用户名: 密码: 验证码:
外加水分对煤的瓦斯解吸动力学特性影响研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
煤层注水后将增加煤体内外加水分,煤的瓦斯解吸特性随之也发生变化。为研究外加水分增加后煤的瓦斯解吸特性变化规律,在分析水分对瓦斯解吸影响研究现状的基础上,研制了一套高压吸附状态下注水解吸测试装置,实验装置能够对吸附高压瓦斯煤注水时进行搅拌,较好地改善了注水后煤样水分含量分布均匀程度。
     CH4和H2O分子在煤表面吸附模拟及其之间的作用力估算结果表明:煤对H2O的吸附能力大于对CH4的吸附能力。煤解吸瓦斯类型分为升温解吸、降压解吸、置换解吸和混合解吸四种类型,注入外加水分实验过程中主要发生了置换解吸和降压解吸。
     在考察确定1-3mm煤样为注水实验用合理粒径的基础上,利用自制的高压吸附-注水-解吸测试装置,在实验温度30℃、吸附平衡压力0.5MPa、0.84MPa、1.5MPa和2.5MPa条件下,采用先对干燥煤样吸附平衡,再对其进行边注水边搅拌的实验方法分别对高变质的永红煤(YH煤)和高家庄煤(GJZ煤)、中等变质程度的祁南煤(QN煤)和低变质程度的大隆煤(DL煤)注入不同外加水分后的瓦斯解吸过程进行了测试。实验结果表明,外加水分能够置换吸附的瓦斯,外加水分越大,水分对吸附瓦斯的置换量和置换率越大。外加水分对YH煤的置换量和置换率最大,对DL煤和QN煤的置换量和置换率居中,对GJZ煤的置换量和置换率最小。外加水分对卸压后煤的瓦斯解吸量、解吸速度、钻屑瓦斯解吸指标、扩散系数、解吸率和瓦斯放散初速度均有影响,它们总体上随着外加水分的增加逐渐减小。外加水分对卸压后煤的前40min内瓦斯解吸速度影响较大,对40min后的瓦斯解吸速度影响较小。外加水分对不同变质程度煤的瓦斯解吸量和钻屑瓦斯解吸指标影响程度存在差异,对DL煤极限解吸量影响最大,对QN煤和YH煤影响次之,对GJZ煤极限解吸量影响最小,造成这种差异性与煤样大孔、中孔和小孔总比表面积有关;对YH煤钻屑瓦斯解吸指标影响最大,对QN煤和DL煤影响次之,对GJZ煤钻屑瓦斯解吸指标影响最小,对钻屑瓦斯解吸指标影响差异性与小孔孔容占总孔容的比例有关。
     实验数据表明,外加水分对不同煤种解吸瓦斯的综合影响效果不同,它总体上对中、高变质程度煤的瓦斯解吸起到促进作用,对低变质程度煤的瓦斯解吸起到抑制作用。
     数值模拟和工程实践表明,外加水分对煤解吸瓦斯既有促进作用,又有抑制作用。煤层注水对瓦斯解吸的综合影响效应与注水后煤层渗透率变化和水对吸附瓦斯的置换强度有关,若注水后煤层渗透性降低程度较小,水对煤层吸附的瓦斯置换强度较大时,注水将促进煤层瓦斯解吸,反之,注水将抑制煤层瓦斯解吸。
Injecting water into coal seam can increase the additional moisture of coal, and then themethane desorption characteristics of the coal will change. To research the change rule of coalmethane desorption properties after injecting water, based on the analysis of moisture effecton methane desorption, a device was developed for injecting water and the measurement ofdesorption under the high-pressure adsorption state. The device could stir the coal sampleswhen injecting water into coal, and it improved the wet effect of the coal sample.
     Through simulation for CH4and H2O molecules adsorption on the surface of coal andestimation for forces of CH4and H2O molecules on coal, the paper obtained the results whichthe adsorption ability of H2O on coal was bigger than the adsorption ability of CH4on coal.Coal desorption methane types were divided into cooling desorption, step-down desorption,replacement desorption and mixed desorption, and replacement desorption and step-downdesorption occured in the process of injecting water.
     Based on study the reasonable size of1-3mm for injecting water experiment, throughthe homemade device of high-pressure adsorption-injecting water-desorption,the methanedesorption of Yonghong coal (YH coal) and Gaojiazhuang coal (GJZ coal), which exhibited ahigh metamorphic degree, and Qinan coal (QN coal) and Dalong coal (DL coal), whichexhibited a moderate and a low metamorphic degree, were tested after the injection of water.The experimental temperature was30℃, and the experimental adsorption pressures were0.5MPa,0.84MPa,1.5MPa, and2.5MPa.The results show that injected water can displaceadsorbed methane, and the replacement amount and replacement ratio increase with theamount of injected water. the maximum replacement amount and replacement ratio areobtained from the YH coal, moderate replacement amount and replacement ratio are obtainedfrom the DL and the QN coal, and the lowest replacement amount and replacement ratio isobtained from the GJZ coal. Injected waters have the impacts on methane desorption quantity,desorption velocity, gas desorption index of drill cuttings, methane diffusion coefficient,desorption rate and methane initial diffusion velocity after the pressure relief,and the methanedesorption quantity,desorption velocity, gas desorption index of drill cuttings, methanediffusion coefficient, desorption rate and methane initial diffusion velocity are graduallydecreased with the increase of injected water. In the first40minutes, the impact of theinjected water on the methane desorption velocity is obvious; however, after40minutes, thiseffect can be ignored.The influence of the injected water on the methane desorption quantityand gas desorption index of drill cuttings are different for coal samples with differentmetamorphic degrees.The maximum effect is obtained from the DL coal methane desorption quantity, moderate effects are obtained from the QN and the YH coal methane desorptionquantity, and the lowest effect is obtained from the GJZ coal methane desorption quantity.The main reason of the difference is the total surface area of the macropores, mesopores, andpores in the different coal samples. The influence of the injected water on the gas desorptionindex of drill cuttings is maximal from YH coal. In contrast, the influences of the injectedwater on the gas desorption index of drill cuttings are moderate from the QN and the DL coals,and the influence of the injected water on the gas desorption index of drill cuttings is lowestfrom the GJZ coal. These differences are due to the ratio of the pore volume to the totalvolume.
     The comprehensive effects of injected water on methane desorption for different coalsare inconsistent from the experimental datas, and injected waters have promoting effect onmethane desorption for the high and moderate metamorphic degree coal, but injected watershave inhibition effect on methane desorption for the low metamorphic degree coal.
     Injected water can promote and inhibit methane desorption of coal seam from thenumerical simulation and engineering practice. The combined effects of injecting water intocoal seam on methane desorption have something to do with the changes of coal seampermeability and replacement adsorbed methane effect of water. When the decrease degree ofcoal seam permeability is smaller and replacement adsorbed methane effect of water is largerafter injecting water, the injected water will promote the coalbed methane desorption,conversely, it will inhibit coal seam methane desorption.
引文
[1]李建卫,刘雨虹,张倩.关于中国能源发展的思考[J].化工科技市场,2009,32(1):1-3.
    [2]国务院.国务院关于印发能源发展“十二五”规划的通知[EB/OL].http://www.nea.gov.cn/2013-01/28/c_132132808.htm,2013-1-1/2013-3-4.
    [3]廖春良.“十二五”时期中国能源结构的演变[J].上海经济,2010,(12):40-43.
    [4]赵铁锤.认真落实“十六字工作体系”继续深化切实做好煤矿瓦斯治理工作[J].中国煤炭,2008,34(7):11-14.
    [5] Clarkson, C.R., Bustin, R.M. Variation in micropore capacity and size distribution with composition inbituminous coal of the Western Canadian Sedimentary Basin: Implications for coalbed methanepotential[J]. Fuel,1996,75(13):1483-1498.
    [6] Gray, I. Reservoir engineering in coal seams: part1-the physical process of gas storage and movementin coal seams[J].SPE Reservoir Engineering,1987,2(1):28-34.
    [7] Martin,C.H.Australasian coal mining practice[C].Australasian Institute of Mining and Metallurgy,1986.
    [8] Pan,Z.,Connell,L.D.,Camilleri,M.,Connelly, L.Effects of matrix moisture on gas diffusion and flow incoal[J].Fuel,2010,89(11):3207-3217.
    [9] Clarkson,C.R., Bustin,R.M. The effect of pore structure and gas pressure upon the transport propertiesof coal: a laboratory and modelling study.2. Adsorption rate modelling [J]. Fuel1999,78(11):1345-1362.
    [10] Durie, R. A.The science of victorian brown coal: structure, properties, and consequences forutilization[M].Butterworth-Heinemann,1991.
    [11] Allardice, D.J., Clemow, L.M., Favas, G., Jackson, W.R., Marshall, M., Sakurovs, R. Thecharacterisation of different forms of water in low rank coals and some hydrothermally driedproducts[J]. Fuel,2003,82(6):661-667.
    [12] Joubert,J.I., Grein,C.T., Bienstock,D. Effect of moisture on the methane capacity of American coals[J].Fuel,1974,53(3):186-191.
    [13] Levy, J.H., Day, S.J., Killingley, J.S. Methane capacities of Bowen Basin coals relatedto coalproperties [J]. Fuel,1997,76(9):813-819.
    [14] Crosdale,P.J., Moore,T.A., Mares,T. E. Influence of moisture content and temperature on methaneadsorption isotherm analysis for coals from a low-rank, biogenically-sourced gas reservoir[J].International Journal of Coal Geology,2008,76(1):166-174.
    [15] Allardice, D.J., Evans,D.G. The-brown coal/water system: Part2. Water sorption isotherms onbed-moist Yallourn brown coal[J]. Fuel,1971,50(3):236-253.
    [16] Anderson,R.B., Hall,W.K., Lecky,J.A., et al. Sorption studies on American coals[J]. The Journal ofPhysical Chemistry,1956,60(11):1548-1558.
    [17] Moffat,D.H.,Weale,K.E. Sorption by coal of methane at high pressures[J].Fuel,1955,34:449-462.
    [18] Chen,D., Pan,Z., Liu,J., et al. Modeling and Simulation of Moisture Effect on Gas Storage andTransport in Coal Seams[J]. Energy&Fuels,2012,26(3):1695-1706.
    [19] Mastalerz,M., Gluskoter,H., Rupp,J. Carbon dioxide and methane sorption in high volatile bituminouscoals from Indiana,USA[J]. International Journal of Coal Geology,2004,60(1):43-55.
    [20] Laxminarayana, C., Crosdale, P. J. Role of coal type and rank on methane sorption characteristics ofBowen Basin, Australia coals[J]. International Journal of Coal Geology,1999,40(4):309-325.
    [21] Gurdal, G., Yalcin,M.N. Gas sorption capacity of Carboniferous coals in the Zonguldak basin (NWTurkey) and its controlling factors[J]. Fuel,2000,79(15):1913-1924.
    [22] Ettinger,I.L. Methane saturation of coal strata as methane-coal solid solution[J].Journal of MiningScience,1990,26(2):159-161.
    [23] Ettinger,I.L. Diffusion field in coal stratum[J].Journal of Mining Science,1991,27(4):368-370.
    [24] Gal,N.L., Lagneau,V., Charmoille, A. Experimental characterization of CH4release from coal at highhydrostatic pressure[J].International Journal of Coal Geology,2012,96/97:82-92.
    [25] Sommerton,W.J., Soylemezoglu,I.M., Dudley,R.C.Effect of stress on permeability of coal[J]. Int JRock Mech Min Sci and Geomech Abstr,1975,12(2):129-145.
    [26] Siriwardane, H. J., Gondle,R.K., Smith,D. H.Shrinkage and swelling of coal induced by desorptionand sorption of fluids: Theoretical model and interpretation of a field project[J]. International Journalof Coal Geology,2009,77(1):188-202.
    [27] Qin,Y., Wang,L., Yang, X., et al. Experimental Study of Different Granularity on the Gas Absorptionof Coal[J].Procedia Engineering,2011,26:93-100.
    [28] Karacan, C.., Okandan, E. Fracture/cleats analysis of coals from Zonguldak Basin(northwesternTurkey) relative to the potential of coalbed methane production[J]. International Journalof Coal Geology,2000,44:109-125.
    [29] Karacan, C.., Ruiz, F.A., Cotè, M., Phipps, S. Coal mine methane: a review of capture and utilizationpractices with benefits to mining safety and to greenhouse gas reduction[J]. International Journal ofCoal Geology,2011,86(2):121-156.
    [30] Guo,H., Adhikary,D. P., Craig,M.S. Simulation of mine water inflow and gas emission during longwallmining[J]. Rock Mech Rock Engng.2009,42(1):25-51.
    [31] Zhang,S., Sang,S. Physical chemistry mechanism of influence of liquid water on coalbed methaneadsorption[J]. Procedia Earth and Planetary Science,2009,1(1):263-268.
    [32] Xie,J., Zhao,Y., Li,X., et al. The experiment of gas adsorption and desorption under the action of hightempertature and high pressure water[J].Procedia Engineering,2011,26:1547-1553.
    [33] Pakowski,Z., Adamski,R., Kokocinska,M., et al. Generalized desorption equilibrium equation oflignite in a wide temperature and moisture content range[J].Fuel,2011,90(11):3330-3335.
    [34] Xiao, Z.,Wang,Z. Experimental Study on Inhibitory Effect of Gas Desorption by Injecting Water intoCoal-sample[J]. Procedia Engineering,2011,26:1287-1295.
    [35] Zhang,G., Liu,X., Bi,Y., et al. Experimental Study of Penetrant Solution Impact on GasDesorption[J].Procedia Engineering,2011,26:113-119.
    [36] Zhao,D., Feng,Z.,Zhao,Y.Laboratory experiment on coal-bed methane dessorption by water Injectionand tempertature[J].Journal of Canadian Petrpleum Technology,2011,(7/8):24-33.
    [37]孟巧荣,赵阳升,胡耀青,等.焦煤孔隙结构形态的实验研究[J].煤炭学报,2011,36(3):487-490.
    [38]张力,何学秋,聂百胜.煤吸附瓦斯过程的研究[J].矿业安全与环保,2000,27(6):1-2.
    [39]胡国艺,刘顺生,李景明,等.沁水盆地晋城地区煤层气成因[J].石油与天然气地质,2001,22(4):319-321.
    [40]聂百胜,段三明.煤吸附瓦斯的本质[J].太原理工大学学报,1998,29(4):417-421.
    [41]降文萍,崔永君,张群,等.煤表面与CH4、CO2相互作用的量子化学研究[J].煤炭学报,2006,31(2):237-240.
    [42]陈向军,刘军,王林,等.不同变质程度煤的孔径分布及其对吸附常数的影响[J].煤炭学报,2013,38(2):294-300.
    [43]马京长,王勃,刘飞,等.高煤阶煤的吸附特征分析[J].天然气技术,2008,2(6):31-34.
    [44]陈振宏,王一兵,宋岩,等.不同煤阶煤层气吸附、解吸特征差异对比[J].天然气工业,2008,28(3):30-32.
    [45]陈振宏,贾承造,宋岩,等.高煤阶与低煤阶煤层气藏物性差异及其成因[J].石油学报,2008,29(2):179-184.
    [46]蔚远江,汪永华,杨起,等.准噶尔盆地低煤阶煤储集层吸附特征及煤层气开发潜力[J].石油勘探与开发,2008,35(4):410-416.
    [47]张丽萍,苏现波,曾荣树.煤体性质对煤吸附容量的控制作用探讨[J].地质学报,2006,80(6):910-915.
    [48]沈丽惠,齐俊启,赵志义,等.煤层气生成及含气量控制因素[J].河北工程大学学报(自然科学版),2010,27(1):81-84.
    [49]田蕾,郑柏平,袁同星.沁水盆地高家庄区块高煤阶煤吸附特征及控制因素[J].河北工程大学学报(自然科学版),2010,27(3):57-61.
    [50]钟玲文.煤的吸附性能及影响因素[J].地球科学,2004,29(3):327-334.
    [51]秦文贵,张延松.煤孔隙分布与煤层注水增量的关系[J].煤炭学报,2000,25(5):514-517.
    [52]秦跃平,傅贵.煤孔隙分形特征及其吸水性能的研究[J].煤炭学报,2000,25(1):55-60.
    [53]傅贵,陈学习,雷之平.煤体吸湿速度实验研究[J].煤炭学报,1998,23(6):630-633.
    [54]金龙哲,蒋仲安,任宝宏,等.煤层注水中水分蒸发现象的研究[J].中国安全科学学报,2000,10(3):58-62.
    [55] Joubert,J.I., Grein,C.T., Bienstock,D. Sorption of methane in moist coal[J]. Fuel,1973,52(3):181-185.
    [56]郭淑敏,段小群,徐成法.煤储层条件下平衡湿度测定方法研究[J].焦作工学院学报(自然科学版),2004,23(2):157-160.
    [57]张占存,马丕梁.水分对不同煤种瓦斯吸附特性影响的实验研究[J].煤炭学报,2008,33(2):144-147.
    [58]张群,杨锡禄.平衡水分条件下煤对甲烷的等温吸附特性研究[J].煤炭学报,1999,24(6):566-570.
    [59]张时音,桑树勋,杨志刚.液态水对煤吸附甲烷影响的机理分析[J].中国矿业大学学报,2009,38(5):707-712.
    [60]降文萍,崔永君,钟玲文,等.煤中水分对煤吸附甲烷影响机理的理论研究[J].天然气地球科学,2007,18(4):576-579.
    [61]钟玲文,张新民.煤的吸附能力与其煤化程度和煤岩组成间的关系[J].煤田地质与勘探,1990,27(4):29-35.
    [62]田永东,李宁.煤对甲烷吸附能力的影响因素[J].西安科技大学学报,2007,27(2):247-250.
    [63]苏现波,张丽萍,林晓英.煤阶对煤的吸附能力的影响[J].天然气工业,2005,25(1):19-21.
    [64]孙文标,刘辉,赵宏伟.煤层注水在煤矿安全中的应用及效果浅析[J].煤矿安全,2004,35(12):24-25.
    [65]刘忠峰.唐安煤矿3#煤综放工作面煤层注水参数与施工工艺研究[D].太原:太原理工大学,2010.
    [66]吴继周.略论煤层注水[J].煤矿安全,1982,13(2):1-6.
    [67]傅贵,秦风华,陈学习,等.“三软”煤层综放工作面综合防尘技术试验研究[J].中国安全科学学报,1998,8(4):31-35.
    [68]胡耀青,段康廉,赵阳升,等.煤层注水降低综采工作面煤尘浓度的研究[J].中国安全科学学报,1998,8(3):47-50.
    [69]胡耀青,段康廉,赵阳升,等.煤层动压注水的现场实验研究[J].太原理工大学学报,1998,29(2):156-159.
    [70] Campoli,A.A.,McCall,F.E.,Finfinger,G.L.Long wall dust control potentially enhanced by surfaceborehole water infusion[J].Mining Engineering,1996,48(7):56-60.
    [71]秦来昌,孙云虎,赵宝涛.“三软”煤层采煤工作面煤层注水消突治理瓦斯、煤尘技术[J].煤炭技术,2009,28(11):93-94.
    [72]翟涛宝.论煤层注水处理瓦斯的效果[J].煤矿安全,1994,5:39-43.
    [73] Steven,J.,Organiscak,J.A.Using proximate analysis to characterize airborne dust generation frombituminous coals[J].Aerosol Science and Technology,2002,36(6):721-733.
    [74]肖知国,王兆丰.煤层注水防治煤与瓦斯突出机理的研究现状与进展[J].中国安全科学学报,2009,19(10):150-159.
    [75]蒋承林.煤层注水的防突机理分析[J].湘潭工学院学报,1999,14(3):1-4.
    [76]李天珍,茅献彪,缪协兴,等.松软煤层冲击矿压防治技术[J].矿山压力与顶板管理,1998,(4):70-73.
    [77]李伟.南屯煤矿冲击地压防治技术研究与应用[J].煤炭科学技术,2008,36(4):39-43.
    [78]章梦涛,宋维源,潘一山.煤层注水预防冲击地压的研究[J].中国安全科学学报,2003,13(10):69-73.
    [79]孙海,徐林,朱发明,等.用注水法防治软岩矿区冲击地压事故[J].煤炭科学技术,1999,27(4):48-50.
    [80]李宗翔,潘一山,张智慧.预防冲击地压煤层掘进注水钻孔布置与参数的确定[J].煤炭学报,2004,29(6):684-688.
    [81]徐林,姜长根.用煤体注水法防治软岩矿井冲击矿压[J].煤矿安全,1999,(4):31-32.
    [82]靳钟铭,赵阳升,张惠轩等.预注水软化顶板岩石在特厚煤层多分层开采中的实践[J].岩土工程学报,1991,13(1):68-74.
    [83] Dines H G. The metalliferous mining region of south-west England[M].HM Stationery Office,1956.
    [84]康天合,张建平,白世伟.综放开采预注水弱化顶煤的理论研究及其工程应用[J].岩石力学与工程学报,2004,23(15):2615-2621
    [85]张明山,张贝贝,宋宪存.注水法在煤层气排采中的应用[J].辽宁工程技术大学学报,2009,28(6):891-893.
    [86]程远平.煤矿瓦斯防治理论与工程应用[M].徐州:中国矿业大学出版社,2010:14-18.
    [87]程远平,俞启香.中国煤矿区域性瓦斯治理技术的发展[J].采矿与安全工程学报,2007,24(4):383-390.
    [88]赵振保.变频脉冲式煤层注水技术研究[J].采矿与安全工程学报,2008,25(4):484-489.
    [89]王新新,石必明,穆朝民.水力冲孔煤层瓦斯分区排放的形成机理研究[J].煤炭学报,2012,37(3):467-471.
    [90]林柏泉,孟凡伟,张海宾.基于区域瓦斯治理的钻割抽一体化技术及应用[J].煤炭学报,2011,36(01):75-79.
    [91]唐巨鹏,杨森林,李利萍.不同水力割缝布置方式对卸压防突效果影响数值模拟[J].中国地质灾害与防治学报,2012,23(1):61-66.
    [92]刘勇,卢义玉,李晓红,等.高压脉冲水射流顶底板钻孔提高煤层瓦斯抽采率的应用研究[J].煤炭学报,2010,35(7):1115-1119.
    [93]沈春明,林柏泉,吴海进.高压水射流割缝及其对煤体透气性的影响[J].煤炭学报,2011,36(12):2058-2063.
    [94]富向.井下点式水力压裂增透技术研究[J].煤炭学报,2011,36(8):1317-1321.
    [95]林柏泉,张其智,沈春明,等.钻孔割缝网络化增透机制及其在底板穿层钻孔瓦斯抽采中的应用[J].煤炭学报,2012,37(09):1425-1430.
    [96]陈向军,王兆丰,程远平,等.水力挤出消突技术在水井头煤矿掘巷中的应用[J].煤炭科学技术,2012,40(3):49-52.
    [97] О.И.切尔诺夫,Е.С.罗赞采夫.瓦斯突出危险煤层井田的准备[M].宋世钊,于不凡译.北京:煤炭工业出版社,1980:128-288.
    [98]于不凡,王佑安.煤矿瓦斯灾害防治及利用技术手册(修订版)[M].北京:煤炭工业出版社,2005:696-698.
    [99]刘建新,李志强.煤巷掘进工作面水力挤出措施防突机理[J].煤炭学报,2006,31(2):183-186.
    [100]李平.水力挤出技术在突出煤层中的应用[J].煤炭科学技术,2007,35(8):45-47,52.
    [101]马骏驰,陈中华,周杨洲,等.突出煤层煤巷掘进水力挤出综合效益研究[J].煤炭技术,2012,31(10):57-59.
    [102]滑俊杰.突出煤层水力挤出快速消突技术[D].焦作:河南理工大学,2011.
    [103]朱亚.高瓦斯突出煤层水力湿润防突技术研究[D].淮南:安徽理工大学,2010.
    [104]郭怀广.煤层注水防突机理及合理水分研究[D].焦作:河南理工大学,2011.
    [105]秦长江.顺层钻孔预抽预抽煤层瓦斯区域防突关键技术研究[D].武汉:中国地质大学,2012.
    [106]刘军,夏会辉,杨宏民,等.煤与瓦斯突出煤层综掘工作面瓦斯防治技术[J].煤炭科学技术,2012,40(4):67-70,74.
    [107]王兆丰,李宏.煤巷水力疏松措施合理注水参数研究及应用[J].煤炭工程,2011,(2):42-45.
    [108]姜文忠.低渗透煤层高压旋转水射流割缝增透技术及应用研究[D].徐州:中国矿业大学,2009.
    [109]魏国营,张书军,辛新平.突出煤层掘进防突技术研究[J].中国安全科学学报,2005,15(6):100-104.
    [110]程庆迎.低透煤层水力致裂增透与驱赶瓦斯效应研究[D].徐州:中国矿业大学,2012.
    [111]孟筠青.煤层高压脉动注水防治煤与瓦斯突出理论与技术研究[D].北京:中国矿业大学(北京),2011.
    [112]肖知国.煤层注水抑制瓦斯解吸效应实验研究与应用[D].焦作:河南理工大学,2010.
    [113]唐本东.直接法测定煤层瓦斯含量时其逸散瓦斯量补偿浅谈[J].煤矿安全,1995,26(11):25-28.
    [114]刘彦伟.粒煤瓦斯放散规律、机理与动力学模型研究[D].焦作:河南理工大学,2011.
    [115] Barrer,R.M.Diffusion in and through Solids[M].CUP Archive,1941.
    [116] A·Э·彼特罗祥.煤矿沼气涌出[M].宋世钊译.北京:煤炭工业出版社,1983:121-186.
    [117] Airey,E.M. Gas emission from broken coal. An experimental and theoretical investigation[C].International Journal of Rock Mechanics and Mining Sciences&Geomechanics Abstracts. Pergamon,1968,5(6):475-494.
    [118] Bolt,B.A.,Innes,J.A.Diffusion of carbon dioxide from coal[J]. Fuel,1959,38(3):333-337.
    [119]王佑安,杨思敬.煤和瓦斯突出煤层的某些特征[J].煤炭学报,1981,(1):47-53.
    [120]陈向军.强烈破坏煤瓦斯解吸规律研究[D].焦作:河南理工大学,2008.
    [121]富向,王魁军,杨天鸿.构造煤的瓦斯放散特征[J].煤炭学报,2008,33(7):775-779.
    [122]杨其銮,王佑安.瓦斯球向流动数学模拟[J].中国矿业学院学报,1988,(3):55-61.
    [123]杨其銮.关于煤屑瓦斯放散规律的试验研究[J].煤矿安全,1986,18(2):9-17.
    [124]王兆丰.空气、水和泥浆介质中煤的瓦斯解吸规律与应用研究[D].徐州:中国矿业大学,2001.
    [125]曹垚林,仇海生.碎屑状煤芯瓦斯解吸规律研究[J].中国矿业,2007,16(12):119-123.
    [126]姜永东,阳兴洋,刘元雪,等.不同温度条件下煤中甲烷解吸特性的实验研究[J].矿业安全与环保,2012,39(2):6-8.
    [127]李宏.环境温度对颗粒煤瓦斯解吸规律的影响实验研究[D].焦作:河南理工大学,2011.
    [128]郭红玉,苏现波.煤层注水抑制瓦斯涌出机理研究[J].煤炭学报,2010,35(6):928-931.
    [129]李晓华.水分对阳泉3号煤层瓦斯解吸规律影响的实验研究[D].焦作:河南理工大学,2010.
    [130]陈攀.水分对构造煤瓦斯解吸规律影响的实验研究[D].焦作:河南理工大学,2010.
    [131]赵东,冯增朝,赵阳升.高压注水对煤体瓦斯解吸特性影响的试验研究[J].岩石力学与工程学报,2010,30(3):549-555.
    [132]赵东,赵阳升,冯增朝.结合孔隙结构分析注水对煤体瓦斯解吸的影响[J].岩石力学与工程学报,2010,30(4):686-692.
    [133]陈向军,程远平,王林.外加水分对煤中瓦斯解吸抑制作用试验研究[J].采矿与安全工程学报,2013,30(2):296-301.
    [134]牟俊惠,程远平,刘辉辉.注水煤瓦斯放散特性的研究[J].采矿与安全工程学报,2012,29(5):746-749.
    [135]曾凡桂,张通,王三跃,谢克昌.煤超分子结构的概念及其研究途径与方法[J].煤炭学报,2005,30(1):85-89
    [136]谢克昌,煤的结构与反应性[M].北京:科学出版社,2002,115.
    [137]陈昌国.煤的物理化学结构和和吸附(解吸)甲烷机理的研究[D].重庆:重庆大学,1995.
    [138]吴文忠.神东煤惰质组结构特征及其与CH4、CO2和H2O相互作用的分子模拟[D].太原:太原理工大学,2010.
    [139]朱培之,高晋生.煤化学[M].上海:上海科学技术出版社,1984.
    [140]王宝俊.煤结构与反应性的量子化学研究[D].太原:太原理工大学,2006.
    [141]降文萍,崔永君,钟玲文,等.煤中水分对煤吸附甲烷影响机理的理论研究[J].天然气地球科学,2007,18(4):576-579.
    [142]降文萍.煤阶对吸附能力影响的微观机理研究[J].中国煤层气,2009,6(2):19-23.
    [143]降文萍,崔永君,张群,等.不同变质程度煤表面与甲烷相互作用的量子化学研究[J].煤炭学报,2007,32(3):292-295.
    [144]傅献彩,沈文霞,姚天扬.物理化学(第四版)[M].北京:高等教育出版社,1990.
    [145]李东涛,李文,孙庆雷,等.原位漫反射红外光谱中采用新的实验手段研究煤岩显微组分中的氢键[J].高等教学化学学报,2003,24(4):703-706.
    [146]李东涛,李文,李保庆.褐煤中水分的原位漫反射红外光谱研究[J].高等教学化学学报,2002,23(12):2325-2328.
    [147]王海燕,曾艳丽,孟令鹏,等.有关氢键理论研究的现状及前景[J].河北师范大学学报(自然科学版),2005,29(2):177-181.
    [148]聂百胜,何学秋,王恩元等.煤吸附水的微观机理[J].中国矿业大学学报,2004,33(4):379-383.
    [149]吴俊.煤表面能的吸附法计算及研究意义[J].煤田地质与勘探,1994,22(2):18-23.
    [150] Prausnitz,J.M.,Lichenthaler,R.N.,Azevedo,G.流体相平衡的分子热力学(第二版)[M].骆赞椿,吕瑞东,刘国杰,等译.北京:化学工业出版社,1990.
    [151]邱冠周,胡岳华,王淀佐.颗粒间相互作用与细粒浮选[M].长沙:中南工业大学出版社,1993.
    [152]袁加程.浅析氢键对物质物理性质的影响[J].化学教学,2003,(4):45-46.
    [153]张广宏,马文霞,万会军.氢键的类型和本质[J].化学教学,2007,(7):72-75.
    [154]张遂安.有关煤层气开采过程中煤层气解吸作用类型的探索[J].中国煤层气,2004,1(1):26-28,20.
    [155]张遂安,霍永忠,叶建平,等.煤层气的置换解吸实验及机理探索[J].科学通报,2005,50(增Ⅰ):143-145.
    [156]马东民,蔺亚兵,张遂安.煤层气升温解吸特征分析与应用[J].中国煤层气,2011,8(3):11-15.
    [157]马东民,李卫波,蔺亚兵.降压解吸关系式在中高阶煤煤层气排采中的应用[J].西安科技大学学报,2010,30(6):697-701.
    [158]马东民.煤层气吸附解吸机理研究[D].西安:西安科技大学,2008.
    [159]杨宏民.井下注气驱替煤层甲烷机理及规律研究[D].焦作:河南理工大学,2010.
    [160]李树刚,赵勇,张天军.基于低频振动的煤样吸附/解吸特性测试系统[J].煤炭学报,2010,35(7):1142-1146.
    [161]易俊,姜永东,鲜学福.在交变电场声场作用下煤解吸吸附瓦斯特性分析[J].中国矿业,2005,14(5):70-73.
    [162]刘保县,熊德国,鲜学福.电场对煤瓦斯吸附渗流特性的影响[J].重庆大学学报(自然科学版),2006,29(2):83-85.
    [163]聂百胜,何学秋,王恩元,等.电磁场影响煤层甲烷吸附的机理研究[J].天然气工业,2004,24(10):32-34.
    [164]何学秋,张力.外加电磁场对瓦斯吸附解吸的影响规律及作用机理的研究[J].煤炭学报,2000,25(6):614-618.
    [165]姜永东,鲜学福,易俊.声震法促进煤中甲烷气解吸规律的实验及机理[J].煤炭学报,2008,33(6):675-680.
    [166]姜永东,熊令,阳兴洋,等.声场促进煤中甲烷解吸的机理研究[J].煤炭学报,2010,35(10):1649-1653.
    [167]王兆丰.液态二氧化碳相变致裂强化预抽消突技术效果考察[R].焦作,河南理工大学,2012.
    [168] GB5751-86,中国煤炭分类标准[S].
    [169] GB/T16773-2008,煤岩分析样品制备方法[S].
    [170] GB/T212-2008,煤的工业分析方法[S].
    [171] GB/T8899-1998,煤的显微组分组和矿物测定方法[S].
    [172] GB/T6948-2008,煤的镜质体反射率显微镜测定方法[S].
    [173]马东民,谢勇强,温兴宏.煤层气储层渗透率的影响因素[J].西安科技大学学报,2005,(6):123-129.
    [174]张国华,韩永辉,侯凤才,等.含瓦斯煤带压解吸规律的实验研究[J].黑龙江科技学院学报,2011,21(1):31-35.
    [175]张时音.煤储层固-液-气相间作用机理研究[D].徐州:中国矿业大学,2009.
    [176]马东民,张遂安,蔺亚兵.煤的等温吸附-解吸实验及其精确拟合[J].煤炭学报,2011,36(03):477-480.
    [177]张登峰,崔永君,李松庚,等.甲烷及二氧化碳在不同煤阶煤内部的吸附扩散行为[J].煤炭学报,2011,36(10):1693-1698.
    [178]韩颖,张飞燕,余伟凡,等.煤屑瓦斯全程扩散规律的实验研究[J].煤炭学报,2011,36(10):1699-1703.
    [179]陈萍,唐修义.低温氮吸附法与煤中微孔隙特征的研究[J].煤炭学报,2001,26(5):553-557.
    [180]罗志明.煤比表面积和煤与瓦斯突出关系的研究[J].煤炭学报,1989,14(1):44-54.
    [181]秦勇.国外煤层气成因与储层物性研究进展与分析[J].地学前缘,2005,12(3):289-298.
    [182] Can, H.,Niandi,S.P., Walker,P.L. Nature of porosity in American coals[J].Fuel,1972,(51):272-277.
    [183]郝琦.煤的微观孔隙形态特征及其成因探讨[J].煤炭学报,1987,(4):51-57.
    [184]朱兴珊.煤层孔隙特征对抽放煤层气的影响[J].中国煤层气,1996,(6):37-39.
    [185]张慧.煤孔隙的成因类型及其研究[J].煤炭学报,2001,(1):40-45.
    [186]琚宜文.构造煤结构演化与储层物性特征及其作用机理[D].徐州:中国矿业大学,2002.
    [187]俞启香.矿井瓦斯防治[M].中国矿业大学出版社,1992:1-19.
    [188]近藤精一,石川达雄,安部郁夫.吸附科学(第二版)[M].李国希译.北京:化学工业出版社,2010.
    [189] Patching, T.H. Retention and release of gas in coal-a review[J].Canadian Mining and MetallurgicalBulletin,1970,63(703):1302-1308.
    [190] Shi,J.Q., Durucan,S. A bidisperse pore diffusion model for methane displacement desorption in coalby CO2injection[J].Fuel,2003,82(10):1219-1229.
    [191] Perera,M.S.A., Ranjith,P.G., Choi,S.K., et al. Estimation of Gas Adsorption Capacity in Coal: AReview and an Analytical Study[J]. International Journal of Coal Preparation and Utilization,2012,32(1):25-55.
    [192] Gregg,S.J., Sing,K.S.W. Adsorption, Surface Area and Porosity(2nd Edn)[M]. New York AcademicPress,1982.
    [193] Gurdal,G., Yalcin,M.N. Pore volume and surface area of the Carboniferous coals from the Zonguldakbasin (NW Turkey) and their variations with rank and macerals composition[J]. International Journalof Coal Geology,2001,48(1):133-144.
    [194] MT/T752-1997,煤的甲烷吸附量测定方法高压容量法[S].
    [195]蒲美玲.低渗透油气藏改造技术研究进展[J].内蒙古石油化工,2007,(12):315-317.
    [196]高远文,姚艳斌,郭广山.注气提高煤层气采收率研究进展[J].资源与产业,2007,9(6):105-108.
    [197]姚胜林,陈明强,王克伟,等.提高采收率研究现状[J].石油化工应用,2009,28(4):1-3.
    [198]易俊,鲜学福,姜永东,等.煤储层瓦斯激励开采技术及其适应性[J].中国矿业,2005,14(12):26-29.
    [199] Puri,R., Yee,D. Enhanced coalbed methane recovery[C].SPE Annual Technical Conference andExhibition,1990.
    [200] Clarkson,C.R, Bustin,R.M.Binary gas adsorption/desorption isotherms: effect of moisture and coalcomposition upon carbon dioxide selectivity over methane[J].International Journal of CoalGeology,2000,42(4):241-272.
    [201] Reznik,A.A., Singh,P.K., Foley,W. analysis of the effect of CO2injection on the recovery of in-situmethane from bituminous coal: an experimental simulation [J].Society of Petroleum Engineersjournal,1984,24(5):521:528.
    [202] Tu,Y., Xie, C., Li, R., et al.the contrast experimental study of displacing coalbed methane byinjecting carbon dioxide or nitrogen[J].Advanced Materials Research,2013,616-618:778-785.
    [203] Yang,T.,Nie,B.,Yang,D., et al.Experimental research on displacing coal bed methane withsupercritical CO2[J].Safety Science,2012,50(4):899-902.
    [204] Zhang,D.,Li,S.,Cui,Y.Displacement behavior of methane adsorbed on coal by CO2injection[J].Industrial and Engineering Chemistry Research,2011,50(14):8742-8749.
    [205] Katayama,Y.Study of coalbed methane in Japan[C].Proceedings of United Nations InternationalConference on Coalbed Methane Development and Utilization,1995.
    [206] Kumar, H., Elsworth,D.,Liu, J.,et al. Optimizing enhanced coalbed methane recovery for unhinderedproduction and CO2injectivity [J]. International Journal of Greenhouse Gas Control,2012,11:86-97.
    [207] Mazzotti,M., Pini,R., Storti,G.Enhanced coalbed methane recovery[J]. The Journal of SupercriticalFluids,2009,47(3):619-627.
    [208] Bergen,F.V., Tambach,T., Pagnier,H.The role of CO2-enhanced coalbed methane production in theglobal CCS strategy[J]. Energy Procedia,2011,4:3112-3116
    [209] Wei,X., Massarotto,P., Wang,G., et al. CO2sequestration in coals and enhanced coalbed methanerecovery: New numerical approach[J].Fuel,2010,89(5):1110-1118.
    [210] Gunter,W.D., Wong,S., Gentzis,T. Field-testing CO2sequestration and enhanced coalbed methanerecovery in Alberta, Canada-a historical perspective and future plans[J]. Am ChemSoc,2000,45:731-734.
    [211] Mazumder, S., Wolf,K., Van,H.P., et al. Laboratory experiments on environmental friendly means toimprove coalbed methane production by carbon dioxide/flue gas injection[J]. Transport in porousmedia,2008,75(1):63-92.
    [212] Jessen,K., Tang,G.Q., Kovscek,A.R. Laboratory and simulation investigation of enhanced coalbedmethane recovery by gas injection[J]. Transport in Porous Media,2008,73(2):141-159.
    [213] Busch,A.,Gensterblum,Y.,Krooss,B.M.Methane and CO2sorption and desorption measurements ondry argonne premium coals: pure components and mixtures [J]. International Journal of CoalGeology,2003,55(2):205-224.
    [214]杨宏民,任子阳,王兆丰.寺家庄矿无烟煤对CH4和CO2的吸附特性研究[J].煤炭科学技术,2010,38(5):117-120.
    [215]崔永君,张群,张泓,等.不同煤对CH4、N2和CO2单组分气体的吸附[J].天然气工业,2005,25(1):61-65.
    [216]李建武,白公正,雷宝林,等.吐哈盆地煤层的吸附性及其影响因素[J].煤田地质与勘探,2001,29(2):30-32.
    [217]王宝俊,凌丽霞,赵清艳,等.气体与煤表面吸附作用的量子化学研究[J].化工学报,2009,60(4):995-1000.
    [218]徐龙君,张代钧,鲜学福.煤的吸附特征及其应用[J].煤炭转化,1997,20(2):26-31.
    [219] Serra,M.C.C., Pessoa,F.L.P., Palavra,A.M. F. Solubility of methane in water and in a medium for thecultivation of methanotrophs bacteria[J]. The Journal of Chemical Thermodynamics,2006,38(12):1629-1633.
    [220]桑树勋,秦勇,郭晓波,等.准噶尔和吐哈盆地侏罗系煤层气储集特征[J].高校地质学报,2003,9(3):365-372.
    [221]宋岩,张新民.煤层气成藏机制及经济开采理论基础[M].北京:科学出版社,2005:90-98.
    [222] GBT19560-2008,煤的高压等温吸附试验方法[S].
    [223] Sang,S.,Zhu,Y.,Zhang,J.,et al. Influence of liquid water on coalbed methane adsorption:Anexperimental research on coal reservoirs in the south of Qinshui Basin[J]. Chinese Science Bulletin,2005,01(50):79-85.
    [224] Wu,S., Guo,Y., Li,Y., et al. Research on the mechanism of coal and gas outburst and the screening ofprediction indices[J]. Procedia Earth and Planetary Science,2009,1(1):173-179.
    [225] Moffat,D.H., Weale,K.E. Sorption by coal of methane at high pressures[J]. Fuel,1955,34:449-462.
    [226] Siemons,N., Wolf K,H.A.A., Bruining,J. Interpretation of carbon dioxide diffusion behaviour incoals[J]. Int J Coal Geol,2007,72(3):315-24.
    [227] Krishna,R.,Wesselingh,J.A.The Maxwell-Stefan approach to mass transfer[J].Chemical EngineeringScience,1997,52(6):861-911.
    [228] Crank,J. The mathematics of diffusion(2nd Edn)[M]. Oxford university press,1979.
    [229] Crosdale,P.J., Beamish,B.B., Valix,M. Coalbed methane sorption related to coal composition[J].International Journal of Coal Geology,1998,35(1):147-158.
    [230] Ruckenstein,E., Vaidyanathan,A.S., Youngquist,G.R. Sorption by solids with bidisperse porestructures[J].Chemical Engineering Science,1971,26(9):1305-1318.
    [231] Smith,D., Williams, F. Diffusional effects in the recovery of methane from coalbeds[J]. Old SPEJournal,1984,24(5):529-535.
    [232]陈向军,程远平,王林.水分对不同煤阶煤瓦斯放散初速度的影响[J].煤炭科学技术,2012,40(12):62-65.
    [233] Yin,G., Jiang,C., Xu,J., et al. An experimental study on the effects of water content on coalbed gaspermeability in ground stress fields[J].Transport in porous media,2012,94(1):87-99.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700