用户名: 密码: 验证码:
废印刷线路板硫氰酸盐法浸金
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
随着电子工业的迅猛发展,废印刷线路板的数量急剧增加。除了含有卤素阻燃剂、汞、硒、镍、铅、铬等污染物,废印刷线路板还含有多种贵金属,如金、银、铂等,回收这些金属尤其是贵金属如金是废印刷线路板资源化的主要推动力。
     本文以某种废弃印刷线路板为例,总结了废印刷线路板的特点及国内外废印刷线路板资源化的技术如机械处理、火法、热解、湿法处理、超临界水氧化等,重点介绍了回收金的湿法工艺,并详细阐述了开发一种无毒或低毒、浸金效率高、生产成本低的非氰浸金方法的合理性和迫切性。在研究和比较了多种非氰试剂之后,选择了硫氰酸盐作为浸取废印刷线路板中金的试剂。为硫氰酸盐法从废印刷线路板中浸金的工业化打下基础,促进废印刷线路板资源化的研究。
     本论文工作主要涉及三个部分:(1)分析废印刷线路板颗粒中的金属元素;(2)去除废印刷线路板颗粒中的铜;(3)硫氰酸盐法浸取去铜后的废印刷线路板颗粒中的金。
     第一部分:采用火焰原子吸收分光光度法(AAS法)测定出PCB中主要金属元素的含量,同时配以电感耦合等离子体发射光谱法(ICP—AES法)验证测定结果。其中铜的含量为883.5mg/g,金为0.324mg/g。
     第二部分:采用H_2SO_4—H_2O_2体系溶解废印刷线路板颗粒中的铜,对废印刷线路板进行预处理。该工艺的最佳运行条件为:30℃,每2克废印刷线路板颗粒与40mL 2.4mol/L的硫酸和10mL双氧水混合,机械搅拌反应2.5h小时。铜的浸出率可高达98%以上。
     第三部分:采用硫氰酸盐法浸取预处理过的废印刷线路板颗粒中的金。首先从浸金体系,浸金体系氧化剂选择判据的推导,浸金体系络合剂和氧化剂的关系等三个方面对浸金过程进行理论分析。浸金体系均由氧化剂和络合剂构成。金氧化电势的降低,取决于金络合物的稳定性和特定的浸出条件。在标准条件下,浸金体系选择氧化剂的依据是:氧化电势E_1>(1.68-0.05921gK_1)V或E_1>(1.50-0.0592/3×1gK_2)V。浸金体系氧化剂的选择标准和金(Ⅰ/Ⅲ)络合物的稳定常数相关,稳定常数越大,所需氧化剂的最小氧化电势越小。浸金体系选择络合剂的原则是其与金能生成稳定的络合物,络合物越稳定,越有利于金的浸出。
     然后在浸金理论的指导下,采用硫氰酸盐作为络合剂,二氧化锰和铁(Ⅲ)作为氧化剂分别组成硫氰酸盐——二氧化锰和硫氰酸盐——铁(Ⅲ)两个浸金体系。本实验考察了反应时间、反应温度、pH值、固液比、氧化剂浓度和用量等因素对浸金率的影响,分别确定了两个浸金体系的最佳运行条件:
     ①硫氰酸盐——二氧化锰体系:MnO_2与待浸金颗粒质量比为1:O.7,0.4mol/LNaSCN溶液,固液比(g/ml)为1/22,pH=l~2,恒温(~20℃)振荡3h,浸金率超过96%;
     ②硫氰酸盐——铁(Ⅲ)体系:0.1mol/L Fe~(3+),0.4mol/L SCN~-,pH=2,固液比为1/22,恒温(~20℃)振荡3h,浸金率达到96%。
     最后,分别对实验结果建立动力学模型,分析得出:两种浸金体系都符合一级反应动力学,硫氰酸盐——二氧化锰体系的活化能E_a为5.3kJ/mol,硫氰酸盐——铁(Ⅲ)体系的活化能E_a为5.1kJ/mol,都属于扩散控制的反应。
     总的来说,在酸性溶液中硫氰酸盐可作为络合剂与作为氧化剂的MnO_2和铁(Ⅲ)形成高速且高效的浸金体系。用硫氰酸盐法浸取废印刷线路板中的金具有浸金效率高,浸金速率快,可回收,毒性低微,对环境污染极小等优点,是一种新的有发展前途的提金方法。
The rapid development of the electronic industry leads to a significant increase of waste printed circuit board(PCB). PCB is composed of plastic, refractory oxides and metals such as Au Ag Cu Hg Se Ni Pb Cr. The main economic driving force for the recycling of PCB is the recovery of metals, particularly precious metals like gold.
     In this paper, some kinds of PCB have been taken as examples to summarize the characteristics of PCB and the methods of recycling metals from PCB at home and abroad. The methods can be broadly divided into physical processes, pyrometallurgical processes, hydrometallurgical processes, pyrolysis, supercritical water oxidation, and so on. The objective of this research is to offer basic data for industrial application of gold recovery from waste PCB by thiocyanate process and to promote a sustainable development of recycling of waste PCB through proposing the non-cyanide process for gold recovery.
     The work described in this thesis mainly deals with three parts, i.e., Analysis of the component and content of metals in PCB; Dissolving the copper from PCB; Gold leaching from PCB by thiocyanate process.
     Part one: The element component and content of metals in PCB were determined by AAS and ICP-AES methods respectively. Result indicated that the circuit board was mostly composed of copper(883.5mg/g); the content of gold was 0.324mg/g.
     Part two: Dissolving copper from PCB by H_2SO_4—H_2O_2 system was the pretreatment for gold leaching. Experimental results obtained were listed as follows: 30℃, 40mL 2.4mol/L H_2SO_4 and 10ml H_2O_2 mixed with every 2g powder of PCB, 2.5h, which resulted in recovery of 98 % of copper.
     Part three: Leaching gold from pretreated powder of PCB by thiocyanate process.
     First, the composition characteristic for gold leaching systems, the relationship between oxidants and ligands and the thermodynamic criterion of oxidants selected for gold leaching systems t were analyzed in details. The gold leaching systems are composed of ligand and suitable oxidant. The oxidation potential of gold is controlled by the stability constant of gold-complex species and special leaching conditions. The larger stability constants, the smaller the standard electrode potential of oxidants needed for gold leaching systems. The leaching in the form of gold(III)-complex species could be performed spontaneously provided that the standard electrode potential of oxidants is larger than (1.50—0.0197lgK_2) V, and when the standard electrode potential of oxidants is larger than (1.68—0.0591lgK_1) V, the leaching in the form of gold(I)-complex species could be carried out according to thermodynamic prediction.
     Second, under these theoretic analyses, the effect of time, temperature, pH value, solid/liquid ratio, concentration of oxidants on the leaching of gold was discussed in detail. Experimental results obtained were listed as follows:
     ①Thiocyanate-MnO_2 system: powder of PCB : MnO_2(weight)=1: 0.7, 0.4mol/L NaSCN, solid/liquid ratio: 1/22, pH=1~2,~20℃, 3h. The recovery of gold was over 96%.
     ②Thiocyanate-iron(III) system: 0.1mol/L Fe~(3+), 0.4mol/L NaSCN, solid/liquid ratio: 1/22, pH=2,~20℃, 3h. The recovery of gold was about 96%.
     Third, kinetics models have been established for the processes of gold leaching by these two systems respectively. The results indicated that the rates of the reactions were both first order; the activation energy of the thiocyanate-MnO_2 was found to be 5.3 kJ/mol; the activation energy of the thiocyanate-iron(III) system was found to be 5.1 kJ/mol and both of these two processes were considered to be diffusion-controlled.
     Generally speaking, the recovery of gold from waste PCB by thiocyanate process is feasible in technique and beneficial in both economy and environment.
引文
[1]钟斌.产品的环境管理生产者责任延伸制度电子电器产品的环境管理.欧盟WEEE和ROHS两个指令和中欧电子电气产品回收技术交流与合作研讨会上的发言,2004.9
    [2]查建宁.电子废弃物的环境污染及防治对策.污染防治技术,2002,15(3):35-37.
    [3]田晖译.国家倡导企业通过设计提高电器产品的再生性.家用电器科技,1996(6):31-34.
    [4]Yi-Chi Chien;Paul Wang,H.;Lin,Kuen-Song;Huang,Y.J;Yang,Y.W.Fate of bromine in pyrolysis of printed circuit board wastes,Chemosphere Volume:40,Issue:4,February,2000,pp.383-387.
    [5]祝大同.亚洲印制电路板业的现状和发展[J].电子工艺技术,1997;9:175-178.
    [6]中国电子工业年鉴[M].第一版,北京:1998.12.
    [7]韩洁,聂永峰,王晖.废弃印刷线路板的回收利用,城市环境与城市生态,2001,14(6):11-13.
    [8]沈志刚.废印刷电路板回收处理技术进展.新材料产业,2006(10):43-45.
    [9]韩洁,聂永峰,王晖.废弃印刷线路板的回收利用,城市环境与城市生态,2001,14(6):11-13.
    [1O]Cygon,M.Entsorgung von Basismaterial(Disposal of PCB substrate materials)[J].Galvanotechnik,1994,85(2):580-582.
    [11]JOHN C Bullock,Environmental Sound Management of Electronic Strap and the Basel Convention on Control of Transboundary Movements of Hazardous Waste and Their Disposal[J].IEEE,1995,192-197.
    [12]WINTER De,Vourtney K.From Here to Eternity:Recycling Hi-tech Junk[J].Waste AGE,2001,32(3):186-190.
    [13]郭杰,李佳,路洪洲,许振明.基于循环经济概念下的废弃电路板的再利用.材料导报,2006,20(11):25-31.
    [14]James E.Hoffmann.Recovering Precious Metals from Electronic Scrap[J]. Journal of the Minerals Metals and Materials Society,1992,44(7):43-48.
    [15]祝大同.日本覆铜箔板新产品适应环保严要求[J].世界电子元器件,1998(3):56-59.
    [16]顾帼华,戚云峰.废旧印刷电路板的粉碎性能及资源特征.中国有色金属学报,2004,14(6):1037-1041.
    [17]潘永泰,路迈西,周翠红等.双齿式剪切破碎机[P].中国专利,CN2677034Y,2005-02-09.
    [18]宋振玲.涡电流分选方法处理电子废弃物的基础研究[D](硕士论文).徐州:中国矿业大学,2005.
    [19]杨玉芬,盖国胜等.废印刷线路板中稀贵金属的回收现状.稀有金属,2004(4):716-719.
    [20]Yi-chi Chien,H.Paul Wang,Kuen-song Lin and Y.W.Yang.Oxidation of printed circuit board wastes in supercritical water.Wat.Res.,2000,34(17):4279-4283
    [21]H.Brandl et al.Computer-munching microbes:metal leaching from electronic scrap by bacteria and fungi.Hydrometallurgy.2001(6).
    [22]Joseph LaDou.Printed circuit board industry.International Journal of Hygiene and Environment Health,2006,209(3):211-219.
    [23]Moon-Sung Choi,Kyung-Suk Cho,Dong - SuKim,Dong-Jin Kim.Microbial recovery of copper from printed circuit boards of waste computer by acidithiobacillus ferrooxidans.Journal of environmental science and health Part a toxic/hazardous substances & environmental engineering,2004,39A(11-12):73-82.
    [24]Hugo M.Veit,Carolina de C.Pereira,and Andrea M.Bernardes.Using mechanical processing in recycling printed witing boards.JOM,2002:45-47.
    [25]Moran R.More cyanide uncertainties:lessons from the Baia Mare,Romania,spill-water quality and politics.Washington:Mineral Policy Center,2001.
    [26]Moran R.Cyanide uncertainties:observations on the chemistry,toxicity,and analysis of cyanide in mining-related waters.Washington:Mineral Policy Center,1998.
    [27] Mine Action. Cyanide alternatives: alternatives for cyanide in the gold mining industry. Reno: Great Basin Mine Watch,2000.
    
    [28] Kozin, L. F. and Melekhin, V. T. Extraction of gold from ores and concentrates by leaching with the use of cyanides and alternative reagents. Russian Journal of Applied Chemistry, 2004, 77(10):1573-1592.
    
    [29] Senanayake, G. Gold leaching in non-cyanide lixiviant systems: critical issues on fundamentals and applications. Minerals Engineering, 2004,17(6):785-801.
    
    [30] Hilson, G. and Monhemius, A. J. Alternatives to cyanide in the gold mining industry: What prospects for the future? Journal of Cleaner Production, 2005, 14(12-13):1158-1167.
    
    [31] Yannopoulos JC. The extractive metallurgy of gold. USA: Van Nostrand Reinhold,1991.
    
    [32] Monhemius AJ. Recent advances in the treatment of refractory gold ores. Paper presented at II Meeting of the Southern Hemisphere on Mineral Technology, Rio de Janeiro, 1987.
    
    [33] Moir J. Thiocarbamide - a new solvent for gold. Journal of the Chemical, Metallurgical and Mining Society of South Africa 1906;3-6.
    
    [34] Groenwald T. The dissolution of gold in thiourea. Hydrometallurgy, 1976, 1: 77-90.
    
    [35] Plaskin IN, Kozhukhova M. Dissolution of gold and silver in solutions of thiourea. Sb Nauch Tr Ins Tsvt Met, 1960, 33:107.
    
    [36] Pyper RA, Hendrix JL. Extraction of gold from finely disseminated gold ores by use of acidic thiourea solution. In: Extractive metallurgy, 81. London: Institution of Mining an Metallurgy, 1981:57-75.
    
    [37] Schultz RG. New aspects of thiourea leaching of precious metals. Journal of Metals, 1984,36(6): 2-5.
    
    [38] Schultz RG. Thiourea leaching of precious metals. Erzmetall 1986,39(2): 7-9.
    
    [39] Abbruzzese C, Fornari P, Massidda R, Ubaldini S. A complete scheme of treatment of gold-bearing ores for gold recovery by thiourea leaching. In: Hoberg H, von Blottnitz, editors. Proceedings of the XX international mineral processing congress. Gemany, 1997: 57-65.
    
    [40] Gonen N, Kekec K, Kizilkaya B, Yildirim M. Leaching of Gumushane-Mstra ore with thiourea. In: Atak, et al, editors. Proceedings of the 7th international mineral processing symposium. Turkey, 1998: 1-5.
    
    [41] Miroslav S, Magdalena S, Jarmila H. Thiourea in gold leaching from copper slimes. In: Schmiedi J, et al, editors. Metallurgy Easte West '97. Slovakia, 1997: 1-7.
    
    [42] Orgui S, Atalay U. Gold extraction from Kaymaz gold ore by thiourea leaching. In: Massacci P, editor. Proceedings of the XXI international mineral processing congress. Rome, 2000: 8-22.
    
    [43] la Brooy SR, Linge HG, Walker GS. Review of gold extraction from ores. Minerals Engineering, 1994, 7(10): 13-41.
    
    [44] Juarez CM, Dutra AJB. Gold electrowinning from thiourea solutions. Minerals Engineering,2000,13(10-ll):1083-96.
    
    [45] Aylmore MG. Treatment of a refractory goldecopper sulphide concentrate by copper ammoniacal thiosulfate leaching. Minerals Engineering ,2001,14(6): 15-37.
    
    [46] Breuer PL, Jeffrey MI. Thiosulfate leaching kinetics of gold in the presence of copper and ammonia. Minerals Engineering, 2000, 13(10-11):1071-81.
    
    [47] Abbruzzese C, Fornari P, Massidda R, Veglio' F, Ubaldini S. Thiosulphate leaching for gold hydrometallurgy. Hydrometallurgy, 1995,39: 65-76.
    
    [48] Alymore MG, Muir DM. Thiosulfate leaching of gold e a review. Minerals Engineering, 2001,14(2): 35-74.
    
    [49] Breuer PL, Jeffrey MI, Choo WL. Fundamental aspects of the gold thiosulphate leaching process. Cyanide: social, industrial and economic aspects. New Orleans: Minerals and Materials Society, 2001:1 -11.
    
    [50] Langhans JW, Blake BD. Gold extraction from low grade carbonaceous ore using thiosulphate. In: McClelland GE, et al, editors. Practical aspects of international management and processing. Colorado: Society forMining,Metallurgy and Exploration, 1996:85-96.
    
    [51] Balaz P, Ficeriova J, Boldizarova E, Haber M, Jelen S, Kammel R. Thiosulphate leaching of gold from a mechanochemically pretreated complex sulphide concentrate. In: Massacci P, editor. Proceedings of the XXI international mineral processing congress. Rome, 2000:A6-74-81.
    
    [52] Liu K, Shibayama A, Suzuki T, Yan W, Fujita T. Gold leaching by using ammonium thiosulphate solution. Journal of the Mining and Materials Processing Institute of Japan, 2001,117(3): 21-5.
    
    [53] Panayotov VT. A technology for thiosulphate leaching of Au and Ag from pyrite concentrates. In: Kemal M, et al, editors. Proceedings of the 6th international mineral processing symposium. Rotterdam: A.A. Balkema, 1996:5-63.
    
    [54] Eisler R, Clark Jr DR, Wiemeyer SN, Henny CJ. Sodium cyanide hazards to fish and other wildlife from gold mining operations. In: Asuze J, editor. The environmental impacts of mining activities. New York: Springer Verlag, 1999:55-67.
    
    [55] White HA. The solubility of gold in thiosulphates and thiocyanates. Journal of the Chemical, Metallurgical and Mining Society of South Africa, 1905,6:10-11.
    
    [56] Barbosa-Filho O, Monhemius AJ. Iodineethiocyanate leaching system for gold. Hydrometallurgy '94. UK: Institution of Mining and Metallurgy, 1994:25-40.
    
    [57] Fleming CA. A process for simultaneous recovery of gold and uranium from South African ores. In: Gold 100 e proceeding of the international conference on goldExtractive metallurgy of gold, vol. 2. Johannesburg: South African Institution of Mining and Metallurgy, 1986:1 -9.
    
    [58] Barbosa-Filho O, Monhemius AJ. Leaching of gold in thiocyanate solutions e part 1: chemistry and thermodynamics. Transactions of the Institution of Mining and Metallurgy, 1994,103:5-10.
    
    [59] Broadhurst JL, du Preez JGH. A thermodynamic study of the dissolution of gold in the acidic aqueous thiocyanate medium using iron(III) sulphate as an oxidant. Hydrometallurgy,1993,32:17-44.
    [60]Kholmogorov AG,Kononova ON,Pashkov GL,Kononov YS.Thiocyanate solutions in gold technology.Hydrometallurgy,2002,64:8-43.
    [61]Monhemius AJ,Ball SP.Leaching of Dominican gold ores in iodide-catalysed thiocyanate solutions.Transactions of the Institution of Mining and Metallurgy,1995,104:C117-24.
    [62]张秀华.难选冶金矿石预处理工艺现状.湿法冶金,1998,67:16.
    [63]Tran T,Lee K,Fernando K.Halide as an alternative lixiviant for gold processing an update.Cyanide:social,industrial and economic aspects.New Orleans:Minerals and Materials Society,2001:1-8.
    [64]Moses LB,Petersen FW.Flotation as a separation technique in the coal gold agglomeration process.Minerals Engineering,2000,13(3):25-64.
    [65]Kotze W,Petersen FW.Free gold recovery by coaleoil agglomeration.Journal of the South African Institute of Mining and Metallurgy,2000,100(l-2):57-62.
    [66]White,H.A.The solubility of gold in thiosulphates and thiocyanates.Journal of the Chemical,Metallurgical and Mining Society of South Africa,1905,6:109-111.
    [67]Barbosa-Filho,O.and Monhemius,A.J.Iodine-thiocyanate leaching system for gold.Hydrometallurgy'94.UK:Institution of Mining and Metallurgy,1994,425-40
    [68]Brodersen K,Tartler D Scrap of electronics a challenge to recycling activities IEEE International Symposium on Electronics & the Environment,1994.174-176.
    [69]石景燕,李振海.电感耦合等离子体发射光谱法在化学分析中的应用.河北电力技术,2003增刊(22):43-44.
    [70]陈海岚.ICP—AES测定电工钢中钛和锆元素的含量[J].美国瓦里安仪器通讯,2001(3):6-8.
    [71]段忆翔,张寒琦,鲁惠,等.超声雾化进样微波诱导等离子体原子吸收光谱法测定银的某些影响因素研究[J].分析化学,1992,20(4):384-387.
    [72]沈兰荪,白梅.校正电感耦合等离子体原子发射光谱干扰的一种新方法[J].分析化学,1990,18(10):920-925.
    [73]陈丰,微波消解技术在金属元素分析样品制备中的应用[J].上海环境科学,1997,16(10):40-41.
    [74]Wen X H,Wu L Z,Zhang Y et al.Fresenius'J.Anal.Chem.,1997,357:111.
    [75]张卓勇,刘思东,吉林白音等.电感耦合等离子体原子发射光谱分析信息系统的开发I.系统分析[J].分析化学,1998,26(3):317-320.
    [76]原子吸收法分光光度测定原汁山葡萄酒中的11种微量元素[J].延边大学学报(自然科学版),1999,4:25.
    [77]邓勃.应用原子吸收与原子荧光光谱分析.2003,2,化学工业出版社(化学与应用化学出版中心),北京
    [78]刘秉涛.硫氰酸盐法从高铜硫化金矿忠进去金银的研究.华北水利水电学院学报,1994(3):53-57.
    [79]Hibbert D B,Melrose J R.Copper electrodeposits in paper support[J].Phys Rev A,1988,38(2):1036-1048
    [80]周全法,尚通明.废电子元件与材料的回收利用[M].化学工业出版社,2004 213-220
    [81]北京大学化学分析化学教学组.基础分析化学实验[M].北京:北京大学出版社,1998,183
    [82]Senanayake,G.Gold leaching in non-cyanide lixiviant systems:critical issues on fundamental and applications.Minerals Engineering,2004,17(6):785-801
    [83]童雄,钱鑫.氧化剂提高金氰化浸出率的热力学判据研究[J].有色金属,1996,48(3):75-78.
    [84]童雄,钱鑫,黄伟.硫脲浸金过程选择氧化剂的热力学判据研究[J].有色金属,1997,49(3):52-54,81.
    [85]童雄,张艮林.硫代硫酸盐浸金过程的热力学判据[J].有色金属,2004,56(3):38-40.
    [86]庞锡涛 张淑媛 徐琰.硫氰酸盐浸取金银的研究.黄金.1992,13(9):33-36.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700