用户名: 密码: 验证码:
油溶性催化剂和助剂在渣油悬浮床加氢裂化中的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
考察了不同合成条件对油溶性催化剂的影响,筛选出较好的催化剂合成条件。利用显微照片、电子扫描电镜(SEM)、X射线衍射光谱(XRD)和激光粒度等手段对硫化后催化剂进行了表征。同时,采用高压反应釜模拟悬浮床加氢裂化研究了油溶性催化剂以及助剂对渣油悬浮床加氢裂化反应的影响,并对油溶性催化剂的作用机理做了解释。
     结果表明,合成油溶性Mo催化剂的优化条件为:反应物摩尔配比(化合物D:化合物E:化合物F)约为1:1:5~6左右、反应温度为220℃左右、反应时间约为4h。合成油溶性Co催化剂的优化条件为:化合物C盐溶液浓度约为15%。合成油溶性Ni催化剂合成的优化条件为:化合物A的浓度约为15%,原料配比(化合物F:化合物A)约为1:0.995、皂化反应温度约为95℃、皂化反应时间约为3h;复分解反应温度约为90℃、反应时间约为2h,复分解反应盐溶液浓度约为10%,采用逐滴滴加的方式加入。油溶性Co、Mo、Ni催化剂硫化后产物均发生了不同程度的颗粒团聚;油溶性Mo催化剂硫化后产物成微晶状态的MoS2(六方晶系)晶体;油溶性Ni催化剂硫化后产物以Ni3S2(六方晶系)晶体和微晶状态的NiS(六方晶系)晶体存在,且主要以Ni3S2晶体存在;油溶性Co催化剂硫化后产物以Co3S4(立方晶系)晶体和Co9S8(立方晶系)晶体存在,且Co9S8晶体所占比例略大于Co3S4晶体;油溶性Mo催化剂较之油溶性Co、Ni催化剂更容易硫化,在较低的温度下就能硫化。
     三种催化剂的加氢活性顺序:Mo>Co>Ni。油溶性Mo催化剂处理委内瑞拉-380渣油效果较佳,且在反应过程中具有一定的抗温性。油溶性复配催化剂Mo/Ni在反应过程中都起到了一定的协同效应。Mo/Ni催化剂硫化后形成了大量的颗粒状物质,Mo以非晶体状态的硫化物存在,能够更好的分散于油样,Ni以Ni7S6晶体存在。
     助催化剂单独临氢热裂化时,SA2起到一定的抑制生焦、结焦的作用;SA2与油溶性催化剂作用起到了明显的抑制结焦、生焦的作用,其最佳浓度在0.1%左右;同种类型的胺类与油溶性催化剂作用,碳链越长,壁相结焦越少。
The impact of synthesis conditions on oil-soluble catalyst was studied and the thesis screened out the better synthesis conditions. Post-sulfide catalysts were characterized by microscopic technique, scanning electron microscopy (SEM), X-ray diffraction (XRD) and laser particle. Simultaneously, effect of oil-soluble catalyst and co-catalyst on hydrocracking residue reaction was studied in autoclave simulating Slurry Phase Hydrocracking Reaction, and the mechanism of oil-soluble catalyst has been carried on the explanation.
     It was inferred that, the optimality condition of oil-soluble Mo catalyst: molar ratio of reactant (compound D: compound E: compound F) is about 1:1:5~6, reaction temperature is about 220℃,reaction time is about 4h. The optimality condition of oil-soluble Co catalyst: The concentration of compound C is about 15%. The optimality condition of oil-soluble Ni catalyst: the concentration of compound A is about 15%, raw materials ratio (compound F: compound A) is about 1:0.995, the temperature of saponification is about 95℃, the time of saponification is about 3h; the temperature of the metathetical reaction is about 90℃, the time is about 2h, the concentration of solution is about 10%, and drop gradually. Most of the oil-soluble catalysts reunite themselves in varying degree. The vulcanized products of oil-soluble Mo catalyst exist as the microcrystalline state of MoS2 (Rhombohedral). The vulcanized products of oil-soluble Ni catalyst exist as the crystal of Ni3S2 (Rhombohedral) and the microcrystalline state of NiS(Rhombohedral), mainly exists as the crystal of Ni3S2. The vulcanized products of oil-soluble Co catalyst exist as the crystal of both Co3S4(Cubic)and Co9S8(Cubic) and the proportion of Co9S8 is slightly larger than the Co3S4. The oil-soluble Mo catalyst can be vulcanized more easily than Ni catalyst, and at a lower temperature sulfuration.
     The order of hydrogenation activity is Mo> Co > Ni. The result is better while dealing with Venezuela-380 residue by oil-soluble Mo catalyst, and it has a certain anti-temperate during the reaction. Oil-soluble catalyst Mo/Ni have played a certain synergistic effect. Mo/Ni catalyst formed a large number of granular material in process of vulcanization. Mo catalyst existed as sulfide in non-crystalline form after vulcanizing, and could be better dispersed in the oil samples. Ni catalyst existed as Ni7S6.
     SA2 played a certain role in inhibiting coke when the hydrocracking of co-catalysts were studied; SA2 and oil-soluble catalysts have played a significant role in inhibiting coke formation, the optical concentration is about 0.1%. The longer the carbon-chain, the less coking of the wall , when the same type of amine and oil-soluble catalyst co-acted.
引文
[1]瞿国华.21世纪中国炼油工业的重要发展方向[J].中外能源, 2007,12(3):54-62
    [2]邓文安.在分散型催化剂下渣油及其组分临氢热反应行为的研究[D].石油大学博士论文,2005
    [3]梁文杰.重质油化学[M],山东:石油大学出版社,2000
    [4]王军,张忠清.渣油悬浮床加氢工艺研究[J].中国石化抚顺石油化工研究院.工业催化,2003,11(7):7-11
    [5]方磊,郭金涛.渣油悬浮床加氢研究现状及发展趋势[J].化工中间体,2008,9:4-8
    [6]刘晨光,阙国和,梁文杰.分散型磷钼酸铵催化剂下孤岛渣油的加氢裂化反应产物[J] .石油大学学报(自然科学版),1993,17(6):92-98
    [7]周家顺,刘东,梁士昌,等.渣油悬浮床加氢裂化催化剂的研究[J].石油大学学报(自然科学版),2000,24(3):26-29
    [8]周家顺,邓文安,刘东,等.尾油循环对渣油悬浮床加氢裂化的影响[J].石油学报(石油加工),2001,17(4):82-85
    [9] Que Guohe, Men Cungui, Meng Chunxu, et al. Heavy oil hydrocracking process with multimetallic liquid catalyst in slurry bed [P].USP6660157, USA, 2003
    [10]阙国和,王宗贤,沐宝泉,等.用于渣油悬浮床加氢裂化的多金属盐类复配催化剂[P]. ZL01109276.9,中国,2004
    [11]王英杰,张忠洋.我国渣油加氢处理技术分析[J].当代化工. 2007,36(3):221-223
    [12]王雷,辽宁石油化工大学石化学院石化系,渣油加氢催化剂的研究和应用[J],辽宁化工.2005,34(2):71-74,77
    [13] Moll N G, Quarderer G J.Emulsion catalyst for hydrogenation process[P].US Patent 4 172 814,Oct.,1979
    [14] Moll N G, Quarderer G J.Emulsion catalyst for hydrogenation process[P].US Patent 4 136 013,Jan.,1979
    [15]刘东,邓文安,周家顺,等.石油大学重质油国家重点实验室.水溶性分散型加氢催化剂催化作用的研究[J].燃料化学学报,2004,32(4):461-465
    [16]梁文杰.石油化学[M] .山东:石油大学出版社,1995:321-403
    [17] Panariti N , Bianco A D , Piero G D , et al. Pet roleum residue upgrading with dispersed catalyst s Part 1. Catalysts activity and selectivity[J ] .Applied Catalysis A : General , 2000 ,204 (2) : 203 - 213
    [18]董志学,贾丽,王军,等.渣油悬浮床加氢裂化催化剂研究[J].工业催化,2004,12(9):9-12
    [19]沈瑞华,赵会吉,刘晨光,等.用油溶性双金属催化剂加氢裂化处理辽河减压渣油[J].石油炼制与化工,1998,29(11) :l0-l2
    [20]董志学.用油溶性催化剂加氢裂化孤岛减压渣油的研究[J] .工业催化,2003,11(4) :27-29
    [21] Dickie J P, Yen T F. Macrostructure of the asphaltic fractions by various instrumental method. Anal. Chem. 1967, 39(14):1847-1857
    [22] Yen T F The colloidal aspects of a macrostructure of petroleum asphalt Fuel Sci. Tech. Int’l 1992,10(4-6),723-733
    [23]李生华,刘晨光,梁文杰,等.从石油溶液到碳质中间相I.石油胶体体系及其理论尝析[J],石油学报(石油加工),1995,11(1):55~60
    [24] Mansoori G A. Modeling Of asphaltene and their other heavy organic deposition[J]. Petrol. Sci. Eng. 1997, 17:100~111
    [25]李生华,刘晨光,阙国和,等.渣油热反应体系中第二液相形成与液相掺兑物的关系[J],石油学报(石油加工),1999;15(4):7~11
    [26] Park S J, ESCobedo J, Mansoori G A. Asphaltene and Other heavy organic depositions. In: Asphaltenes and Asphalts I, edited by T F Yen and G V Chilingarian. E1sevier Science. Amsterdam. 1994
    [27] León O., Rogel E., Espidel J., et al. Asphaltenes: Structural Characterization, Self-Association, and Stability Behavior [J]. Energy & Fuels, 2000, 14(1):6-10
    [28]李传,崔敏,石斌,等.表面活性剂对渣油胶体性质影响的初步研究[J] .石油学报(石油加工),2007,23(6) :44-50
    [29]张龙力,张世杰,杨国华,等.常压渣油热反应过程中胶体的稳定性[J] .石油学报(石油加工),2003,19(2):82-87
    [30]杨朝合,郑海.渣油加氢裂化反应特性及反应机理初探[J].燃料化学学报,1999,27(2):97-101
    [31]金环年,邓文安.渣油胶质和沥青质在分散型催化剂作用下的临氢热反应行为[J].石油炼制与化工,2006,37(11):11-14
    [32]邓文安,阙国和.胜利减压渣油胶质热反应生焦特性的研究[J],石油学报(石油加工), 1997,13(1) :1-6
    [33] Que Guohe, Liang Wenjie. Thermal conversion of Shengli residue and its constituents[J], Fuel, 1992, 71(12), 1483-1485
    [34] J. B. Green, E. J. Zagula, J. W. Reynolds, H. H. Wandke, L. L. Young, and H. Chew. Relating Feedstock Composition to Product Slate and Composition in Catalytic Cracking. 1. Bench Scale Experiments with Liquid Chromatographic Fractions from Wilmington, CA, >650 .degree.F Resid Energy & Fuels 1994, 8(4): 856-867
    [35] Parviz Rahimi, Thomas Gentzis, Edgar Cotte. Investigation of the thermal Behavior and interaction of Venezuelan heavy oil fractions obtained by Ion-exchange chromatography .Energy & Fuels, 1999, 13(3): 694-701
    [36] Savage P E, Klein M T .Asphaltene reaction pathway. 1.Thermolysis. Ind. Eng. Chem. Proc. Des. Dev, 1985; 24(4):1169-1174
    [37]Savage P E,Klein M T .Asphaltene reaction pathway. 2.Pyrolysis of n-pentadecylbenzene. Ind. Eng. Chem. Res., 1987, 26(3): 488-494
    [38]Savage P E, Klein M T .Asphaltene reaction pathway. 3. Effect of reaction environment. Energy & Fuels, 1988; 2(5):619-628
    [39]Savage P E, Klein M T. Asphaltene reaction pathway. 4. Pyrolysis of tridecylcyclohexane and 2-ethyltetralin, Ind. Eng. Chem. Res., 1988, 27(8): 1348-1356
    [40] Savage P E, Klein M T. Asphaltene reaction pathway. 5. Chemical and mathematical modeling, Chemical Engineering Science, 1989, 44(2):393-404
    [41]李生华,刘晨光,阙国和,等.渣油热反应体系中第二液相与生焦的关系[J] .燃料化学学报,1998,26 (1) :1-6
    [42]李生华,刘晨光,阙国和,等.渣油热反应体系中第二液相的存在性Ⅰ.渣油热反应体系的相分离[J].燃料化学学报,1996,24(6) :473-479
    [43]李生华,刘晨光,阙国和,等.渣油热反应体系中第二液相的存在性Ⅱ.第二液相及其表征[J] .燃料化学学报,1997,25(1) :1-6
    [44]李生华,刘晨光,阙国和,等.渣油单油热反应体系中第二液相的形成特性[J].石油化工高等学校学报,1998,11(3) :1-4
    [45]李生华,刘晨光,阙国和.渣油热反应体系中第二液相的形成机制[J] .燃料化学学报,1998,26(5) :423-430
    [46] Wiehe I A.A phase-separation kinetic model for coke formation.Ind.Eng.Chem.Res.,1993;32(11);2447~2454
    [47] Singh I. D., Kothiyal V., Ramaswamy V., et al. Characteristic changes of asphaltenes during visbreaking of North Gujarat short residue [J]. Fuel, 1990, 69(3): 289-292
    [48] Singh I. D., Vimal Kothiyal, Mahendra P. Kapoor, et al. Structural changes during visbreaking of light Arabian mix short residue: comparison of feed and product asphaltenes [J]. Fuel, 1993, 72(6): 751-754
    [49] Bernard Fixari, Pierre Le Perchec, Frank-Dieter Kopinke, et al. 14C polyaromatics as radio isotope tracers for grafting analysis during heavy oil pyrolysis [J]. Fuel, 1994, 73(4):505-509
    [50] Savage P. E.. Are aromatic diluents used in pyrolysis experiments inert [J]. Ind. Eng.Chem. Res., 1994, 33(5): 1086-1089
    [51] Farhad Khorasheh, Murray Gray. High-pressure thermal cracking of n-hexadecane in aromatic solvents [J]. Ind. Eng. Chem. Res., 1993, 32(9): 1864-1876
    [52] Yan T. Y.. Coke formation in visbreaking process [C]. Pre. Paper ACS Div. Pet chem., 1987, 32(2): 490-495
    [53]李传,石斌,李慎伟,等.渣油悬浮床加氢裂化与热裂化反应过程中胶体稳定性的比较[J] .石油炼制与化工,2005,36(4) :1-5
    [54]张数义,邓文安.渣油悬浮床加氢裂化反应机理[J] .石油学报,2009,25(2):145-149
    [55] Frits M. Dautzenberg and , Jacques C. De Deken. Modes of Operation in hydrodemetallization. Div.Fuel Chem. ACS, 1987, 15(2):233-256
    [56] LEC’NO, ROGELE,URBINAA, et al.Study of the adsorption of alkyl benzene-derived amphiphiles on asphaltene particles[J].Langmuir,1999,15(22): 7653-7657
    [57] WIEHE I,TORRIS G.Design of synthetic dispersants for asphaltenes[J]. Petroleum Science and Technology,2003,21(4):527-536
    [58]李传,崔敏,王继乾,等.表面活性剂对渣油沥青质体系分散性质的影响[J] .应用化学,2008,25(1) :85-89
    [59]张数义,罗辉,王继乾,等.渣油加氢裂化反应中催化剂与表面活性剂的协同作用[J].石油学报(石油加工),2008,24(5):515-519
    [60] Anto?nio Carlos da S R. et al. Interfacial and colloidal behavior of asphaltenes obtained from Brazilian crude oils[J].Journal of Petroleum Science and Engineering,2001,32(2-4): 201-216
    [61] Kim H, Curtis C W. Reaction pathways of model co processing systems using molybdenum naphthenate and excess sulphur[J]. Energy & Fuels. 1990, 4(2):206-214
    [62]刘晨光.孤岛渣油在分散型催化剂存在下的加氢裂化反应的研究[D].石油大学博士学位论文,北京,1991,12(2):8-13
    [63]刘晨光,阙国和,梁文杰,等.分散型钼催化剂在孤岛渣油加氢裂化中的作用,I.催化活性物质的XRD、SEM和TEM分析[J].石油学报(石油加工),1994,10(1) :14~21
    [64]刘晨光,阙国和,梁文杰,等.分散型钼催化剂在孤岛渣油加氢裂化中的作用,II.渣油反应机理和催化剂抑制生焦机理的初探[J].石油学报(石油加工),1994,10(2) :29~37
    [65] Derbyshire F. Catalysis in coal liquefaction: Status and directions for research.Preprints, Div.Fuel Chem. ACS, 1988, 33:188~197
    [66] Lopez J, Pasek E A, Cugini A V. Heavy oil hydroprocess including recovery of molybdenum catalyst[P].U.S.Patent:4,762,812,1988
    [67]刘晨光,阙国和,梁文杰,等.孤岛渣油在分散型催化剂存在下加氢裂化反应的研究:I.分散型催化剂的初步筛选[J].石油炼制,1993,24(3) :57-62
    [68]王宗贤.渣油悬浮床加氢裂化生焦及抑焦机制[D].石油大学博士学位论文.北京,1999,21(2):4-9
    [69]管翠诗.渣油悬浮床加氢裂化催化作用机理的研究[D].石油大学硕士学位论文,东营,2001,18(3):3-6
    [70]张鎏,吴兴亚.NiO—MoO3/Y—Al2O3催化剂硫化过程研究[J].燃料化学学报,1991,19(3) :208-215
    [71]傅贤智,黄惠忠,竺林,等.准“原位”XPS技术研究加氢精制催化剂的硫化过程[J].物理化学学报,1995,11(12):1071-1076
    [72]张数义,邓文安.重质油悬浮床加氢技术新进展[J].炼油技术与工程,2007,37(2):1-6
    [73]罗湘安.环烷酸盐工艺研究及探索[J].湖北化工,1996(2):31~32
    [74]Martzweiler J K, Bearden R Jr.Hudrorefining of heavy oil with hydrogen and aluminium alkyl compounds[P].US Patent 4 055 483,Oct.25, 1977
    [75] Bearden R Jr, Aldridge CL. Hydroconversion progress[P]. US Patent 4 067 799, Jan. 10, 1978
    [76] Bearden R Jr, Aldridge CL.Hydroconversion of heavy hydrocarbons[P].US Patent 4 134 825, Jan. 16, 1979
    [77] Bearden R Jr, Aldridge CL. Hydroconversion of hydrocarbons[P].US Patent 4 192 735,Mar.11, 1980
    [78] Bearden R Jr, Aldridge CL. Catalysts hydrocarbon treating process[P].US Patent 4 295 995 1981
    [79] Bearden R Jr, Aldridge CL. Catalysts for hydrocarbon treating process[P].US Patent 4 295 996 1981
    [80] Aldridge C L, Bearden R Jr. Hydroconversion of heary hydrocars[P].US Patent 4 066 530,Jan. 3, 1978
    [81] Aldridge C L, Bearden R Jr.Hydroconversion of coal in a hydrogen donor solvent with an oil-soluble catalyst[P].US Patent 4 077 867, Mar. 7, 1978
    [82] Aldridge C L, Bearden R Jr. High surface area catalyst[P].US Patent 4 244 839, Jan. 3,1981
    [83] Aldridge C L, Bearden R Jr. Hydroconversion of oil-coal mixture[P].US Patent 4 298 454, Jan. 3, 1981
    [84] Bearden R Jr, Aldridge CL. Hydrocracking with dispersed-phase catalyst.Energy Processing, 1981, 6(1):44~48
    [85] Chen H H, Montgomery D S, Strausz O P.Hydrocracking of Athabasca bitumen using oil-soluble organometallic catalysts.Part I: The influence of temperature and pressure on catalyst activity. AOSTRA Journal of Research, 1988, 4(1): 45~57
    [86] Chen H H, Montgomery D S, Strausz O P. Hydrocracking of Athabasca bitumen using oil-soluble organometallic catalysts.Part II: Comparison of metal naphthenates and metal acetylacetonates with nickel carboxylate as oil-soluble liquid phase hydrocracking catalysts.AOSTRA Journal of Research, 1988, 4: 143~152
    [87] Chen H H, Montgomery D S, Strausz O P. Hydrocracking of Athabasca bitumen using oil-soluble organometallic catalysts.Part III: Optimization of liquid-phase hudrocracking conditions for mixtures of nickel and molybdenum naphthenates and coking studies on the hydrocracked product. AOSTRA Journal of Research, 1988, 4(1): 33~48
    [88]傅献彩.物理化学[M](第五版).北京:高等教育出版社,2005:256-259
    [89]石慕尔.均相催化剂环烷酸钼的制备[J].实验与研究化学与粘合,1999,(1):11-13
    [90]石慕尔.均相催化剂环烷酸钼的制备[J].实验与研究化学与粘合,1999,(1):11-13
    [91]孔凡利.相转移法合成环烷酸镍有机溶液[J].中外能源,2007,12(3):89-91
    [92] Panariti N., Bianco A, Piero G, et al. Petroleum residue upgrading with dispersed catalysts Part 2 Effect of operating conditions [J]. Applied Catalysis A: General , 2000,190(1-2):215–222
    [93] Zhang Shuyi, Deng Wenan, Luo Hui,Liu Dong, Que Guohe. Slurry Phase Residue Hydrocracking with Dispersed Nickel Catalyst [J]. Energy & Fuels, 2008, 22(6):3583-3586
    [94]周家顺,邓文安,阙国和.辽河减压渣油悬浮床加氢裂化研究[J].石油学报(石油加工) ,2000,16 (2) :63~67
    [95]Jie Chang, Noritatsu Tsubaki, Kaoru Fujimoto. Elemental sulfur as an effective promoter for the catalytlic hydrocracking of Arabian vaccum residue [J], Fuel, 2001, 80(11):1639-1643
    [96]张数义,罗辉,邓文安,等.辽河渣油悬浮床加氢裂化反应条件的考察[J].石油化工高等学校学报,2008,21(3):57-59,62
    [97]程之光.重油加工技术.北京:中国石化出版社,1994
    [98]罗辉,邓文安,张数义,等.渣油悬浮床加氢裂化反应中助剂的作用机制Ⅰ.助剂对反应体系胶体性质的影响[J].石油学报,2009,5(2) :241-245
    [99]罗辉,邓文安,张数义,等.渣油悬浮床加氢裂化反应中助剂的作用机制Ⅱ.助剂对催化剂在渣油中分散的影响[J].石油学报,2009,(3) :420-424

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700