用户名: 密码: 验证码:
无粘性土的减载弹塑性分析
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
土的本构关系研究是土力学的核心内容。普遍存在的减载体缩现象是导致砂土液化和破坏的重要因素,但尚难以用现有土的弹塑性本构模型合理解释。零应变方向的主应力对平面应变状态下土的强度和变形均有重要影响,认识土的弹塑性特性是正确确定零应变方向主应力的前提。研究土在减载和往复荷载下的弹塑性特性,建立反映土减载屈服的弹塑性本构模型,具有重要的学术价值和工程意义。本文以分析无粘性土的减载弹塑性特性为目标,开展系统的研究工作,主要取得了以下成果:
     1.通过机理分析和试验研究,探讨了无粘性土的减载弹塑性特性及其机理。阐明可恢复变形并不都是弹性变形,减载体缩是剪应力减小引起的塑性体积变形,是减载屈服的宏观表现。指出减载屈服与土体内部结构改变密切相关,是土的弹塑性的重要体现。提出由于反向摩擦作用,减载过程存在初始弹性区。分析试验中体应变的变化规律,确定减载初始弹性区范围,通过试验和计算证明其适用性。提出考虑减载屈服情况下确定弹性模量及分离弹塑性应变的方法。
     2.在土的清华模型基础上建立了反映土减载屈服的弹塑性本构模型,并对其有效性进行验证。模型考虑了应力引起的各向异性及变形历史的影响,在减载过程中令屈服面和等向硬化轴旋转,采用以任意等效应力点为起点的硬化规律形式,根据试验结果分别确定初始加载-减载-再加载过程的屈服面和硬化参数,将清华弹塑性模型推广到往复加载情况。模型能合理反映应力应变曲线滞回圈,加载剪胀和减载体缩等变形现象,体现土往复加载的弹塑性特性。
     3.研究了平面应变减载的弹塑性特性以及零应变方向主应力的变化规律。阐明零应变方向的主应力完全取决于土的本构关系,在不同条件下可能为小主应力、中主应力或者大主应力。用反映减载弹塑性的本构模型合理预测了零应变方向的主应力。通过对平面应变减载的弹塑性分析,指出发生减载屈服是保证平面应变条件和极限平衡条件的需要,揭示了减载过程中零应变方向的主应力经历从小主应力变为中主应力直至大主应力的转换过程,最终趋向于极限平衡状态等重要变形规律,深化了对土的弹塑性特性以及平面应变条件的认识。
Constitutive relationship of soil plays a key role in soil mechanics. Ubiquitous volume-retraction during load-decreasing process is an important factor leading to liquefaction and failure of saturated sand, which could not be reasonably explained by existing elastic-plastic constitutive models of soil. Principal stress in the direction of zero principal strain has significant effect on strength and deformation of soil in plane strain state. In order to predict the principal stress in the direction of zero principal strain correctly, it is necessary to understand elastic-plastic behavior of soil during load-decreasing process. An elastic-plastic constitutive model proposed embodying yield characteristic during load-decreasing process is of special academic and practical value. Elastic-plastic behavior of cohensionless soil during load decreasing and reloading processes was studied and the main issues were summarized as follows.
     1. Based on experimental and theoretical studies, mechanism of elastic-plastic behavior of cohensionless soil has been explored. It was revealed that the reversible deformation is not elastic on occasion. Volume-retraction during load-decreasing process is a kind of plastic volume deformation due to shear stress decreasing, which represents yielding during load-decreasing process on a macro-scale. Yielding during load-decreasing process as characteristic of elastic-plastic behavior is introduced by the micro-structure change of cohensionless soil. Due to reverse friction, in load-decreasing process there is an initializing elastic region, which was decided by volume strain change in conventional triaxial compression tests and proved by both contrast tests and numerical simulations. A method has been proposed to obtain elastic moduli and device strain into elastic and plastic parts considering yield characteristic during load-decreasing process.
     2. Based on Tsinghua Elastic-Plastic Model of Soil, an elastic-plastic constitutive model embodying yield characteristic during load-decreasing process has been developed taking account of anisotropy induced by stress and effect of deformation history. In the model, yield surface and isotropic hardening axis rotate during load-decreasing process and the express of hardening mechanism adopts alterable equivalent stress point as initial state. In addition, yield surface and hardening parameters during primary loading, load-decreasing and reloading processes were obtained from experimental data respectively. The model is proved to capture elastic-plastic behavior which includes hysteresis loop of stress recycle and dilatancy during loading process and volume-retraction during load-decreasing process. It is an extension of the existing Tsinghua Elastic-Plastic Model of Soil to load decreasing and reloading processes.
     3. Elastic-plastic behavior and evolution of principal stress in the direction of zero principal strain during loading and load-decreasing process were studied in plane strain state. Principal stress evolution in the direction of zero principal strain is entirely determined by constitutive relationship of soil, which may be major, intermediate or minor principal stress in different conditions. The model embodying elastic-plastic behavior during load-decreasing process was applied to predict reasonably principal stress in the direction of zero principal strain compared with experiments. Through analyzing elastic-plastic behavior, some conclusions could be obtained as below. In order to ensure deformation and stress boundary conditions in plane strain state, yielding during load-decreasing process should be embodied. Principal stress in the direction of zero principal strain changes from minor via intermediate to major principal stress and tends to state of limit equilibrium eventually. The conclusions above provide a deep insight into elastic-plastic behavior of soil and plane strain condition.
引文
[1] 李广信.土力学的学科特点和教学方法.土力学教育与教学——第一届全国土力学教学研讨会论文集.北京:人民交通出版社,2006.27~32
    [2] 沈珠江.理论土力学.北京:中国水利水电出版社,2000
    [3] Roscoe K H,Schofield A N and Thurairajah A.Yielding of clays in states wetter than critical.Geotechnique,1963,13(3):211~240
    [4] Roscoe K H and Burland J B.On the generalized stress-strain behavior of ‘wet’ clay.In:Engineering Plasticity,edited by Heyman J and Leckie F A,Cambridge University Press,Cambridge,1968.535~609
    [5] Lade P V and Duncan J M.Elasto-plastic stress-strain theory for cohesionless soil.Journal of Geotechnical Engineering Division,ASCE,1975,101(GT10):1037~1053
    [6] Lade P V.Elasto-plastic stress-strain theory for cohesionless soil with curved yield surfaces.International Journal of Solids and Structures,1977,13:1019~1035
    [7] Kim M K and Lade P V.Single hardening constitutive model for frictional materials,I.Plastic potential function.Computers and Geotechnics,1988,5:307~324
    [8] Lade P V and Kim M K.Single hardening constitutive model for frictional materials,II.Yield criterion and plastic work contours.Computers and Geotechnics,1988,6:13~29
    [9] Lade P V and Kim M K.Single hardening constitutive model for frictional materials,III.Comparisons with experimental data.Computers and Geotechnics,1988,6:31~47
    [10] 濮家骝,李广信.土的本构关系及其验证和应用.岩土工程学报,1986,8(1):47~82
    [11] Duncan J M and Chang C Y.Nonlinear Analysis of stress and strain in soils.Journal of Soil Mechanics and Foundations Division,ASCE,1970,96(SM5):1629~1653
    [12] 殷宗泽.一个土体的双屈服面应力-应变模型.岩土工程学报,1988,10(4):64~71
    [13] 沈珠江.土的弹塑性应力应变关系的合理形式.岩土工程学报,1980,2(2):11~19
    [14] 黄文熙,濮家骝,陈愈炯.土的硬化规律和屈服函数.岩土工程学报,1981,3(3):19~26
    [15] 李广信.土的本构关系研究的发展.建筑环境与结构工程最新进展.杭州:浙江大学出版社,1995.190~209
    [16] Mroz Z.On the description of anisotropic work hardening.Journal of Mechanics and Physics of Solids,1967,15:163~175
    [17] Iwan W D.On a class of models for the yielding behavior of continuous and composite systems.Journal of Applied Mechanics,1967,34:612~617
    [18] Prevost J H . Mathemetical modeling of monotonic and cyclic undrained clay behaviour.International Journal for Numerical and Analytical Methods in Geomechanics,1977,1(2):195~216
    [19] Prevost J H.Anisotropic undrained stress-strain behavior of clay.Journal of Geotechnical Engineering Division,ASCE,1978,104(GT8):1075~1090
    [20] Prevost J H.Plasticity theory for soil stress-strain behavior.Journal of Engineering Mechanics Division,ASCE,1978,104(EM5):1177~1194
    [21] Mroz Z,Norris V A and Zienkiewicz O C.An anisotropic critical state model for soils subjected to cyclic loading.Geotechnique,1981,31(4):451~469
    [22] Prevost J H.A simple plastic theory for frictional cohesionless soils.Soil Dynamics and Earthquake Engineering,1985,4(1):9~17
    [23] Mroz Z.On hypoelasticity and plasticity approaches to constitutive modeling of inelastic behavior of soils.International Journal for Numerical and Analytical Methods in Geomechanics,1980,4:45~55
    [24] Prevost J H . Two-surface versus multi-surface plasticity theories : a critical assessment . International Journal for Numerical and Analytical Methods in Geomechanics,1982,6:323~338
    [25] Dafalias Y F and Popov E P.A model for nonlinearly hardening materials for complex loading.Acta Mechanica,1975,21:173~192
    [26] Krieg R D.A practical two-surface plasticity theory.Journal of Applied Mechanics,1975,42:641~646
    [27] Mroz Z,Norris V A and Zienkiewicz O C.An anisotropic hardening model for soils and its application to cyclic loading.International Journal for Numerical and Analytical Methods in Geomechanics,1978,2:203~221
    [28] Mroz Z,Norris V A and Zienkiewicz O C.Application of an anisotropic hardening model in the analysis of elastoplastic deformation of soils.Geotechnique,1979,29(1):1~34
    [29] Dafalias Y F and Herrmann L R.A bounding surface soil plasticity model.International Symposium on Soils under Cyclic and Transient Loading,Swansea,United Kingdom,1980,1:335~346
    [30] Dafalias Y F and Herrmann L R.Boundary surface formulation of soil plasticity.In:Soil Mechanic Transient and Cyclic Loads,edited by Pande G N and Zienkiewicz O C,John Wiley and Sons,New York,1982.253~282
    [31] Bardet J P.Boundary surface plasticity model for sands.Journal of Geotechnical Engineering,ASCE,1986,112(11):1198~1217
    [32] Pietruszczak S and Stolle D F E . Modeling of sand behavior under earthquake excitation.International Journal for Numerical and Analytical Methods in Geomechanics,1987,11(3):221~240
    [33] Lade P V and Boonyachut S.Large stress reversals in triaxial tests on sand.Proceedings of the 4th International Conference on Numerical Methods in Geomechanics.Edmonton,Canada,1982:171~182
    [34] Poorooshab H B and Pietruszczak S.On yielding and flow of sand:a generalized two-surface model.Computer and Geotechnics,1985,1:33~58
    [35] Lade P V and Kim M K.Single hardening constitutive model for soil,rock and concrete.International Journal of Solids and Structures,1995,32(14):1963~1978
    [36] Lade P V and Inel S.Rotational kinematic hardening model for sand,Part I Concept of rotating yield and plastic potential surfaces.Computer and Geotechnics,1997,21(3):183~216
    [37] Inel S and Lade P V.Rotational kinematic hardening model for sand,Part II Characteristic work hardening law and predictions.Computer and Geotechnics,1997,21(3):217~234
    [38] Hashiguchi K and Chen Z P.Elastoplastic constitutive equation of soil with subloading surface and rotational hardening.International Journal for Numerical and Analytical Methods in Geomechanics,1998,22:197~227
    [39] Dafalias Y F . Bounding surface plasticity , I : Mathmatical foundation and hypoplasticity.Journal of Engineering Mechanics,ASCE,1986,112(9):966~987
    [40] Dafalias Y F and Leonard H R.Bounding surface plasticity,II:Application to isotropic cohesive soils.Journal of Engineering Mechanics,ASCE,1986,112(12):1263~1291
    [41] Anandarajah A and Dafalias Y F.Bounding surface plasticity,III:Application to anisotropic cohesive soils.Journal of Engineering Mechanics,ASCE,1986,112(9):1292~1319
    [42] Wang Z L,Dafalias Y F and Shen C K.Bounding surface hypoplasticity model for sands.Journal of Engineering Mechanics,ASCE,1990,116(5):983~1001
    [43] Bardet J P.Hypoplastic model for sands.Journal of Engineering Mechanics,ASCE,1990,116(9):1973~1994
    [44] Wu W and Bauer E.A simple hypoplastic model for sand.International Journal for Numerical and Analytical Methods in Geomechanics,1994,18:833~862
    [45] 栾茂田,吴兴征,李相崧.堆石料的亚塑性边界面模型及其验证.岩石力学与工程学报,2001,20(2):164~170
    [46] Hashiguchi K . Constitutive equations of elastoplastic materials with elastic-plastic transition.Journal of Applied Mechanics,1980,47:266~272
    [47] Hashiguchi K.Subloading surface model in unconventional plasticity.International Journal of Solids and Structure,1989,25(8):917~945
    [48] Hashiguchi K.Fundamental requirements and formulation of elastoplastic constitutive equations with tangential plasticity.International Journal of Plasticity,1993,9:525~549
    [49] Hashiguchi K . Mechanical requirements and structures of cyclic plasticity models.International Journal of Plasticity,1993,9:721~748
    [50] Chowdhury E Q,Nakai T and Tawada M et al.A model for clay using modified stress under various loading conditions with application of subloading concept.Soils and Foundations,1999,39(6):103~116
    [51] Asaoka A,Nakano M and Noda T.Superloading yield surface concept for highly structured soil behavior.Soils and Foundations,2000,40(2):99~110
    [52] Schofield A N and Worth C P.Critical state soil Mechanics.McGraw-Hill,New York,1968.
    [53] 沈珠江.土的三重屈服面应力应变模式.固体力学学报,1982,2:163~174
    [54] 郑颖人,严德俊.基于试验拟合的土的多重屈服面模型.第五届全国岩土力学数值分析与解析方法讨论会论文集.武汉:武汉测绘大学出版社,1994.9~14
    [55] Zienkiewicz O C.广义塑性力学和地力学的一些模型.应用数学与力学,1982,3(3):267~279
    [56] Pastor M,Zienkiewicz O C and Chan A H C.Generalized plasticity and modeling of soil behaviour.International Journal for Numerical and Analytical Methods in Geomechanics,1990,14(3):151~190
    [57] 杨光华.建立弹塑性本构关系的广义塑性位势理论.第二届全国土力学数值分析与解析方法讨论会论文集.珠海,1988.140~148
    [58] 杨光华.岩土类工程材料的多重势面弹塑性本构方程理论.岩土工程学报,1991,15(5):100~107
    [59] 杨光华.土的本构模型的数学理论及其运用[博士学位论文].北京:清华大学,1998
    [60] 郑颖人,刘元雪.塑性位势理论的发展及其在岩土本构模型中的应用.现代力学与科技进步文集.北京:清华大学出版社,1997.1115~1118
    [61] 郑颖人.广义塑性力学理论——广义塑性力学讲座(1).岩土力学,2000,21(2):188~192
    [62] 郑颖人,段建立,陈瑜瑶.广义塑性力学中的屈服面与应力-应变关系——广义塑性力学讲座(2).岩土力学,2000,21(3): 305~308
    [63] 郑颖人,陈瑜瑶,段建立.广义塑性力学的加卸载准则与土的本构模型——广义塑性力学讲座(3).岩土力学,2000,21(4): 426~429
    [64] Valanis K C.A theory of visoplasticity without a yield surface.Archives of Mechanics,1971,23(4):517~551
    [65] Valanis K C.Fundamental consequences of a new intrinsic time measure-plasticity as limit of the endochronic theory.Archives of Mechanics,1980,32(2):171~191
    [66] Bazant Z P and Krizek R J.Endochronic constitutive law for liquefaction of sand.Journal of Engineering Mechanics,Div.ASCE,1976,102(2):225~238
    [67] 沈珠江.结构性粘土的弹塑性损伤模型.岩土工程学报,1993,15(3):21~28
    [68] Katti D R and Desai C S.Modeling and testing of cohesive soil using disturbed-state concept.Journal of Engineering Mechanics,ASCE,1995,121(5):648~658
    [69] Matsuoka H.Stress strain relationship of sand based on the mobilized plane.Soils and Foundations,1974,14(2):47~61
    [70] Iai S,Matsunaga Y and Keneoka T.Strain space plasticity model for cyclic mobility.Soils and Foundations,1992,32(2):1~15
    [71] 陈生水,沈珠江,郦能惠.复杂应力路径下无粘性土的弹塑性数值模拟.岩土工程学报,1995,17(2):20~28
    [72] 沈珠江.复杂荷载下砂土液化变形的结构性模型.第五届全国土动力学学术会议论文集.大连:大连理工大学出版社,1998:1~10
    [73] 章根德,韦昌富.循环荷载下砂质土的本构模型.固体力学学报,1998,19(4):299~304
    [74] 邱长林,阎澍旺,张敬.反复荷载作用下饱和砂土的一种普遍弹塑性模型.水利学报,1998,12:42~46
    [75] 刘元雪,郑颖人.考虑主应力轴旋转对土体应力应变关系影响的一种新方法.岩土工程学报,1998,20(2):45~47
    [76] Matsuoka H,Yao Y P and Sun D A.The Cam-Clay model revised by the SMP criterion.Soils and Foundations,1999,39(1):81~95
    [77] Yao Y P and Sun D A.Application of Lade’s criterion to Cam-Clay model.Journal of Engineering Mechanics,ASCE,2000,126(1):112~119
    [78] Yao Y P,Luo T,Sun D A and Matsuoka H.A simple 3-D constitutive model for both clay and sand.Chinese Journal of Geotechnical Engineering,2002,24(2):240~246
    [79] 邵生俊,谢定义.饱和砂土的物态变化特性.岩土工程学报,2001,23(1):58~60
    [80] 邵生俊,谢定义.砂土的物态本构模型.岩土力学,2002,23(6):667~672
    [81] 周健,孙吉主,吴世明.往复荷载下软土的边界面广义弹塑性模型.岩石力学与工程学报,2002,21(2):210~214
    [82] 罗刚.粒状土的可逆性和不可逆性变形规律与循环本构模型研究[博士学位论文].北京:清华大学,2004
    [83] Mitchell J K.Fundamentals of soil Behavior.Second Edition,New York:Willey & Sons,1993
    [84] Oda M and Iwashita K.Mechanics of Granular Materials:An introduction.Rotterdam,Netherlands:A.A.Balkema Publishers,1999
    [85] 施斌.粘性土微观结构研究回顾与展望.工程地质学报,1996,4(1):39~44
    [86] 施斌,姜洪涛.粘性土的微观结构分析研究技术.岩石力学与工程学报,2001,20(6):864~870
    [87] Taylor D W.Fundamentals of soil Mechanics.New York:John Willey,1948
    [88] Newland P L,Allely B H.Volume Changes in Drained Triaxial Tests on Granular Materials.Geotechnique,1957(7):17~34
    [89] de Josselin de Jong G.Rowe’s sress-dilatancy relation based on friction.Geotechnique,1976,26(3):527~534
    [90] Matsuoka H.On the significance of the spatial mobilized plane.Soils and Foundations,1976,16(1):91~100
    [91] Part P C and Bazant Z P.Microplane model for triaxial deformation of saturated cohesive soils.Journal of Geotechnical Engineering,ASCE,1991,117(6):891~912
    [92] Oda M,Konoshi J and Nemat-Nasser S.Some experimentally based fundamental results on the mechanical behaviour of granular materials.Geotechnique,1980,30(4):479~495
    [93] Oda M,Konishi J and Nemat-Nasser S.Experimental micromechanical evaluation of strength of granular materials:Effect of particle rolling.Mechanics of Materials,1982,1:269~283
    [94] Oda M and Kazama H.Microstructure of shear band and its relation to the mechanisism of dilatancy and failure of dense granular soils.Geotechnique,1998,48(4):465~481
    [95] Iwashita K and Oda M.Rotational resistance at contacts in the simulation of shear band development by DEM.Journal of Engineering Mechanics,ASCE,1998,124(3):285~292
    [96] Chang C S,Chang Y and Kabir M G.Micromechanics modeling for stress-strain behavior of granular soils,I:theory.Journal of Geotechnical Engineering,ASCE,1992,118(12):1959~1974
    [97] Chang C S,Chang Y and Kabir M G.Micromechanics modeling for stress-strain behavior of granular soils,II:evaluation.Journal of Geotechnical Engineering,ASCE,1992,118(12):1975~1992
    [98] Chang C S,Misra A and Acheampong K.Elastoplastic deformation of granulates with frictonal contacts.Journal of Engineering Mechanics,ASCE,1992,118(8):1692~1708
    [99] Chang C S and Gao J.Second-gradient constitutive theory for granular material with random packing structure.International Journal of Solids and Structure,1995,32(16):2279~2293
    [100] Chang C S and Gao J.Kinematic and static hypothese for constitutive modeling of granulates considering particle rotation.Acta Mechanica,1996,115(1-4):213~229
    [101] Matsuoka H.A microscopic study on shear mechanism of granular materials.Soils and Foundations,1974,14(1):29~61
    [102] Matsuoka H and Yamamoto S.A microscopic study on shear mechanism of granular materials by DEM and experiments.In:Powders and Grains,edited by Thornton C,1993,93:155~160
    [103] Shen Z J.A granular medium model for liquefaction analysis of sand.Chinese Journal of Geotechnical Engineering,1999,21(6):742~748
    [104] 沈珠江.结构性粘土的非线性损伤力学模型.水利水运科学研究,1993,4:247~255
    [105] 沈珠江.结构性粘土的堆砌体模型.岩土力学,2000,21(1):1~4
    [106] 沈珠江.现代土力学的基本问题.力学与实践,1998,20(6):1~6
    [107] Lizak M J,Conradi M K and Fry C G.NMR Imaging of gas imbibed into porous ceramic.Journal of Magnetic Research,1991,95:548~557
    [108] Konagai K,Tamura C,Rangelow P and Matsushima T.Laser-Aided Tomography:A tool for Visualization of changes in the frabric of granular assemblage.Structural Engineering / Earthquake Engineering,1992,9(3):193~201
    [109] Tanaka Y and Shirakawa K.Effect of fabric anisotropy on yield locus of sand.Proc. 10th Asian Regional Conf. on SMFE,1995,1:87~90
    [110] Kuo C Y and Frost J D.Initial fabric and uniformity of a sand specimen:An image analysis approach.In:Mechanics of Deformation and Flow of Particulate Material,edited by Chang C S et al,ASCE,1997.214~227
    [111] Lanier J and Combe G.An experimental study of deformation in 2D granular media.In:International Workshop on Homogenization,Theory of Migration and Granular bodies,edited by Dembicki,Auriault and Sikora,1995.232~239
    [112] Calvetti F,Combe G and Lanier J.Experimental micro-mechanical analysis of a 2D-granular material:relation between structure evolution and loading path.Mechanics of Cohesive-frictional Materials,1997,2:121~163
    [113] Matsuoka H 著,罗汀,姚仰平译.土力学.北京:中国水利水电出版社,2001
    [114] Cundall P A and Hart R D . Numerical modeling of discontinua . Engineering Computations,1992,9:101~113
    [115] Shi G H and Goodman R E.Generalization of two-dimensional discontinuous deformation analysis for forward modeling.International Journal for Numerical and Analytical Methods in Geomechanics,1989,13(4):359~380
    [116] Bardet J P.Numerical simulations of the incrtemental responses of idealized granular materials.International Journal of Plasticity,1994,10(8):879~908
    [117] Bardet J P.Observation on the effects of particle rotations on the failure of idealized granular materials.Mechanics of Materials,1994,18:159~182
    [118] Thornton C . Numerical simulations of deviatoric shear deformation of granular media.Geotechnique,2000,50(1):43~53
    [119] Ng T T and Dobry R.Numerical simulations of monotonic and cyclic loading of granular soil.Journal of Geotechnical Engineering,ASCE,1994,120(2):388~403
    [120] Henkel D J.The relationship between the strength,pore-water pressure and volume change characteristics of saturated clay.Geotechnique,1959,9(3):119~135
    [121] 魏汝龙.正常压密粘土的塑性势.水利学报,1964,6:9~19
    [122] Wroth C P and Bassett A H.A stress-strain relationship for the shearing behavior of a sand.Geotechnique,1965,15(1):32~56
    [123] Poorooshasb H B,Holubec I and Sherbourne A N.Yielding and flow of sand in triaxial compression:Part I.Canadian Geotechnical Journal,1966,3(4):179~190
    [124] Poorooshasb H B,Holubec I and Sherbourne A N.Yielding and flow of sand in triaxial compression:Part II and III.Canadian Geotechnical Journal,1967,4(4):376~397
    [125] Dimaggio F L and Sandler I S.Material model for granular soils.Journal of Engineering Mechanics Division,ASCE,1971,97(EM3):935~950
    [126] Sandler I S,Dimaggio F L and Baladi G Y.Generalized cap model for geological materials.Journal of Geotechnical Engineering Division,ASCE,1976,102(GT7):683~699
    [127] Li X S,Dafalias Y F and Wang Z L.State dependent dilatancy in critical state constitutive modeling of sand.Canadian Geotechnical Journal,1999,36(4):599~611
    [128] Li X S,Dafalias Y F.Dilatancy for cohesionless soil.Geotechnique,2000,50(4):499~460
    [129] Li X S.A sand model with state-dependent dilatancy.Geotechnique,2002,52(3):173~186
    [130] Lade P V and Nelson R B . Modeling the elastic behavior of granular materials.International Journal for Numerical and Analytical Methods in Geomechanics,1987,11:512~524
    [131] Lade P V,Nelson R B and Ito Y M.Nonassociated flow and stability of granular materials.Journal of Engineering Mechanics,ASCE,1987,113(9):1302~1318
    [132] Lade P V,Nelson R B and Ito Y M.Instability of granular materials with nonassociated flow.Journal of Engineering Mechanics,ASCE,1988,114(12):2173~2191
    [133] Lade P V.Single-hardening model with application to NC clay.Journal of Geotechnical Engineering,ASCE,1990,116(3):394~414
    [134] Lade P V and Pradel D. Instability and plastic flow of soils, I: Experimental observations.Journal of Engineering Mechanics,ASCE,1990,116(11):2532~2550
    [135] Pradel D and Lade P V . Instability and plastic flow of soils , I : Analytical investigation.Journal of Engineering Mechanics,ASCE,1990,116(11):2551~2566
    [136] Lade P V.Static instability and liquefaction of loose fine sandy slopes.Journal of Geotechnical Engineering,ASCE,1992,118(1):51~71
    [137] Lade P V.Instability and liquefaction of granular materials.Computer and Geotechnics,1994,16:123~151
    [138] Yamamuro J A and Lade P V.Steady state concepts and static liquefaction of silty sands.Journal of Geotechnical and Geoenvironmental Engineering,ASCE,1998,124(9):868~877
    [139] De Melo L T B . Rotational kinematic hardening model for sand behavior.Ph.D.Dissertation,Johns Hopkins University,Baltimore,USA,1999
    [140] Abelev A V.Cross-anisotropic behavior of granular materials under three-dimensional loading conditions.Ph.D.Dissertation,Johns Hopkins University,Baltimore,USA,2001
    [141] Gutta S K.Modeling large three dimensional stress reversals in cross-anisotropic sands.Ph.D.Dissertation,University of Delaware,Newwark,USA,2003
    [142] 沈珠江.土石料的流变模型及其应用.水利水运科学研究,1994,4:335~342
    [143] 陈铁林,陈生水,周成,沈珠江.粘土的流变特性分析.岩土工程学报,2001,23(3):279~283
    [144] 张嘎.粗粒土与结构接触面静动力学特性及弹塑性损伤理论研究[博士学位论文].北京:清华大学,2002
    [145] 李广信.堆石料的湿化试验和数学模型.岩土工程学报,1990,12(5):58~64
    [146] 沈珠江.黄土的损伤力学模型探索.中国土木工程学会第七届土力学及基础工程学术会议论文集.北京:中国建筑工业出版社,1994.145~149
    [147] 杨代泉.非饱和土的广义固结理论及其数值模拟和试验研究[博士学位论文].南京:南京水利科学研究院,1990
    [148] 陈正汉,周海清,Fredlund D G.非饱和土的非线性模型及其应用,岩土工程学报,1999,21(5):603~608
    [149] 黄文熙.土的弹塑性应力应变模型理论.清华大学学报,1979,19(1)
    [150] 李广信.黄文熙讲座——土的清华弹塑性模型及其发展.岩土工程学报,2006,28(1):1~10
    [151] 孙亚平.确定土的弹塑性本构模型参数的研究[硕士学位论文].北京:清华大学,1982
    [152] 李广信.土的三维本构关系的探讨与模型验证[博士学位论文].北京:清华大学,1985
    [153] LI Guang-xin,PUI Jia-liu.Determination and verification of yield loci on the deviatoric plane of elasto-plastic model of soil . Proceedings of International Conference of Computational Plasticity, 1987
    [154] 司韦.非饱和土的增湿试验和模型研究[硕士学位论文].北京:清华大学,2006
    [155] 郭瑞平.土应变软化性状的弹塑性模拟[博士学位论文].北京:清华大学,1998
    [156] 魏汝龙.论土的剪胀性.水利学报,1963,6:31~40
    [157] Lade P V and Duncan J M.Stress-path dependent behaviour of cohesionless soil. Journal of Geotechnical Engineering,ASCE,1976,101(1):51~68
    [158] 李广信.应力路线对土的应力应变关系的影响[硕士学位论文].北京:清华大学,1980
    [159] 矫德全,陈愈炯.土的各向异性和卸载体缩.岩土工程学报,1994,16(4):9~15
    [160] Shamoto Y and Zhang J M.Mechanism of large post-liquefaction deformation in saturated sand.Soils and Foundations,1997,37(2):71~80
    [161] 黄文熙,濮家骝.硬化规律对土的弹塑性应力—应变模型影响的研究[研究报告].北京:清华大学水利系,1979
    [162] Towhata I and Ishihara K.Undrained strength of sand undergoing cyclic rotation of principal stress axes.Soils and Foundations,1985,25(2):135~147
    [163] Miura K,Shosuke and Miura S.Deformation prediction for anisotropic sand during the rotation of principal stresses axes.Soils and Foundation,1986,26(3):42~56
    [164] Masuoka H,Koyama H and Yamazaki H.A constitutive equation for sands and its application to analyses of rotational stress paths and liquefaction resistance.Soils and Foundations,1985,25(1):27~42
    [165] 张清慧.应力劳台角对孔压发展的影响[硕士学位论文].北京:清华大学,1992
    [166] 刘湘宁.饱和砂土流滑特性与不可逆体变特性的试验研究[硕士学位论文].北京:清华大学,1980
    [167] 沈珠江.复杂荷载下砂土液化变形的结构性模型.第五届全国土动力学学术会议论文集.大连:大连理工大学出版社,1998.1~10
    [168] 张建民.砂土的可逆性和不可逆性剪胀规律.岩土工程学报,2000,22(1):12~17
    [169] 李广信,郭瑞平.土的卸载体缩和可恢复剪胀.岩土工程学报,2000,22(1):158~161
    [170] 孔亮,段建立,郑颖人.慢速往复荷载下饱和砂土变形特性试验研究.工程勘察,2001(5):1~4
    [171] 刘元雪,施建勇.土的可恢复剪胀的一种解释.岩土力学,2002,23(3):304~308
    [172] 李广信,武世峰.土的卸载体缩的实验研究及机理探讨.岩土工程学报,2002,24(1):47~50
    [173] Oda M,Kazama H and Konishi J.Effects of induced anisotropy on the development of shear bands in granular materials.Mechanics of Materials,1998,28:103~111
    [174] 张国新,李广信,郭瑞平.不连续变形分析与土的应力应变关系.清华大学学报(自然科学版),2000,40(8):102~105
    [175] 何开胜.结构性粘土的微观变形机理和粘弹塑损伤模型研究[博士学位论文].南京:南京水利科学研究院,2001
    [176] 黄文熙.土的工程性质.北京:中国水利水电出版社,1983
    [177] 蒋彭年.土的本构关系.北京:科学出版社,1982
    [178] 李广信.高等土力学.北京:清华大学出版社,2004
    [179] 张建民,谢定义.饱和砂土动本构理论研究进展.力学进展,1994,24(2):187~202
    [180] 刘汉龙,余湘娟.土动力学与地震工程研究进展.河海大学学报,1999,27(1):6~15
    [181] 孔亮,王燕昌,郑颖人.土体动本构研究评述.宁夏大学学报(自然科学版),2001,22(1):17~40
    [182] 孙吉主,周健.往复荷载作用下土体的广义塑性分析.岩土力学,2001,22(2):126~129
    [183] 李广信,黄永男,张其光.土体平面应变方向上的主应力.岩土工程学报,2001,23(3):358~361
    [184] Ishihara K.liquefaction and flow failure during earthquake.Geotechnique,1993,43(3):349~415
    [185] 邱金营.应力路径对砂土应力-应变关系的影响.岩土工程学报,1995,17(2):75~82
    [186] Lee K L.Comparison of plane strain and triaxial tests on sand.Journal of Soil Mechanics and Foundation Division,ASCE,1970,96(SM3):901~923
    [187] Yu M H and He L N.A new model and theory on yield and failure of materials under the complex stress state.In:Mechanical Behavior of Materials-VI,Pergamon Press,Oxford,1991.841~846
    [188] 王仁,黄文彬,黄筑平.塑性力学引论.北京:北京大学出版社,1999
    [189] 沈珠江,盛树馨.土的应力应变理论中的唯一性假设.水利水运科学研究,1982,1:31~42
    [190] 王洪瑾.橡皮膜顺变性对三轴试验中体变和孔隙压力影响的试验研究[研究报告].北京:清华大学水利系,1983
    [191] Cornforth D H.Some experiments on the influence of strain condition on the strength of sand.Geotechnique,1964,14(2):143~167
    [192] Bishop A W . Sixth Rankine lecture : The strength of soil as engineering material.Geotechnique,1966,16(2):89~130
    [193] Satake M.Stress-deformation and strength characteristics of soil under three difference principal stresses.Proceedings of Japan Society of Civil Engineering,1976,246:137~138
    [194] 史宏彦,刘保健.确定平面应变条件下无粘性土中主应力的一个经验公式.西安公路交通大学学报,2001,21(1):19~22
    [195] 李刚,谢云,陈正汉.平面应变状态下粘性土破坏时的中主应力公式.岩石力学与工程学报,2004,23(18):3174~3177
    [196] 李树勤.平面应变条件下砂土本构关系的试验研究[硕士学位论文].北京:清华大学,1982
    [197] 黄永男.等应力比条件下砂土应力应变关系研究[硕士学位论文].北京:清华大学,1986
    [198] 史宏彦.无粘性土的矢量本构模型[博士学位论文].西安:西安理工大学,2000

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700