    [1.46]任宁,刘一星,巩翠芝.木材微观构造与拉伸断裂的关系.东北林业大学学报 2008,36(2):33-35
    [1.47]曾其蕴,李向红,鲍贤镕竹节对竹材力学强度影响的研究.林业科学,(1992)28(3):247-252
    [1.48]Ahmad M,Kamke F.A.Analysis of calculate bamboo for structural composite materials:physical and mechanical properties.Wood Sci Techno,2005,39:448-459
    [1.49]Obataya E,Kitin P,Yamauchi H.Bending characteristics of bamboo(Phyllostachys pubescens)with respect to its fiber-foam composite structure.Wood Sci Technol,2007,41:385-400
    [1.50]冼杏娟,冼定国.竹材的断裂特性.材料科学进展.1991,5(4):336-341
    [2.1]Meyer K H,Misch L.Posiondes atemes dans le nouveru modele spatial do la cellulose.Helv.Chim.1937,Acta 20:232-244.
    [2.2]Roelofsen,P.A.,The Plant Cell-Wall.Gegruder Borntraeger,Berline-Nikolassee,1959,pp.126-189.
    [2.3]成俊卿.木材学[M].北京:中国林业出版社,1985
    [2.4]Price,A.T.A Mathematical Discussion on the Structure of Wood in Relation to Its Elastic Properties.Philosophical Transactions of the Royal Society of London,Series(1928).A:228,1-62.
    [2.5]科尔曼.木材学与木材工艺学原理[M].北京:中国林业出版社,1991.227-35)
    [2.6]Jones RM.Mechanics of composite materials.Scripta book Company,USA 1972
    [3.1]Porter A W.On the Mechanics of fracture in wood.Forest Products Journal,1964,ⅩⅣ(8),325-331
    [3.2]Snedden,I.N.The Distribution of Stress in the Neighborhood of a Crack in an Elastic Solid.Proceedings of the Royal Society of London,(1946).Vol.A-187:229-260
    [3.3]Irwin G R.Analysis of stresses and strain near the end of a crack traversing a plate,J.Appl.Mech.,1957,24:361-364
    [3.4]Westergaard,H.M.Bearing Pressures and Cracks.Transactions ASME:Journal of Applied Mechanics,(1939).Vol.6,A-49-A-53.
    [3.5]Irwin G R.Structure aspects of brittle fracture,Applied MaterialsResearch,1964,3:65-81
    [3.6]Sih G C,Prais P C & Irwin G R.On cracks in rectilinearly anisotropic bodies.Journal of Fracture Mechanics.(1965) Vol.1(3):189-203
    [3.7]Wu E M.Application of fracture Mechanics to anisotropic plates.Journal of Applied Mechanics.1967,34:967-974
    [3.8]Wu E M.Fraciure Mechanics of Anisotropic Plate Composite Material Workshop.ed S.W.Tsai,Technomic Publishing company,1968.p23
    [3.9]Kanninen MF,Popelar CH(1985)Advanced fracture mechanics.OxforfUniversity,1985
    [3.10]ASTM E1922-2004 Standard test method for translaminar fracture toughness of laminated and pultruded polymer matrix composite materials.
    [3.11]英国材料标准学会的BS5447—1977,
    [3.12]国家标准局.金属材料平面应变断裂韧度K_(IC)试验方法(GB 4161-84).北京:中国标准出版社,1984
    [3.13]崔振源等编著.断裂韧性与测试原理和方法,上海:科学技术出版社,1981:15-34
    [3.14]Barrent J D.Effect of crack-front width on fracture toughness of Doouglas-fir.Eng.Frac.Mech.,1976,8(4):711-717
    [3.15]Boatright S W J.and Garrentt G G.The effect of microstructure and stress state on the fracture behaviour of wood.J.of Materials Sci.,1983,18:2181-2199
    [3.16]Triboulot P,Jodin P,Pluvinage G.Validity of fracture mechanics concept applied to wood by finit element calculation.Wood Sci Techno,1984,18(6):448-459
    [3.17]Hodgkinson J M.Mechanical testing of advanced fiber composites.Niklewicz:Woodhead Publishing Limited,2000.
    [3.18]Ashby MF,Easterling KE,Harrysson R,Maiti SK.The fracture and toughness of woods.Proc R Soc Lond A 1985;398:261-80.
    [3.19]Mandelbrot B B,Passoja D E,Paullay A.Fractal Character of Fracture Surfaces of Metals[J].Nature,1984,308(19):721-722.
    [3.20]Genady P Cherepanov,Alexander S Balankin,Vera S Iavnova.Fractal Fracture Mechanics-A review[J].Engng.Fract.Mech,1995(51):997-1033.
    [3.21]Mandelbrot B B.The Fractal Geometry of Nature,Freeman,San Francisco,1982
    [3.22]Hatzikiriakos S G,Avramldis S.1994.Fractal dimension of wood surfaces from sorption isotherms[J].Wood Sci.and Tech.,28:275-284
    [3.23]Jose A R.1997.The fractal nature of wod revealed by water absorption[J].Wood and Fib.Sci.,29(4):333-339
    [3.24]Fan K,Hatzikiriakos S G,Avramidis S.1999,Determination of the surface fractal dimension from sorption isotherms of five softwoods.Wood Science and Technology,33(2):139-149
    [3.24]Liu J,Furuno T.The fractal estimation of wood color variation by the triangular prism surface area method[J].Wood Sci.and Tec.,2002,36(5):385-397
    [3.26]费本华,赵勇,覃道春,等.2007.应用CT技术研究木材断口形态特征[J].林业科学,43(4):137-140
    [3.27]王晗,王克奇,白雪冰,等.2007.基于分形维木材表面粗糙度的研究[J].森林工程,23(2):13-15
    [3.28]Brown S R,Scholz C H.Broad bandwidth study of the topography of natural rock surfaces.J Geophys Res,1985,90:572-575
    [3.29]杨国伟.1998.材料断裂表面的真实分维[J].湘潭大学自然科学学报,6(2):43-45
    [3.30]Undexwood E E.1987.Fractal in materiaes research.Acta Stereologica.1994,13:269
    [3.31]褚武扬,宿彦京,高克玮,等.2004.材料科学中的分形[M].北京:化学工业出版社,33-67
    [3.32]邵卓平,任海青,江泽慧.2003.木材横纹理断裂及强度准则[J].林业科学,39(1):119-125
    [3.33]Barette J D,Foschi R O.Mode Ⅱ stress intensity factors for cracked wood.Engineering Fracture Mechanics,1977,9:371
    [3.34]Cramer SM,Purge AD(1987) Compact shear specimen for wood mode Ⅱ fracture investigations,Int J Fract 35:t63-174
    [3.35]Murphy JF(1988) Mode Ⅱ wood test specimen:beam with center slit.J Test Eval 16:364-368
    [3.36]Prokopski G(1995) Investigation of wood fracture toughness using mode Ⅱ fracture(shearing).J Mater Sci 30:4745-4750
    [3.37]Stanzl-Tschegg SE,Tan DM,Tschegg EK(1996) Mode Ⅱ fracture tests on spruce wood.Mokuzai Gakkaishi 42:642-650
    [3.38]Xu S,Reinbardt HW,Gappoev M(1996) Mode Ⅱ fracture testing method for highly orthotropic materials like wood.Int J Fract 75:185-214
    [3.39]Aicher S,BostrOm L,Gierl M,Kretschmarm D,Valentin G(1997) Determination of fracture energy of wood in mode Ⅱ.RILEM TC 133 report
    [3.40]Russell AJ,Street KN(1985) Moisture and temperature effects on the mixed-mode delamination fracture of unidirectional graphite/epoxy.ASTM STP 876:340-370
    [3.41]Agarwal B D,Giare G S.Fracture toughness of short fiber composite materials in mode Ⅱ and Ⅲ.Engineering Fracture Meehanks,1981,15(1-2):219-230
    [3.42]Rissing A J,Strret K S,Crosley P B.Fracture toughness of composite adherend adhesive joints under mixed mode Ⅰ and Ⅲ loading.J Materlal SC lence,1983,18:2274-2282
    [3.43]Dvnaldson S L.Mode Ⅲ interIaminor fracture eharacteri~tion of composite materials.Cvmpvsites Science,nd Technology,1988,32:228-249
    [3.44]肖军.复合材料多向层间Ⅲ型分层断裂韧性实验研究.南京航空航天大学学报,1996,28(2):267-270
    [4.1]Sih GC,Prais PC,Irwin GR On cracks in rectilinearly anisotropic bodies.Journal of Fracture Mechanics.1965,Vol.1(3):189-203
    [4.2]Kanninen MF,Popelar CH(1985)Advanced fracture mechanics.Oxforf University,1985
    [4.3]美国材料实验协会.层积材和树脂基复合材料做横纹拉伸断裂试验的标准(ASTM E1922-2004)
    [4.4]Gregory MA,Herakovich CT(1986) Predicting crack growth direction in unidirectional composites.J.Comp.Mater.,21:67-85
    [4.5]国家标准局.金属材料平面应变断裂韧度KIC试验方法(GB 4161-84).北京:中国标准出版社,1984
    [4.6]Jeronimidis G(1976) The fracture of wood in the relations to its structure.Leiden botanical series,3:253-265
    [4.7]杜善义,王彪(1998)复合材料细观力学.北京,科学出版社,161-237
    [4.8]Williams JG(1988) On the calculation of energy release rates for ceack laminates,Int.J.Fractur,36:101.
    [4.9]Williams JG(1989) End corrections for orthouropic DCB specimens,Composites Science and Technology,35:367.
    [4.10]Wnag Y and Williams JG(1992) Corrections for mode Ⅱ feacture toughness specimens of composite materials.Composites Science and Technology,43:251.
    [4.11]Reeder JR.Crews JH,Jr.(1990) Mixed-mode bending methed for delamination testing,ALAA Journal,28(7):1270
    [4.12]Reeder JR,Crews JH,Jr.(1991) Redesigm of mixed-mode bending test for delamination toughness,Proc.of ICCM-8,Section 36-13,
    [4.13]Cook J,Gordon JE(1964) A mechanism for the control of crack propagation in all-brittle systems.Proc.Roy.Soc.A282:508-520
    [4.14]Gordon J E.The new science of strong Mateeerials or why you don't fall through the floor.Haromondsworth,England:Penguin Books Limited,1968
    [4.15]Gordon J E & Jeronimidis G.Work of fracture of natural cellulose.Nature,1974,252:116
    [5.1]Kaiser J,Thesis Ph D.Technische Hochshulo Munchen Munich,Germany,(1950)
    [5.2]Noguchi M,Kitayama S,Satoyoshi K,Umetsu J.Feedback control for drying Zelkova serratea using in-process acoustic emission monitoring.Foerest Products Journal,(1987).37:28-34
    [5.3]Rice R W,Skaar C.Acoustic emission patterns from the surfaces of red oak wafers under transverse bending stress.Wood Sci.Techol,1990.24:123-129
    [5.4]Reiterer A,Stanzl-Tschegg S E,Tschegg E K.Model fracture and acoustic emission of softwood and hardwood.Wood Sci.Technol,2000.34:417-430
    [5.5]曹平祥.木材切削过程中的声发射.木工机床,1995.(2):1-6
    [5.6]谢力生.声发射法在木材干操中的应用.林产工业,2001.28(3):38-42
    [5.7]周兆兵,曹平祥.浅谈声发射的小波分析与木工刀具磨损检测.木材加工机械,2002.(6):1-5
    [5.8]孙建平,王逢瑚,朱晓东,杨亮庆.动态载荷下基于声发射技术的杨木破坏过程检测.林业科学,2006.42(9):89-92
    [5.9]刘怀喜,张恒,闫耀辰声.2002.声发射技术在复合材料中的应用及研究进展.纤维复合材料,(4):50-52
    [5.10]Jenh J S,Ono K,YanK J M.Fracture mechanism studies of carbon fiber reinforced thermoplastic composites by acoustic emission[A]Progress in Acoustic Emission(Ⅳ)[C].Kobe,Japan,(1988)
    [5.11]Bakuckas J G,Prosser W S,Johnson W S.Monitoring damage growth in titanium matrix composites using acoustic emission.Journal of Composite Materials,1994.28(4):305-328.
    [5.12]朱祖铭,石南林,王光中,梁勇.声发射方法测定SiC/Al复合材料的界面强度.金属学报,1996.32(9):998-1002
    [5.13]朱祖铭,石南林,郭延风.SiC/Al复合材料断裂机制的声发射研究.材料研究学报,1997.11(1):16-20
    [5.14]赵方芳,罗景润,川常津.利用声发射技术监测颗粒填允聚合物材料的裂纹扩展过程.高压物理学报,2001.14(3):235-240
    [5.15]Gibson L J.Ashby M F.Cellular solids:structure and properties.Press Syndicate of University of cambricdge.1997
    [5.16]Jeronimidis G.The fracture of wood in the relations to its structure.Leiden botanical series.1976,3:253-265.
    [5.17]Taghi T,Ying H.Characterizing microscopic behavior of wood under transverse compression.Part Ⅱ.Effect of species and loading direction.Wood and Fiber science.2001,33(2):223-232
    [5.18]Chu T C,Ranson W F,Sutton M A,et al.Quantification of compression failure propagation in wood using digitalimage pattern recognition.Forest Prod J,1996,46(10):87-93
    [5.19]邵卓平.木材损伤断裂与木材细观损伤基本构元.林业科学 2007.43(4):107-110
    [5.20]杨盛良,刘军,杨德明,尹新方.复合材料损伤过程的声发射研究方法.无损检测,2000.(7):303-306
    [5.21]腾山邦久.声发射(AE)技术的应用.北京:冶金工业出版社(1996)
    [5.22]邵卓平,任海青,江泽慧.木材横纹理断裂及强度准则.林业科学.2003.39(1):119-125
    [5.23]杨明纬.声发射检测.北京:机械工业出版社,2005.pp15-16
    [6.1]韩健、郭泽球.竹胶合板生产工艺[M].中国林业出版社,1999年3月第1版
    [6.2]Chuma S,Hirohashi M,Ohgama T,Kasahara Y(1990) Composite structure and tensile properties of mousou bamboo(in Japanese).Zairyou 39:847-851
    [6.3]李世红,付绍云,周本濂,曾其蕴.竹子——一种天然生物复合材料的研究.材料研究学报,1994,8(2):188-192
    [6.4]Inokuchi Y,Fushitani M,Chuma S,Ozawa M,Kubo T,Sato K(1997) Effects of volume fraction of bundle sheath on the vibrational properties of bamboo(in Japanese).Mokuzai Gakkaishi 16 43(5):391-398
    [6.5]Inokuchi Y,Fushitani M,Kubo T,Sato K(2002).Effects of volume fraction of bundle sheath and water extractives on bending creep behavior of bamboo undFor Peer Reviewer changing moisture conditions(in Japanese).Mokuzai Gakkaishi 48(6):413-424
    [6.6]Obataya E,Kitin P,Yamauchi H(2007) Bending characteristics of bamboo(Phyllostachys pubescens) with respect to its fiber-foam composite structure.Wood Sci Technol 41:385-400
    [6.7]Deshpande AP,Rao MB,Rao CL.Extraction of Bamboo Fibers and Their Use as Rein foreement in Polymeric Composites Journal of Applied Polymer Science,2000(1):83-92
    [6.8]江泽慧,孙正军,任海青.先进生物质复合材料在风电叶片中的应.用复合材料学报,2006,23(3):127-129
    [6.9]孙正军,程强,江泽慧.竹质工程材料的制造方法与性能.复合材料学报,2008,24(1):80-83
    [6.10]邵卓平,黄盛霞,吴福社,周亮.毛竹节间材与节部材的构造与强度差异研究.竹子研究汇刊,(2008)27(2):48-52
    [6.11]Roelofsen,R A.,The Plant Cell-Wall.Gegruder Borntraeger,Berline-Nikolassee,1959,pp.126-189.
    [6.12]琼斯.复合材料力学[M].上海:科学技术出版社,1981.18-51
    [6.13]乔生儒.复合材料细观力学性能[M].西安:西北工业大学出版社,1997:52-62
    [7.1]Ahmad M,Kamke F A(2005) Analysis of calculate bamboo for structural composite materials:physical and mechanical properties.Wood Sci Technol 39(6):448-459
    [7.2]Obataya E,Kitin P,Yamauchi H(2007) Bending characteristics of bamboo(Phyllostachys pubescens) with respect to its fiber-foam composite structure.Wood Sci Technol 41:385-400
    [7.3]虞华强,费本华,任海青,江泽慧,刘杏娥.毛竹顺纹抗拉性质的变异及与气干密度的关系.林业科学,2006,42(3):72-76
    [7.4]韩健、郭泽球.竹胶合板生产工艺[M].中国林业出版社,1999年3月第1版
    [7.5]曾其蕴,李向红,鲍贤镕(1992)竹节对竹材力学强度影响的研究.林业科学,28(3):247-252
    [7.6]Hodgkinson J M(2000) Mechanical testing of advanced fibre composites.Woodhead Publishing and CRC Press,Cambridge
    [7.7]Triboulot P,Jodin P,Pluvinage G(1984) Validity of fracture mechanics concept applied to wood by finit element calculation.Wood Sci Technol 18(6):448-459
    [7.8]American Society of Testing Materials(ASTM)(2001) Standard Test Method for Mode 1Interlaminar Fracture Toughness of Unidirectional Fiber-Reinforced Polymer Matrix Composites.Annual book of ASTM standards.Philadelphia,PA,D 5528-01
    [7.9]董雁瑾,杨海升,白以龙.玻璃纤维增强复合材料的Ⅰ型层间断裂韧性.材料研究学报1999,13(2):147-152
    [7.11]Reiterer A,Tschegg S(2002) The influence of moisture content on the mode Ⅰ fracture behaviour of sprucewood.J Mater Sci 37:4487-4491
    [7.12]马灵飞,马乃训(1997)毛竹材材性变异的研究.林业科学,33(4):357-364
    [7.13]于志成,矫桂琼.复合材料在DCB试验中的裂纹尺寸效应.航空材料学报,1996,16(4):46-53
    [7.14]国家技术监督局(1995)中华人民共和国国家标准,竹材物理力学性质试验方法,GB/T 15780-1995
    [7.15]Barette J D,Foschi R O.Mode Ⅱ stress intensity factors for cracked wood.Engineering Fracture Mechanics,1977,9:371
    [7.16]Russell A J,Street K N.Moisture and temperature effects on the mixed-mode delamination fracture of materials.ASTM STP876,1985,349
    [7.17]Carsson L A,Gillespie J W Jr,Pipes R P.On the Analysis and Design of the End Notched Flexure (ENF) Specimen for Mode Ⅱ Testing,J ComposMater,1986,20
    [7.18]Reeder J R,Crews Jr J H.Mixed-mode bendin method for delamination testing.AIAA Jounrnal.1990,28(7):1270-1276
    [7.19]张双演.纤维—基体界面强度与断裂韧性表征和测定.力学与实践.1990,21(4):30-32
    [7.20]杜善义,王彪.复合材料细观力学.北京:科学出版社,1998:161-237
    [7.21]中华人民共和国航空行业标准(HB7718.2-2002)Test method of interlaminar fracture toughness of carbon fiber compsite laminates in hot-wet environments.Part 2:test method of mode Ⅱ interlaminar fracture toughness.2002-11-20发布
    [7.22]Russell AJ,Street KN(1985) Moisture and temperature effects on the mixed-mode delamination fracture of unidirectional graphite/epoxy.ASTM STP 876:340-370
    [7.23]Fonselius M,Riipola R(1992) Determination of Fracture Toughness for Wood.Journal of Strutural Engineering,118(7):1727-1740
    [8.1]关锡鸿,冼定国,叶颖薇.竹材——一种天然的复合材料.复合材料学报,1987(4):79-83
    [8.2]冼杏娟,冼定国.竹材的断裂特性.材料科学进展.1991,5(4):336-341
    [8.3]杜善义,王彪.复合材料细观力学.北京:科学出版社,1998:161-237
    [8.4]沈观林,胡更开.复合材料力学.清华大学出版社,2006
    [8.5]Outwater J O,Murphy M C.The Influence of Enviroment and Class Finishes on the Fracture Energy of Glass-epoxy Jionts.Proc.24th Conf.SPI,1993
    [8.6]Cooper G A,Kelly A.Mechanics of composite Materials.In:Wenat F Weds,London:Pergamon Prss,Oxford,1970:653
    [8.7]曾其蕴,李向红,鲍贤镕.竹节对竹材力学强度影响的研究.林业科学.1992.28(3):247-252
    [8.8]Piggott MR(1970) theoretical Estimation of Fracture Toughness of Fiber composites.J.mater.Sci.,5:669
    [8.9]Beaumont PWR,Fitz-Randolph J,Phillips DC & Telelman AS(1971) J.Comp.Mater.,5:542
    [8.10]Ashby MF,Easterling KE,Harrysson R,Maiti SK.The fracture and toughness of woods.Proc R Soc Lond A 1985;398:261-80.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700