用户名: 密码: 验证码:
高压小射流掏槽防突技术研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
煤与瓦斯突出是严重威胁煤矿安全生产的灾害事故,不仅给国家和人民生命财产造成重大损失,而且严重制约了突出煤层的掘进速度,影响矿井采掘接替计划,制约煤矿安全高效生产。
     通过对煤与瓦斯突出的影响因素、煤与瓦斯突出机理和目前防治突出措施的综合分析,提出了高压小射流掏槽防突机理:煤体瓦斯释放,瓦斯压力梯度降低;应力集中带前移,应力梯度降低;煤体收缩变形,强度增加。研制了高压小射流防突装置及其配套设施:液压控制系统、远程监控系统和掏槽系统,通过实验室加压试验和行走实验,提高了装置的可靠性。制定了高压小射流防突技术工艺和安全防护措施,降低灾害事故的发生几率,加快突出煤层掘进速度,缓解突出煤层采掘接替紧张的局面。
     运用ANSYS有限元分析软件,对高压小射流冲击煤体破碎效果和巷道围岩变形数值模拟分析,验证了高压小射流在煤体掏槽过程中,促使冲孔内煤体暴露面积的增加,为深部煤体泄压和瓦斯渗流提供有利条件。同时槽孔周边一定区域的煤体发生变形移动,促进煤体内部裂隙的发育,增大煤层的透气性,扩大了槽孔周边煤层瓦斯的释放范围;另外高压小射流动力作用下,槽孔孔壁煤体产生较大的膨胀变形,促进裂隙的沟通和发育,增加了深部煤体瓦斯释放几率;冲孔区域煤体的破碎和变形,促使集中应力向煤层深部转移,煤体受力降低,煤体弹性能释放,裂隙充分发育,大量吸附状态的瓦斯演变为游离状态的瓦斯,经沟通裂隙充分释放,降低了突出煤层瓦斯压力梯度,消除了突出的危险性。综合分析不同巷道模型掏槽后的围岩应力和煤体位移变化情况,确定了高压小射流掏槽位置应距离巷道底板2/7处左右,掏槽孔径的大小为巷道底板长度的4/15左右,这样巷道围岩裂隙发育充分,且保持了围岩的完整性,有利于加快工作面的掘进速度。
     高压小射流冲孔试验表明在相同压力和流量下,同强度试样中冲出相同孔径的时间随着流量的增加而减小。当射流压力超过试样强度极限时,增大流量更有利提高射流的扩孔效果,因为在保持射流压力一定的情况下,提高枪嘴的射流流量,水流的搬运能力增强,促使更多孔底残留的煤块排出孔外,提高了冲孔速度。冲孔后试样加压试验表明试样冲孔孔径的增加,试样的抗压强度越来越小,试样强度损失比呈增大趋势,这表明大孔径对试样的泄压效果明显。而强度较大的试样在相同的冲孔孔径下,试样的破坏时间较长,强度损失比较小,因此,强度较大试样中需增大孔径才能达到较好的泄压效果。
     确定了高压小射流掏槽施工工艺,为设备现场应用提供技术支持。制定了掘进施工的安全防护措施,人员在距离施工端头200~300m的临时避难所内操作控制柜的流量阀门,控制液压马达进行往复运动,驱动高压水枪进行掏槽。对小射流掏槽废水进行净化处理,实现循环利用,同时对掏槽过程中释放的瓦斯进行集中抽放,收集作为一种能源,利废为宝,其经济和社会效益将会十分显著。
The coal and gas outburst threatened safety production of mines, not only causedheavy losses of life and property, but also restricted driving speed of the prominent seamsseverely, which impacted mining and play of preparation and wining work, andconstrained safety and efficient production of coal mines.
     Through comprehensive analysis of influence factors, outburst mechanism andcurrent control measures, this paper proposed outburst prevention mechanism ofhigh-pressure small jet cutting: coal gas release, gas pressure gradient decrease; stressconcentration zone move forward, stress gradient reduce; coal shrinkage deform andstrength increase. Develop high-pressure small jet equipment and facilities: hydrauliccontrol system, remote monitoring system, cutting system. Pressure laboratory testimproved sealing device and pressure resistance. High-pressure small jet technology andsecurity measures against outburst was developed, which would reduce disasteroccurrence, speed up cutting rate and eases tension of preparation and wining work.
     Using ANSYS finite element analysis software, the crushing effect and wall rockdeformation of a small high-pressure jet impacting coal were given numerical simulationanalysis. It verified that impacting increased exposed area of coal in punch, providingconditions for pressure relief of internal coal seam and gas seepage. At the same time,coal around slot in a certain area moved and deformed to develop cracks of internal coal,which increased the permeability of coal seams and expanded gas release range; Also asdynamic action of a small high-pressure jet, slot wall coal expanseded greatly and cracksbecame more favor to gas release of deep coal; Cracks and deformation madeconcentration stress transfer to deep coal seams, thus force on coal reduced and elasticenergy released, then cracks developed fully, a large number of gas on adsorption statebecame free and released fully through cracks, which reduced gas pressure gradient ofcoal seams and eliminated outburst risk. Through comprehensive analysis of the rockstress and coal displacement of different roadway models after undercutting, it wasdetermined that undercutting should be2/7or so from tunnel floor, aperture size was4/15or so of roadway floor length, thus roadway fissures developed full, and maintainedrock integrity, in favor of speeding up the face driving.
     Punching tests showed that punching same diameter was fast as flow increased onthe same pressure and flow rate of the same strength samples. When jet pressureexceeded sample ultimate strength, increasing flow was more favor to punching effect. This was because that increasing jet flow improved water handling capacity, which mademore remain coal on hole bottom discharged and enhanced punching speed. Increasingpressure after punching tests showed that punching diameter increased, compressivestrength of samples decreased and strength loss was on increasing trend, which verifiedthat large diameter relief effect was obvious. Larger intensity samples with the samepunching diameter holes were destructed difficultly and strength loss was small. Solarger intensity samples needed to increase diameter to relief pressure effectly.
     Construction process of high-pressure small jet cutting provided technical supportfor on-site applications. Security measures of excavation construction developed,personnel in temporary shelters at a distance of200~300m construction ends operatedthe flow valve of control cabinet, and controled hydraulic motor to reciprocating motionand drived high-pressure water gun to undercutting. Cutting wastewater was purified toachieve recycling. Cutting gas was used as a source of energy. So its economic and socialbenefits would be very significant.
引文
[1]俞启香.矿井瓦斯防治[M].徐州:中国矿业大学出版社,1992.
    [2]于不凡,王佑安,卢鉴章等.煤矿瓦斯灾害防治及利用技术手册[M].北京:煤炭工业出版社,2000.
    [3]周世宁,鲜学福,朱旺喜.煤矿瓦斯灾害防治理论战略研讨[M].徐州:中国矿业大学出版社,2001.
    [4]张铁岗.矿井瓦斯综合治理技术[M].北京:煤炭工业出版社,2001.
    [5]范维唐.跨世纪煤炭工业新技术[M].北京:煤炭工业出版社,1997.
    [6] Ham Y B, Kwon S W, Noh J H, etc. Development of road stripe removing equipment usinghigh-pressure water jet [J]. Automation in Construction,2006,15(5):578-588.
    [7] Hood M, Nordlund R, Thimons E. A study of rock erosion using high-pressure water jets [J].International Journal of Rock Mechanics and Mining Science&Geomechanics,1990,27(2):77-86.
    [8]何学秋,周心权,杨大明.中国煤矿灾害防治理论与技术[M].徐州:中国矿业大学出版社,2006.
    [9]马丕梁.煤矿瓦斯灾害防治技术手册[M].北京:化学工业出版社,2007.
    [10]张天恩,闻传葳.防治煤与瓦斯突出基础知识[M].北京:煤炭工业出版社,1990.
    [11]张要展,王伟峰,侯锦强.突出煤层掘进工作面“四位一体”综合防突措施[J].煤炭技术,2007,26(3):58-60.
    [12] Zhang Ruilin, Ian S. Lowndes. The application of a coupled artificial neural network and faulttree analysis model to predict coal and gas outbursts [J]. International Journal of Coal Geology,2010,84(2):141-152.
    [13]国家煤矿安全监察局.防治煤与瓦斯突出规定[M].北京:煤炭工业出版社,2009.
    [14] Dongmei WU, Yuemin ZHAO, Yuanping CHENG, Fenghua AN. ΔP index with different gascompositions for instantaneous outburst prediction in coal mines [J].Mining Science andTechnology (China),2010,20(5):723-726.
    [15]成家钰,曹振洪,徐占成等.煤矿作业规程编制指南[M].北京:煤炭工业出版社,2005.
    [16]马丕梁,范启炜.我国煤矿抽放瓦斯现状及展望[J].中国煤炭,2004,30(2):5-7.
    [17] William P D, Steven J S. Measuring the gas content of coal: Areview [J]. International Journalof Coal Geology,1998,35(4):311-331.
    [18]李倩.高压水射流在松软煤层中钻深长孔的实验研究[D].重庆:重庆大学,2008.
    [19]王建国,郑保川,辛欣平.煤巷掘进综合防突技术措施[J].煤炭科学技术,2003,8(8):23-24.
    [20]文光才,徐三民.煤与瓦斯防治技术的新进展[J].矿业安全与环保,2000,10(3):44-45.
    [21]李学臣,张书军.高压注水防治瓦斯突出试验研究[J].焦作工学院学报,2004,23(1):7-10.
    [22] Scott R. Hydrogeologic factors affecting gas content distribution in coal beds [J]. InternationalJournal of Coal Geology,2002,50(4):363-387.
    [23]刘彦伟,任培良,夏仕柏.水力冲孔措施的卸压增透效果考察分析[J].河南理工大学学报,2009,28(6):695-699.
    [24]刘明举,孔留安,郝富昌.水力冲孔技术在严重突出煤层中的应用[J].煤炭学报,2005,35(4):451-454.
    [25]魏建平,李波,刘明举.水力冲孔消突有效影响半径测定及钻孔参数优化[J].煤炭科学技术,2010,38(5):39-42.
    [26]晋康华,刘明举,毛振彬.水力冲孔卸压增透区域消突技术应用[J].煤炭工程,2010(3):50-52.
    [27]谢伦荣.水力掏槽防突措施超前距探讨[J].水力采煤与管适运输,2005,6(2):8-9.
    [28]刘锡明.水力掏槽预防煤与瓦斯突出的理论分析及应用[D].唐山:河北理工大学硕士论文,2006.
    [29]白新华,张子敏,张玉贵.水力掏槽破煤落煤效率因素层次分析[J].水力采煤与管道运输,2008(4):1-3.
    [30] Zhang T J, Ren S X, Li S G,etc. Application of the catastrophe progression method inpredicting coal and gas outburst [J]. Mining Science and Technology (China),2009,19(4):430-434.
    [31] Liu M J, He X Q. Electromagnetic response of outburst-prone coal[J]. International Journal ofCoal Geology,2001,45(2):155-162.
    [32]吴海进.高瓦斯低透气性煤层卸压增透理论与技术研究[D].徐州:中国矿业大学,2009.
    [33]吕有广.高压磨料射流割缝防突技术研究及工程应用[D].徐州:中国矿业大学,2007.
    [34]张连军.高压磨料射流钻割一体化防突技术研究[D].徐州:中国矿业大学,2008.
    [35]邹正龙.摆振磨料水射流落煤机理与工艺研究[J].煤炭工程,2010,(9):70-73.
    [36]杨振,雷玉勇,邹虎等.基于人工神经网络的微磨料水射流铣削深度控制的研究[J].清洗世界,2010,38(22):24-27.
    [37]梁运培.高压水射流钻孔破煤机理研究[D].青岛:山东科技大学博士论文,2007.
    [38]崔谟慎,孙家骏.高压水射流技术[M].北京:煤炭工业出版社,1993.
    [39]姜文忠.低透气性煤层高压旋转水射流割缝增透技术及应用研究[D].徐州:中国矿业大学,2009.
    [40]何学秋.含瓦斯煤岩流变动力学[M].徐州:中国矿业大学出版社,1995.
    [41] Litwiniszyn J. Remarks concerning sudden rock-and-gas mass outbursts[J]. Mining Scienceand Technology,1986,3(4):243-253.
    [42]常建勇.高效射流技术与小型水采模式[J].水力采煤与管道运输,2001,(4):5-8.
    [43]常建勇,剧元达,童明浒等.大流量脉冲射流采煤技术[J].水力采煤与管道运输,2001,(3):17-20.
    [44]刘勇,卢义玉,李晓红.高压脉冲水射流顶底板钻孔提高煤层瓦斯抽采率的应用研究[J].煤炭学报,2010,35(7):1115-1119.
    [45]李晓红,卢义玉,赵瑜.高压脉冲水射流提高松软煤层透气性的研究[J].煤炭学报,2008,33(12):1386-1390.
    [46]刘勇.高压脉冲水射流增透技术在煤矿石门揭煤中的应用研究[D].重庆:重庆大学.2009.
    [47]卢义玉,葛兆龙,李晓红等.高压空化水射流破岩主要影响因素的研究[J].四川大学学报(工程科学版),2009,41(6):1-6.
    [48]周世宁,林伯泉.煤层瓦斯赋存与流动理论[M].北京:煤炭工业出版社,1999.
    [49]肖福坤,秦宪礼,张娟霞,等.煤与瓦斯突出过程的突变分析[J].辽宁工程技术大学学报,2004,23(4):442-444.
    [50]魏国营,张书军,辛新平.突出煤层掘进防突技术研究[J].中国安全科学学报,2005,15(6):27-29.
    [51] Butterworth M D, Sheer T J. High-pressure water as the driving fluid in an ejectorrefrigeration system [J]. Applied Thermal Engineering,2007,27(11):2145-2152.
    [52]刘志伟.构造和应力对煤与瓦斯突出的控制作用研究[D].抚顺:辽宁工程技术大学,2006.
    [53]蔡峰,刘泽功.煤巷掘进过程中煤与瓦斯突出机理的研究[D].淮南:安徽理工大学.2005.
    [54] Xueqiu He, Wenxue Chen, Baisheng Nie, Ming Zhang. Classification technique for dangerclasses of coal and gas outburst in deep coal mines[J].Safety Science,2010,48(2):173-178.
    [55] Fang Xin-qiu, Zhao Jun-jie, He Jie, Study on mining the protective seam with the manlessworking face in coal and gas outburst mines[J].Procedia Earth and Planetary Science,2009,1(1):227-234.
    [56]程五一,张序明,吴福昌.煤与瓦斯突出区域预测理论及技术[M].北京:煤炭工业出版社,2005.
    [57] OLIVIER KAUFMANN,THIRRRY MARTIN.3D geological modelling from boreholescross-sections and geological maps application over former natural gas storages in coalmines[J].Computers&Geosciences.2008(3):278-290.
    [58]赵新.兴安矿煤层石门快速揭煤防突技术研究[D].西安:西安科技大学.2007.
    [59] M. DANISH,R K SHARMA,S. ALI.Gas absorption with first order chemical reaction in alaminar falling film over a reacting solid wall [J].Applied Mathematical Modelling.2007(6):901-929.
    [60] T Xu, C A TANG,T H YANG,W C ZHU,J LIU. Numerical investigation of coal and gasoutbursts in underground collieries [J]. International Journal of Rock Mechanics and MiningSciences.2006(9):905-919.
    [61] XIAOZHAO LI,ANZENG HUA.Prediction and prevention of sandstone-gas outbursts incoal mines[J]. International Journal of Rock Mechanics and Mining Sciences.2006(9):2-18.
    [62]王登科,刘建,尹光志等.突出危险煤渗透性变化的影响因素探讨[J].岩土力学,2010,31(11):3469-3475.
    [63] Wold M B, Connell L D. The role of spatial variability in coal seam parameters on gasoutburst behaviour during coal mining [J]. International Journal of Coal Geology,2008,75(1):1-14.
    [64] Feng T, Xie X G. An experimental study of the effect of injecting water and freezing onmechanical properties of outburst-prone coal seam [J]. Procedia Earth and Planetary Science,2009,1(1):560-564.
    [65] KLAUS NOACK. Control of gas emissions in underground coal mines[J]. InternationalJournal of Coal Geology.1998(2):57-82.
    [66]穆朝民,何启林.潘三煤矿煤巷掘进中煤与瓦斯突出过程的数值模拟[D].淮南:安徽理工大学,2006.
    [67]张文勇,张林华.高压水射流煤岩钻进机理及效果影响因素分析[J].煤矿安全,2010(6):127-130.
    [68]杨玉中,吴立云,高永才.煤与瓦斯突出危险性评价的可拓方法[J].煤炭学报,2010,35(增):100-106.
    [69]陈鹏,张科学,魏明尧.煤与瓦斯突出预测动静态指标的灰色优选[J].矿业研究与开发,2010,30(5):73-76.
    [70] CHOI S.K,WOLD M B. A Coupled geomechanical-reservoir model for the modelling of coaland gas outbursts[J].Elsevier Geo-Engineering Book Series.2004,2:629-634.
    [71] G.R. BARKER RADE,SA. RADCHENKO. The relationship between the pore structure ofcoal and gas-dynamic behaviour of coal seams [J]. Mining Science and Technology,1989(2):109-131.
    [72]蒋振敖.对水力采煤改革创新问题的探讨[J].水力采煤与管路运输,2001(4):36-38.
    [73]李海洲.水力采煤技术论文集[C].北京:煤炭工业出版社,1985.
    [74] Pan Z J, Connell L D. A theoretical model for gas adsorption-induced coal swelling [J].International Journal of Coal Geology,2007,69(4):243-252.
    [75] Lama R D, Bodziony J. Management of outburst in underground coal mines [J]. InternationalJournal of Coal Geology,1998,35(4):83-115.
    [76]聊华林,李根生,牛继磊.淹没条件下超高压水射流破岩影响因素与机制分析[J].岩石力学与工程学报,2008,27(6):1243-1250.
    [77] GeorgeJ D, Barakat M A. The change in effective stress associated with shrinkage from gasdesorption in coal [J]. International Journal of Coal Geology,2001,45(3):105-113.
    [78] Frid V. Electromagnetic radiation method for rock and gas outburst forecast [J]. Journal ofApplied Geophysics,1997,38(2):97-104.
    [79]胡坤,郭群,胡金铜等.非自由淹没水射流CFD仿真研究[J].石油机械,2010,38(11):41-46.
    [80]李超,李宝玉,陈森等.高压水射流割缝防治冲击地压的试验研究[J].矿山机械,2010,38(19):20-23.
    [81]杜泽生,王晓勇,张栋等.高压水射流扩孔技术在丁集矿的应用[J].煤矿安全,2010,(10):26-29.
    [82]郭臣业,鲜学福,姚伟静等.煤岩层断裂破坏区与煤和瓦斯突出孔洞关系研究[J].中国矿业大学学报,2010,39(6):802-806.
    [83] H. LI. Major and minor structural features of a bedding shear zone along a coal seam andrelated gas outburst Pingdingshan coalfield northern China [J]. Fuel and Energy Abstracts.2002(3):246-251.
    [84]张文勇,张林华.高压水射流煤岩钻进机理及效果影响因素分析[J].煤矿安全,2010,(6):127-130.
    [85]梁运培,孙东玲,董钢锋.高压水射流扩孔技术的研究[J].煤炭科学技术,2001,8(4):11-13.
    [86]林府进,夏永军,周卫东.高压水射流冲击压力分布规律的研究[J].矿业安全与环保,2008,35(1):8-9.
    [87] Litwiniszyn J. A model for the initiation of coal-gas outbursts [J]. International Journal ofRock Mechanics and Mining Sciences&Geomechanics Abstracts,1985,22(1):39-46.
    [88]姜文忠,李保东,王耀锋等.非淹没高压旋转水射流喷嘴割缝参数试验研究[J].煤矿安全,2009,(10):1-4.
    [89]刘庭成,范晓红.高压水射流清洗机喷嘴的结构与参数[J].清洗世界,2010,26(9):32-35.
    [90] Jacek Sobczyk. The influence of sorption processes on gas stresses leading to the coal and gasoutburst in the laboratory conditions[J].Fuel,2011,90(3):1018-1023.
    [91] Song Wei-hua, Zhang Hong-wei. Regional prediction of coal and gas outburst hazard based onmulti-factor pattern recognition [J]. Procedia Earth and Planetary Science,2009,1(1):347-353.
    [92] Yang Min, Yun-jia Wang, Yuan-ping Cheng. An incorporate genetic algorithm based backpropagation neural network model for coal and gas outburst intensity prediction[J].ProcediaEarth and Planetary Science,2009,1(1):1285-1292.
    [93] Shugang LI, Tianjun ZHANG. Catastrophic mechanism of coal and gas outbursts and theirprevention and control [J].Mining Science and Technology (China),2010,20(2):209-214.
    [94] Ming Deng, Qinhua Chen. Coal and gas outburst monitoring system based onWSN[J].Procedia Engineering,2010(7):387-391.
    [95]夏爽,郭楚文,吴楠楠.煤矿井下磨料水射流切割剩余能量的研究[J].煤炭工程,2010,(3):76-79.
    [96]吴海,刘波,王国涛等.磨料水射流切割技术分析及研究[J].机械管理开发,2010,25(4):9-10.
    [97]赵艳萍,卢义玉,葛兆龙等.应用于油气钻采的磨料水射流喷嘴优化设计与试验研究[J].流体机械,2010,38(10):1-5.
    [98]牛雅莉,蒋瑞波,宋志敏.安阳矿区煤与瓦斯突出预测模型的建立与应用[J].中国煤炭地质,2010,22(9):23-25.
    [99]雷才国,孙炳兴.大直径钻孔防治煤与瓦斯突出的实践[J].矿业安全与环保,2010,37(5):62-65.
    [100]朱广轶,郑仰发,门兆红.地质构造影响煤与瓦斯突出的FTA方法分析[J].煤矿安全,2010,(12):92-95.
    [101]胡建成,马建东.煤体结构研究在煤与瓦斯突出预测实践中的应用[J].矿业安全与环保,2004,23(3):102-104.
    [102]王亚军,金芳勇.基于混沌理论的掘进工作面煤与瓦斯突出特征研究[J].矿业安全与环保,2010,37(5):4-7.
    [103]魏风清,史广山,张铁岗.基于瓦斯膨胀能的煤与瓦斯突出预测指标研究[J].煤炭学报,2010,35(增):95-97.
    [104]李中州.煤厚变化对煤与瓦斯突出危险性的影响[J].煤炭科学技术,2010,38(9):65-67.
    [105]郝富昌.煤层瓦斯含量参数获取方法分析及应用[J].煤炭科学技术.2007(9):86.
    [106]唐建新,贾剑青,胡国忠.钻孔中煤体割缝的高压水射流装置设计及试验[J].岩土力学,2007,28(7):1501-1505.
    [107]李国旗,毛振彬,任培良.底板巷水力冲孔快速消突技术在李沟矿的应用[J].煤矿安全,2009(11):16-19.
    [108]李忠华,张啸,尹亮亮.高压水射流煤层切槽卸压效果的数值模拟[J].煤矿开采,2009,14(4):14-18.
    [109]李忠华,潘一山,张啸.高压水射流切槽煤层卸压机理[J].辽宁工程技术大学学报,2009,28(1):43-44.
    [110]刘芳彬,聂百胜,兰日昌.煤矿井下用磨料水射流切割装置设计及试验研究[J].煤矿机械,2008,29(6):43-45.
    [111]魏国营,郭中海,谢伦荣.煤巷掘进水力掏槽防治煤与瓦斯突出技术[J].煤炭学报,2007,32(2):173-176.
    [112]常宗旭,郤保平,赵阳升.煤岩体水射流破碎机理[J].煤炭学报,2008,33(9):983-987.
    [113]孟筠青,聂百胜.磨料水射流切割技术在矿山安全中的应用研究[J].中国煤炭,2008,34(6):45-49.
    [114]刘明举,赵文武,刘彦伟.水力冲孔快速消突技术的研究与应用[J].煤炭科学技术,2010,38(3):58-61.
    [115]夏仕柏,赵文武,刘彦伟.水力冲孔快速消突效果分析[J].煤矿安全,2010(2):105-107.
    [116]王松龄.流体力学[M].北京:中国电力出版社,2007.
    [117]王启广,黄嘉兴,史禹.液压传动与采掘机械[M].徐州:中国矿业大学出版社,2005.
    [118]成大先,王德夫,姜勇等.机械设计手册[M].北京:化学工业出版社,2008.
    [119]刘吉文,张永利.高地应力作用下巷道围岩蠕变的ANSYS仿真计算[J].辽宁工程技术大学学报,2007,(26):105-109.
    [120]张乐婷,余云燕.基于ANSYS/LS-DYNA的应力波反射法的数值模拟[J].山西建筑,2010,36(32):1-5.
    [121]王丹丹.水射流冲击破碎的数值分析[D].重庆:重庆大学.2008.
    [122]田长留,王占奎,马霄.基于ANSYS的高压水射流破岩过程应力分布研究[J].矿山机械,2007,35(9):36-38.
    [123]张朝辉.ANSYS12.0结构分析工程应用实例解析[M].北京:机械工业出版社,2010.
    [124]吴思宇,罗伟.ANSYS工程计算应用教程[M].北京:中国铁道出版社,2004.
    [125]白金泽.LS-DYNA3D理论基础与实例分析[M].北京:科学出版社,2005.
    [126]赖永标,胡仁喜,黄书珍.ANSYS11.0土木工程有限元分析典型范例[M].北京:电子工业出版社,2008.
    [127]尚晓江,苏建宇,王化锋等. ANSYS/LS-DYNA动力分析方法与工程实践[M].北京:中国水利水电出版社,2008.
    [128] M. Javed Hyder, M. Asif.O1ptimization of location and size of opening in a pressure vesselcylinder using ANSYS[J].Engineering Failure Analysis,2008,15(1):1-19.
    [129] X.G. Hua, Z.Q. Chen. Full-order and multimode flutter analysis using ANSYS[J].FiniteElements in Analysis and Design,2008,44(9):537-551.
    [130] Andrea Capriccioli, Paolo Frosi. Multipurpose ANSYS FE procedure for welding processessimulation [J].Fusion Engineering and Design,2009,84(2):546-553.
    [131]吴爱军,蒋承林,唐俊.瓦斯突出作用下煤岩体中冲击波传播规律的研究[J].煤炭学报,2010,35(10):1643-1649.
    [132]李小双,尹光志,赵洪宝等.含瓦斯突出煤三轴压缩下力学性质试验研究[J].岩石力学与工程学报,2010,29(增1):3350-3356.
    [133]蒋长宝,尹光志,李晓泉等.突出煤型煤全应力-应变全程瓦斯渗流试验研究[J].岩石力学与工程学报,2010,29(增2):3482-3487.
    [134]马飞,高国华,王萍辉等.水射流土层扩孔技术影响因素[J]北京科技大学学报,2008,30(6):585-588.
    [135]黄仲文,张德银.高瓦斯突出煤层掘进工作面安全施工的几点做法[J].矿业安全与环保,2001,28(6):51-53.
    [136]郑志伟.防突措施与支护技术结合提高突出厚煤层掘进速度[J].矿业安全与环保,2010,37(5):68-70.
    [137]李端法.突出煤层掘进工作面瓦斯综合治理及安全掘进的实践与认识[J].矿业安全与环保,2004,31(4):54-55.
    [138]郭中海.突出煤巷掘进水力掏槽工艺技术研究[J].煤炭科学技术,2005,33(9):24-27.
    [139]刘锡明,周静.水力掏槽防突措施的安全性分析[J].中国矿业,2009,18(3):92-94.
    [140]孔留安,郝富春,刘明举等.水力冲孔快速掘进技术[J].煤矿安全,2005.36(12):46-48.
    [141]任培良,刘彦伟,魏建平等.水力冲孔防突技术在潘一矿的应用[J].煤炭科学技术,2009,37(1):88-91.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700