用户名: 密码: 验证码:
Nafion/TiO_2杂化离子膜的制备及其对PCBs的光催化降解研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
作为首批被《关于持久性有机污染物的斯德哥尔摩公约》列入需要控制的12种持久性有机污染物(Persistent Organic Pollutants,简称POPs)之一的多氯联苯(Polychlorinated biphenyls,简称PCBs),因其理化性质稳定、难于被化学或生物降解,虽早已被全球禁用多年,但仍然可在当前的环境中发现其广泛的残存。由于PCBs具有极强的亲脂疏水性,且易通过食物链的富积作用而具有潜在的毒性和致癌性,从而严重地威胁着生态环境和人类健康。
     大量的研究表明,通过TiO_2作为光催化剂来降解治理PCBs污染的效果明显且节能易行,是当前此领域的热点研究方向之一。而采用Nafion与TiO_2复合制备Nafion/TiO2杂化薄膜,不仅可作为固载TiO_2避免其流失及提高其重复利用率的有效手段,而且还可以一定程度上增加了Nafion薄膜酸性中心的暴露,从而增强了其催化能力。
     本文以全氟磺酸树脂Nafion作为载体和改性剂,研究了TiO_2的固载化技术以及Nafion/TiO2杂化薄膜对PCBs的光催化降解性能。分别利用溶胶重铸法、粉末重铸法以及原位溶胀水解沉积法制备了不同TiO_2溶胶和粉末含量的Nafion/TiO2杂化薄膜;综合XRD、SEM、FT-IR、TG-DTA、XPS、UV/vis等测试手段表征了杂化薄膜的微观结构与光催化性能;通过GC-MS分别对Nafion/TiO2杂化薄膜对2,4,5-PCB溶液与Aroclor1254溶液的光催化降解作了研究;此外,还对无纺布基Nafion/TiO2光催化滤布的制备及其应用做了初步的探索。主要研究成果如下:
     (一)在Nafion薄膜中通过原位溶胶-凝胶法制备了Nafion/TiO2杂化薄膜。以水为主要溶剂的反应配方体系[Ti(OC4H9)4:H2O:C2H5OH:HNO3(质量比)=8:100:4:0.8],在室温下合成出平均粒径约为47.5nm并且具有锐钛矿晶型的TiO_2纳米晶溶胶,并且通过TiO_2溶胶在Nafion薄膜中原位溶胀沉积等方法合成了Nafion/TiO2杂化薄膜。
     (二)Nafion/TiO2杂化薄膜具有聚四氟乙烯骨架结构,并且TiO_2的晶型得到了较好地保持,杂化薄膜的热稳定性也有所提升,但随着TiO_2含量的增加会降低Nafion/TiO2杂化薄膜的韧性,研究结果证实,复合薄膜中产生了新的化学键:Ti-O-S,TiO_2晶粒与全氟磺酸树脂间存在牢固的化学键结合。
     (三)所制得的Nafion/TiO2杂化薄膜对PCBs具有较好的光催化降解能力,对浓度为640μg/L的2,4,5-PCB溶液和1000μg/L的Aroclor1254溶液的光催化降解率最高可达97.3%和98%。在浓度为6.4mg/L的2,4,5-PCB溶液的光催化降解过程中同时存在着异构反应和脱氯反应,揭示出了PCBs类物质的光催化一般规律。
     (四)通过浸渍提拉镀膜法制备的无纺布基Nafion/TiO2光催化滤布,经强紫外光长时间辐照老化实验后,依然具有较好的强度以及韧性,理论上可应用于环境污水治理、工业废水回用以及有机无土栽培等过程中过滤、吸附和降解水体中的有毒有害物质。
As one of the12Persistent Organic Pollutants (abbreviated as POPs) which were put in the first batch of being controlled by the "Stockholm Convention on Persistent Organic Pollutants", PCBs had been banned worldwide for many years. However, as their stability physical and chemical properties, and the difficulty of the chemical or biological degradation, PCBs are still remaining widely in current environment. Because PCBs are extremely lipophilic and hydrophobic, while concentration through food chains brings potential toxicity as well as carcinogenicity, therefore, they pose great threats to ecological environment and human health.
     Numerous studies had shown that using TiO2as a photocatalyst to degrade PCBs was a convenient, effective and energy-saving way to control the pollution, and it was one of the current research focuses in this field. Preparing Nafion/TiO2hybrid film by compounding Nation and TiO2can not only avoid the wastage of TiO2and improve its recycling rate but also increase the exposure of the Nation's acidic center, thereby enhancing its catalytic ability.
     This paper focused on the immobilizing of TiO2, which used the perfluorinated sulfonic acid resin (Referred to as Nafion) as a carrier and modifier, preparation of Nafion/TiO2hybrid membranes as well as the photocatalytic degradation process of PCBs.
     Nafion/TiO2hybrid membranes with different TiO2contents were prepared via recasting and in-situ reaction, using TiO2anatase hydrosol or powder and Nafion solution as raw materials, to incorporate TiO2particles within the Nafion matrix to obtain better photocatalytic efficiency. The microstructure and photocatalytic properties of the hybrid membranes were characterized by XRD、SEM、FT-IR. TG-DTA、XPS、UV/vis. The photocatalytic degradation process of2,4,5-PCB and Aroclor1254solution were characterized by GC-MS. Furthermore, the preparation and application of Nafion/TiO2photocatalytic filter cloth with non-woven base were explored preliminarily as well. The main results are as follows:
     The reaction formula with water as primary solvent was designed (where mass ratio of Ti(OC4H9)4:H2O:C2H5OH:HNO3=8:100:4:0.8) to synthesize TiO2nanocrystal hydrosol with the average particles size of47.5nm through the sol-gel method. Due to the containing of anatase TiO2, the hydrosol got the excellent photocatalytic properties without the conventional annealing.
     The Nafion/TiO2hybrid membranes prepared via recasting got better strength, toughness and transparency compared with the membranes prepared via in-situ reaction, which were very fragile. The surface and microstructure of the Nafion/TiO2hybrid membranes prepared via recasting were flat and porous while the surface of the membranes prepared via in-situ reaction were uneven and lacunosis. With the preparing method of recasting with TiO2hydrosol, TiO2powder and in-situ reaction, the hydrophobic properities of the Nafion/TiO2hybrid membranes were increasing, constant and decreasing respectively.
     The addition of TiO2hydrosol or powder will not destroy the PTFE skeleton structure of Nafion membranes, and the polymorphs of TiO2maintained as well. But with the increasing content of TiO2, the toughness of Nafion/TiO2hybrid films decreased. TiO2hydrosol improved the thermostability of the Nafion/TiO2hybrid membranes while the TiO2powder didn't.
     The hybrid membranes possessed excellent and persistent photocatalytic activities. In the same photocatalytic degradation reaction system, the contents of TiO2has little effect on the adsorption and degradation rates of methyl orange solution with Nafion/TiO2hybrid membranes. With the content of TiO2increasing, the rates rose at first and then decreased, reaching the best point at15%TiO2hydrosol and20%TiO2powder.
     The obtained Nafion/TiO2hybrid membranes possessed excellent photocatalytic abilities to PCBs. The photocatalytic degradation rates of the2,4,5-PCB solution (640p.g/L) and the Aroclor1254solution (1000μg/L) were97.3%and98%. The photocatalytic degradation reaction of the2,4,5-PCB solution with the concentration of6.4mg/L consists of isomerization and dechlorination reaction.
     Nafion/TiO2-coated non-woven fabric filter cloth, which was prepared by dip-coating method, exhibited excellent UV resistance after long-time exposure to intensive ultraviolet radiation. Theoretically, the cloth could filter, adsorb and degrade toxic and hazardous substances in water,which showed its great potential in sewage treatment, industrial wastewater reuse and soilless cultivation.
引文
[1]崔明珍.废弃物化学组分的毒理和处理技术.北京:中国环境科学出版社,1993,182-184.
    [2]金军等.多氯联苯毒性、分析方法和治理技术新进展.上海环境科学,1996,7,33-37.
    [3]蒋可.环境中PCB及其代谢物的测定.环境科学丛刊,1983,(22):26.
    [4]聂湘平.多氯联苯的环境毒理研究动态.生态科学,2003,22(2):171-176.
    [5]Sahle-Demessie E, Enriquez J & Gupta G. Attenuation of methyl tert-butyl ether in water using sunlight and a photocatalyst. Water Environment Research.2002.74(2):122-130.
    [6]杜乃麟.可怕的环境荷尔蒙物质.法规与环保,2002(4):18-19.
    [7]徐晓白.有毒有机污染物环境行为和生态毒理论文集.中国科学技术出版社.
    [8]盂庆县,储少刚,徐晓白.多氯联苯的环境吸附行为研究进展,科学通报,2002,45(15):1572-1583.
    [9]王连生.有机污染化学(下),北京科学出版社,1991:233-244.
    [10]凌少森.PCB污染对人体健康的影响,环境保护科技,1994,5:21-28.
    [11]徐盈,吴文忠,张甬元.利用EROD生物测试法快速筛选二噁英类化合物,中国环境科学,1996,16:279-284.
    [12]Behnisch P, Hosoe K, Shionzaki K, et al. Comparison between chemical (HRGC/HRMS) and biochemical analysis (Micro-EROD) from thermal processing samples (emission, residues) of municipal waste. Organohalogen compounds,2000,45:216-219.
    [13]Behnisch P, Hosoe K, Shionzaki K, et al. Determination of the dioxinlike activity of several polyhalogenated (X=Br, CI) aromatic hydrocarbons (PHAHS) by the Micro-EROD bioassay. Organohalogen compounds,2000,45:220-223.
    [14]Jonsson E M, Brandt 1, Brunstrom B G. Filamentbased EROD Assay for monitoring waterborne dioxinlike pollutants in fish. Environmental Science & technology,2002,36(15): 3340-3344.
    [15]Chiu Y W, Chen R, Qing X L, etal. Derivation and properties of re-combinant Fab antibodies to coplanar polychlorinated biphenyls. Agric Food Chem,2000,48(6):2614-2623.
    [16]Anfossi L, Tozzi C, Giovannoli C, etal. Development of a non-competitive immunoassay for cortisol and its application to the analysis of saliva. Analytica Chimica Acta,2002,468:315-321.
    [17]邵春岩.中国多氯联苯(PCBs)管理现状及污染防治对策,持久性有机污染物(POPs)控制研讨会论文集,中国国家环保总局,2001.
    [18]Fujishima A, Honda K. Electrochemical Photolysis of water at a semiconductor electrode. Narure,1972,238(5358):37-38.
    [19]Zhang H J, Chen G H, Bahnemann D W. Photoelectrocatalytic materials for environmental applications. J. Mater Chem.,2009,19(29):5089-5121.
    [20]Linsebigler A L, Lu G Q, Yates J T. Photocatalysis on TiO2 Surfaces:Principles, Mechanisms, and Selected Results. Chem. Rev,1995,95(3):735-758.
    [21]Frank S. N., Bard A. J.. Heterogeneous photocatalytic oxidation of cyanide and sulfite in aqueous solutions at semiconductor powders. The Journal of Physical Chemistry,1977, 81(15):1484-1488.
    [22]高濂,郑珊,张青红.纳米氧化钛光化材料及应用[M].北京:化学工业出版社,2002.
    [23]Hagfeldt A, Grtazel M. Light-induced redox reactions in nanocrystalline systems. Chem. Rev., 1995,95(1):49-68.
    [24]Tachikawa T, Fujitsuka M, Majima T. Mechanistic insight into the TiO2 photocatalytic reactions:Design of new photocatalysts. J. Phys. Chem. C,2007,111(4):5259-5275.
    [25]Sun Y F, Pignatello J J. Evidence for a surface dual hole-radical mechanism in the TiO2 photocatalytic oxidation of 2,4-Dichlorophenaxyacetic acid. Environ. Sci. Technol.,1995, 29(8):2065-2072.
    [26]Ishibashi K, Fujishima A, Watanabe T, Hashimoto K. Quantum yields of active oxidative species formed on TiO2 photocatalyst. J. Photochem. Photobiol. A-Chem.,2000,134(1-2): 139-142.
    [27]施利毅,李春忠,房鼎业TiCl4-O2体系高温反应制备超细TiO2光催化材料的研究,无机材料学报,1999,14(5):717-725.
    [28]A. Sclafani, L. Palmisano, M. Schiavello. Influence of the preparation methods of titanium dioxide on the photocatalytic degradation of phenol in aqueous dispersion. J. Phys. Chem., 1990,94(2):829-832.
    [29]Andrew Mills, Phillip Sawunyama. Photocatalytic degration of 4-chlorophenol mediated by TiO2:a comparative study of the activity of laboratory made and commercial TiO2 samples. Journal of Photochemistry and Photobiology A:Chemistry,1994,84(3):305-309.
    [30]L. Brus, Quantum Crystallites and Nonlinear Optics, Applied Physics A:Materials Science & Processing,1991,53(6):465-474.
    [31]霍爱群,谭欣等.纳米TiO(2-x)光催化膜中的缺陷结构与性能关系初探,化学通报,1998,11:32-33.
    [32]J. Augustynski. Aspects of Photo-Electrochemical and Surface Behaviour of Titanium(IV) Oxide, Structure & Bonding,1988,69:1-61.
    [33]Kobayakawa K., Nakazawa Y., Ikeda M. et al.. Influence of the density of surface hydroxyl group on TiO2 photocatalytic activities, Berichte der Bunsengesellschaft fur Physikalische Chemie,1990,94(12):1439-1443.
    [34]R. Campostrini, G. Carturan, L. Palmisano et al.. Sol-gel derived anatase TiO2:morphology and photoactivity, Materials Chemistry and Physics,1994,38(3):277-283.
    [35]Y. Bessekhouad, D. Robert et al., Effect of alkaline-doped TiO2 on photocatalytic efficiency, Journal of Photochemistry and Photobiology A:Chemistry,2004,167(1):49-57.
    [36]Wonyong Choi, Andreas Termin, Michael R. Hoffmann. The role of metal-ion dopants in quantum-sized TiO2:correlation between photoreactivity and charge-carrier recombination dynamics, Journal of Physical Chemistry,1994,98(51):13669-13679.
    [37]Hiromi Yamashita, Masaru Harada, Junko Misaka et al.. Degradation of propanol diluted in water under visible light irradiation using metal ion-implanted titanium dioxide photocatalysts. Journal of Photochemistry and Photobiology A:Chemistry,2002,148(1-3): 257-261.
    [38]An-Wu Xu, Yuan Gao, Han-Qin Liu. The preparation, characterization, and their photocatalytic activities of rare-earth-doped TiO2 nanoparticles. Journal of Catalysis,2002, 207(2):151-157.
    [39]J.C. Colmenares, M.A. Aramendia, A. Marinas et al.. Synthesis, characterization and photocatalytic activity of different metal-doped titania systems. Applied Catalysis A:General, 2006,306:120-127.
    [40]R. Asahi, T. Morikawa, T. Ohwaki, K. Aoki, Y. Taga. Visible-light photocatalysis in nitrogen doped titanium oxides. Science,2001,293(5528):269-271.
    [41]Shahed U. M. Khan, Mofareh Al-Shahry, William B. Ingler Jr.. Efficient Photochemical Water Splitting by a Chemically Modified n-TiO2. Science,2002,297(5590):2243-2245.
    [42]J.S Dalton, P.A Janes, N.G Jones et al., Photocatalytic oxidation of NOx gases using TiO2:a surface spectroscopic approach. Environmental Pollution,2002,120(2):415-422.
    [43]Hiroshi Irie, Yuka Watanabe, Kazuhito Hashimoto. Nitrogen-Concentration Dependence on Photocatalytic Activity of TiO2-xNx Powders, Journal of Physical Chemistry B,2003,107(23): 5483-5486.
    [44]Teruhisa Ohno, Takahiro Mitsui, Michio Matsumura. Photocatalytic Activity of S-doped TiO2 Photocatalyst under Visible Light, Chemistry Letters,2003,32(4):364-365.
    [45]蔡河山,刘国光,余林等.非金属元素掺杂改性Ti02的光催化性能.化学通报,2005,68:1-4.
    [46]Jimmy C. Yu, Jiaguo Yu, Wingkei Ho et al.. Effects of F-Doping on the Photocatalytic Activity and Microstructures of Nanocrystalline TiO2 Powders, Chemistry of Materials, 2002,14(9):3808-3816.
    [47]Di Li, Hajime Haneda, Nitin K. Labhsetwar et al.. Visible-light-driven photocatalysis on fluorine-doped TiO2 powders by the creation of surface oxygen vacancies, Chemical Physics Letters,2005,401(4-6):579-584.
    [48]Hongmei Luo, Tsuyoshi Takata, Yungi Lee et al.. Photocatalytic Activity Enhancing for Titanium Dioxide by Co-doping with Bromine and Chlorine, Chemistry of Materials,2004, 16(5):846-849.
    [49]Huiying Wei, Youshi Wu, Ning Lun et al.. Preparation and photocatalysis of TiO2 nanoparticles co-doped with nitrogen and lanthanum, Journal of Materials Science, 2004,39(4):1305-1308.
    [50]J.T. Chang, Y.F. Lai, J.L. He. Photocatalytic performance of chromium or nitrogen doped arc ion plated-TiO2 films, Surface and Coatings Technology,2005,200(5-6):1640-1644.
    [51]V Keller, P Bernhardt, F Garin. Photocatalytic oxidation of butyl acetate in vapor phase on TiO2, Pt/TiO2 and WO3/TiO2 catalysts, Journal of Catalysis,2003,215(1):129-138.
    [52]Masakazu Anpo, Masato Takeuchi. The design and development of highly reactive titanium oxide photocatalysts operating under visible light irradiation, Journal of Catalysis,2003, 216(1-2):505-516.
    [53]Yun Xie, Kunlun Ding, Zhimin Liu et al.. In Situ Controllable Loading of Ultrafine Noble Metal Particles on Titania, Journal of American Chemical Society,2009,131(19):6648-6649.
    [54]Amy L. Linsebigler, Guangquan. Lu, John T. Yates. Photocatalysis on TiO2 Surfaces: Principles, Mechanisms, and Selected Results, Chemical Reviews,1995,95(3):735-758.
    [55]果玉忱编.半导体物理学,国防工业出版社,北京,1988.
    [56]刘恩科,朱秉生等编.半导体物理,电子工业出版社,北京,2007.
    [57]Hyung Mi Sung-Suh, Jae Ran Choi, Hoe Jin Hah et al.. Comparison of Ag deposition effects on the photocatalytic activity of nanoparticulate TiO2 under visible and UV light irradiation, Journal of Photochemistry and Photobiology A:Chemistry,2004,163(1-2):37-44.
    [58]Wei Zhao, Chuncheng Chen, Xiangzhong Li et al.. Photodegradation of Sulforhodamine-B Dye in Platinized Titania Dispersions under Visible Light Irradiation:Influence of Platinum as a Functional Co-catalyst, Journal of Physical Chemistry B,2002,106(19):5022-5028.
    [59]Mukesh Agrawal, Smrati Gupta et al.. A Facile Approach to Fabrication of ZnO-TiO2 Hollow Spheres, Chemistry of Materials,2009,21(21):5343-5348.
    [60]Simin Janitabar-Darzi, Ali Reza Mahjoub. Investigation of phase transformations and photocatalytic properties of sol-gel prepared nanostructured ZnO/TiO2 composites, Journal of Alloys and Compounds,2009,486(1-2):805-808.
    [61]Jing Shang, Wenqing Yao et al.. Structure and photocatalytic performances of glass/SnO2/TiO2 interface composite film, Applied Catalysis A:General, 2004,257(1):25-32.
    [62]Masahiro Miyauchi, Akira Nakajima, Toshiya Watanabe, Kazuhito Hashimoto. Photoinduced Hydrophilic Conversion of TiO2/WO3 Layered Thin Films, Chemistry of Materials,2002, 14(11):4714-4720.
    [63]O. Akhavana, R. Azimirad. Photocatalytic property of Fe2O3 nano grain chains coated by TiO2 nanolayer in visible light irradiation, Applied Catalysis A:General,2009,369(1-2): 77-82.
    [64]Juliana C. Tristao, Fabiano Magalhaes, Paola Corio, Maria Terezinha C. Sansiviero. Electronic characterization and photocatalyticproperties of CdS/TiO2 semiconductor composite, Journal of Photochemistry and Photobiology A:Chemistry,2006,181(2-3): 152-157.
    [65]Y. Bessekhouad, N. Chaoui, M. Trzpit, N. Ghazzal, D. Robert, J.V. Weber. UV-vis versus visible degradation of Acid Orange Ⅱ in a coupled CdS/TiO2 semiconductors suspension, Journal of Photochemistry and Photobiology A:Chemistry,2006,183(1-2):218-224.
    [66]R. Brahimi, Y. Bessekhouad, A. Bouguelia, M. Trari. Improvement of eosin visible light degradation using PbS-sensititized TiO2. Journal of Photochemistry and Photobiology A: Chemistry,2008,194(2-3):173-180.
    [67]A. Franco, M.C. Neves, M.M.L. Ribeiro Carrott et al.. Photocatalytic decolorization of methylene blue in the presence of TiO2/ZnS nanocomposites, Journal of Hazardous Materials,2009,161(1):545-550.
    [68]Wingkei Ho, Jimmy C. Yu. Sonochemical synthesis and visible light photocatalytic behavior of CdSe and CdSe/TiO2 nanoparticles, Journal of Molecular Catalysis A:Chemical,2006, 247(1-2):268-274.
    [69]Y.R. Do, W. Lee, K. Dwight, A. Wold. The Effect of WO3 on the Photocatalytic Activity of TiO2, Journal of Solid State Chemistry,1994,108(1):198-201.
    [70]K. Vinodgopal, Prashant V. Kamat. Enhanced Rates of Photocatalytic Degradation of an Azo Dye Using SnO2/TiO2 Coupled Semiconductor Thin Films, Environmental Science & Technology,1995,29(3):841-845.
    [71]Wingkei Ho, Jimmy C. Yu, Jun Lin, Jiaguo Yu, Puishan Li. Preparation and Photocatalytic Behavior of MoS2 and WS2 Nanocluster Sensitized TiO2, Langmuir,2004,20(14): 5865-5869.
    [72]Andreas Kay, Robin Humphry-Baker, Michael Graetzel. Artificial Photosynthesis.2. Investigations on the Mechanism of Photosensitization of Nanocrystalline TiO2 Solar Cells by Chlorophyll Derivatives, Journal of Physical Chemistry,1994,98(3):952-959.
    [73]Qing Dai, Joseph Rabani. Photosensitization of nanocrystalline TiO2 films by anthocyanin dyes, Journal of Photochemistry and Photobiology A:Chemistry,2002,148(1-3):17-24.
    [74]Francesco Arena, Giampietro Cum, Raffaele Gallo, Adolfo Parmaliana. Palladium catalysts supported on oligomeric aramides in the liquid-phase hydrogenation of phenylacetylene. Journal of Molecular Catalysis A:Chemical,1996,110(3):235-242.
    [75]Chouhaid Nasr, Di Liu, Surat Hotchandani, Prashant V. Kamat. Dye-Capped Semiconductor Nanoclusters. Excited State and Photosensitization Aspects of Rhodamine 6G H-Aggregates Bound to SiO2 and SnO2 Colloids, Journal of Physical Chemistry,1996,100(26): 11054-11061.
    [76]Andreas Kay, Michael Graetzel. Artificial photosynthesis.1. Photosensitization of titania solar cells with chlorophyll derivatives and related natural porphyrins, Journal of Physical Chemistry,1993,97(23):6272-6277.
    [77]Suman Cherian, Carl C. Wamser. Adsorption and Photoactivity of Tetra(4-carboxyphenyl) porphyrin (TCPP) on Nanoparticulate TiO2, Journal of Physical Chemistry B,2000, 104(15):3624-3629.
    [78]D.A Tryk, A Fujishima, K Honda. Recent topics in photoelectrochemistry:achievements and future prospects, Electrochimica Acta,2000,45(15-16):2363-2376.
    [79]Kazuhiro Hirano, Eiji Suzuki, Akio Ishikawa et al.. Sensitization of TiO2 particles by dyes to achieve H2 evolution by visible light, Journal of Photochemistry and Photobiology A: Chemistry,2000,136(3):157-161.
    [80]Guangming Liu, Taixing Wu, Jincai Zhao. Photoassisted Degradation of Dye Pollutants.8. Irreversible Degradation of Alizarin Red under Visible Light Radiation in Air-Equilibrated Aqueous TiO2 Dispersions, Environmental Science & Technology,1999,33(12):2081-2087.
    [81]Fenglei Zhang, Jincai Zhao, Tao Shen et al.. TiO2-assisted photodegradation of dye pollutants II. Adsorption and degradation kinetics of eosin in TiO2 dispersions under visible light irradiation, Applied Catalysis B:Environmental,1998,15(1-2):147-156.
    [82]Taixing Wu, Guangming Liu, Jincai Zhao. Photoassisted Degradation of Dye Pollutants. V. Self-Photosensitized Oxidative Transformation of Rhodamine B under Visible Light Irradiation in Aqueous TiO2 Dispersions, Journal of Physical Chemistry B,1998,102(30): 5845-5851.
    [83]高春华.TiO2纳米粉体的制备工艺研究进展,电子元件与材料,2002,21(9):24-27.
    [84]王德宪.溶胶-凝胶法的化学原理简述,玻璃,1989,25(1):35-38.
    [85]Clemens Burda, Xiaobo Chen, Radha Narayanan, Mostafa A. El-Sayed. Chemistry and Properties of Nanocrystals of Different Shapes, Chemical Reviews,2005,105(4):1025-1102.
    [86]Chen Xiaobo, Mao Samuel S.. Synthesis of Titanium Dioxide (TiO2) Nanomaterials, Journal of Nano science and Nanotechnology,2006,6(4):906-925.
    [87]Helmut Schmidt. Thin films, the chemical processing up to gelation, Structure & Bonding, 1992,77:119-151.
    [88]Nobuyuki Sakai, Rong Wang, Akira Fujishima et al.. Effect of Ultrasonic Treatment on Highly Hydrophilic TiO2 Surfaces, Langmuir,1998,14(20):5918-5920.
    [89]薛涛,赵俊民.化学镀膜技术,国防工业出版社,北京,1982.
    [90]Brian L. Cushing, Vladimir L. Kolesnichenko, Charles J. O'Connor. Recent Advances in the Liquid-Phase Syntheses of Inorganic Nanoparticles, Chemical Reviews,2004,104(9): 3893-3946.
    [91]郑燕青,施尔畏,元如林等.水热条件下二氧化钛晶体同质变体的形成,中国科学(E)2001,31(3):204-212.
    [92]Xu Zhao, Manhong Liu, Yongfa Zhu. Fabrication of porous TiO2 film via hydrothermal method and its photocatalytic performances, Thin Solid Films,2007,515(18):7127-7134.
    [93]Yuxiang Li, Min Guo, Mei Zhang, Xidong Wang, Hydrothermal synthesis and characterization of TiO2 nanorod arrays on glass substrates, Materials Research Bulletin, 2009,44(6):1232-1237.
    [94]方晓明,翟金清,陈焕钦.液相沉淀法制备TiO2粉体,中国陶瓷,2001,31(5):39-41.
    [95]Kazuhiko Shimizu, Hiroaki Imai, Hiroshi Hirashima, Koji Tsukuma. Low-temperature synthesis of anatase thin films on glass and organic substrates by direct deposition from aqueous solutions, Thin Solid Films,1999,351(1-2):220-224.
    [96]李国华,王大伟,徐铸德等.不同沉淀剂制备的纳米氧化钛粉体晶相控制,硅酸盐学报.2003,31(3):272-277.
    [97]Yuxin Jia, Wei Han, Guoxing Xiong, Weishen Yang. Layer-by-layer assembly of TiO2 colloids onto diatomite to build hierarchical porous materials, Journal of Colloid and Interface Science,2008,323(2):326-331.
    [98]A. Neren Okte, Elcin Sayinsoz. Characterization and photocatalytic activity of TiO2 supportedsepiolite catalysts, Separation and Purification Technology,2008,62(3):535-543.
    [99]Seonghyuk Ko, Paul D. Fleming, Margaret Joyce, Pnina Ari-Gur. High performance nano-titania photocatalytic paper composite. Part Ⅱ:Preparation and characterization of natural zeolite-based nano-titania composite sheets and study of their photocatalytic activity, Materials Science and Engineering:B,2009,164(3):135-139.
    [100]K. Venkata Subba Rao, A. Rachel, M. Subrahmanyam, P. Boule. Immobilization of TiO2 on pumicestone for the photocatalytic degradation of dyes and dye industry pollutants, Applied Catalysis B:Environmental,2003,46(1):77-85.
    [101]Xiaojing Wang, Zhonghua Hu, Yujuan Chen et al.. A novel approach towards high-performance composite photocatalyst of TiO2 deposited on activated carbon, Applied Surface Science,2009,255(7):3953-3958.
    [102]Kuo-Hua Wang, Hung-Huan Tsai, Yung-Hsu Hsieh. The kinetics of photocatalytic degradation of trichloroethylene in gas phase over TiO2 supported on glass bead, Applied Catalysis B:Environmental,1998,17(4):313-320.
    [103]N.B. Lihitkar, Majid Kazemian Abyaneh, V. Samuel, R. Pasricha et al.. Titania nanoparticles synthesis in mesoporous molecular sieve MCM-41, Journal of Colloid and Interface Science,2007,314(1):310-316.
    [104]Glory Rose Mangat Echavia, Fumiko Matzusawa, Nobuaki Negishi. Photocatalytic degradation of organophosphate and phosphonoglycine pesticides using TiO2 immobilized on silica gel, Chemosphere,2009,76(5):595-600.
    [105]张素香,屈撑囤,王新强.光催化剂改性及固定化技术研究发展,工业水处理,2002,22(7):12-15.
    [106]J.A. Byrne, B.R. Eggins, N.M.D. Brown, et al.. Immobilisation of TiO2 powder for the treatment of polluted water, Applied Catalysis B:Environmental,1998,17(1-2):25-36.
    [107]Mitsuyoshi Machida, Keiichiro Norimoto, Tamon Kimura. Antibacterial Activity of Photocatalytic Titanium Dioxide Thin Films with Photodeposited Silver on the Surface of Sanitary Ware, Journal of the American Ceramic Society,2005,88(1):95-100.
    [108]Lepakshi Barbora, Simadri Acharya, Anil Verma. Synthesis and Ex-situ Characterization of Nafion/TiO2 Composite Membranes for Direct Ethanol Fuel Cell, Macromolecular Symposia, 2009,277(1):177-189.
    [109]李道喜.全氟磺酸复合膜的表征与衰减行为研究[硕士学位论文],武汉理工大学材料科学与工程学院,2004.
    [110]H. G. Haubold, Th. Vad, H. Jungbluth et al.. Nano structure of Nafion:a SAXS study, Electrochimica Acta,2001,46:1559-1563.
    [111]Carla Heitner-Wirguin. Recent advances in perfluorinated ionomer membranes:structure, properties and applications. Journal of Membrane Science,1996,120(1):1-33.
    [112]R. S. Yeo, J. McBreen, G. Kissel. Perfluorosulphonic acid (Nafion) membrane as a separator for an advanced alkaline water electrolyser, Journal of Applied Electrochemistry, 1980,10(6):741-747.
    [113]T.D. GIERKE, W.Y. HSU. The Cluster-Network Model of Ion Clustering in Perfluorosulfonated Membranes, Perfluorinated Ionomer Membranes,1982, ACS Symposium Series, Vol.180, Chapter 13:283-307.
    [114]J. D. Weaver, E. L. Tasset, W. E. Fry. Supported fluorocarbonsulfonic acid catalysts, Catalysis Today,1992,14(2):195-210.
    [115]王文翰,侯结民,桑佩培等.全氟磺酰树脂研究进展,有机氟工业,2002,3:18-21.
    [116]Kenneth A. Mauritz. Organic-inorganic hybrid materials:perfluorinated ionomer as sol-gel polymerization templates for inorganic alkoxides, Materials Science and Engineering:C, 1998,6(2-3):121-133.
    [117]Q. Deng, R.B.Moore, K. A. Mauritz. Nafion(?)/(SiO2, ORMOSIL, and Dimethylsiloxane) Hybrids via in situ sol-gel reactions:Characterization of fundamental properties, Journal of Applied Polymer Science,1998,68(5):747-763.
    [118]Kenneth A. Mauritz, John T. Payne. [Perfluorosulfonate ionomer]/silicate hybrid membranes via base-catalyzed in situ sol-gel processes for tetraethylorthosilicate, Journal of Membrane Science,2000,168(1-2):39-51.
    [119]Ping Liu, Jayasundera Bandara, Yi Lin, Derek Elgin, Lawrence F. Allard, Ya-Ping Sun. Formation of nanocrystalline titanium dioxide in perfluorinated ionomer membrane, Langmuir,2002,18(26):10398-10401.
    [120]David A. Siuzdak, Paul R. Start, Kenneth A. Mauritz. Surlyn(?)/titanate hybrid materials via polymer in situ sol-gel chemistry, Journal of polymer Science part B:Polymer physics,2003, 41(1):11-22.
    [121]Paolo Bertoncello, Andrea Notargiacomo, Claudio Nicolini. Langmuir-Schaefer films of Nafion with Incorporated TiO2 nanoparticles. Langmuir,2005,21(1):172-177.
    [122]李建梅,薛敏钊,盛巧蓉,张永明,刘燕刚.TiO2/全氟磺酸树脂纳米杂化薄膜的制备,材料导报,2006,20(5):132-135.
    [123]Sacca A., Carbone A., Passalacqua E. et al.. Nafion-TiO2 hybrid membranes for medium temperature polymer electrolyte fuel cells (PEFCS), Journal of Power Sources,2005,152: 16-21.
    [124]杨武斌,朱红,王明,张世超.纳米氧化物/Nation复合膜的制备与性能表征,功能材料,2007,12(38):2077-2079.
    [125]Fu Ren F. Fan, Hsue Yang Liu, Allen J. Bard. Integrated chemical systems:photocatalysis at titanium dioxide incorporated into Nafion and clay, The Journal of Physical Chemistry, 1985,89(21):4418-4420.
    [126]I. Sopyan, M. Watanabe, S. Murasawa et al.. A film-type photocatalyst incorporating highly active TiO2 powder and fluororesin binder:photocatalytic activity and long-term stability, Electroanalytical Chemistry,1996,415:183-186.
    [127]J. Premkumar, R. Ramaraj. Photocatalytic reduction of dioxygen by colloidal semiconductors and macrocyclic cobalt(Ⅲ) complexes in Nafion and cellulose matrices, Molecular Catalysis A:Chemical,1998,132(1):21-32.
    [128]Shuai Yuan, Shengshui Hu. Characterization and electrochemical studies of Nafion/nano-TiO2 film modified electrodes, Electrochimica Acta,2004,49(25):4287-4293.
    [129]M.S. Vohra, K. Tanaka. Enhance photocatalytic activity of Nafion-coated TiO2, Environmental Science & Technology,2001,35(2):411-415.
    [130]李建梅.纳米二氧化钛薄膜及其与全氟磺酸树脂杂化薄膜的制备[硕士学位论文],上海交通大学材料学院,2006.
    [131]徐夫元,宋天顺,陈英文,沈树宝Cu (Ⅱ)-Fe (Ⅱ)-H2O2协同催化氧化降解甲基橙,中南大学学报,2007,38(3):480-485.
    [132]胡庆华,张蔚萍,刘凌强等.Fe3+掺杂介孔Ti02催化降解甲基橙,工业催化,2009,17(8):66-71.
    [133]金长振(美).理论有机化学[M],北京:中国友谊出版公司,1990.
    [134]邓开明.大学物理[M],北京:机械工业出版社,2005.
    [135]P Staiti, A.S Arico, V Baglio et al.. Hybrid Nafion-silica membranes doped with heteropolyacids for application in direct methanol fuel cells, Solid State Ionics,2001, 145(1-4):101-107.
    [136]Zhi-Gang Shao, Prabhuram Joghee, I-Ming Hsing. Preparation and characterization of hybrid Nafion-silica membrane doped with phosphotungstic acid for high temperature operation of proton exchange membrane fuel cells, Journal of Membrane Science,2004, 229(1-2):43-51.
    [137]M. Nagai, K. Kobayashi, Y. Nakajima. Inorganic-organic composite protonic conductors comprising silicophosphate glass and ion-exchange resin, Solid State Ionics,2000, 136-137:249-254.
    [138]赵红,赵辉,霍丽华,高山Nafion-TiO2复合膜的红外光谱研究,黑龙江大学自然科学报,2008,25(4):510-513.
    [139]赵红,赵辉,霍丽华等Nafion/TiO2复合膜的质子传导性能研究,无机化学学报,2006,1(1):106-110.
    [140]胡军福Nafion-Os(bpy)32+修饰膜的红外光谱研究,光谱实验室,2006,23(2):201-203.
    [141]V. Baglio, A.S. Arico, A. Di Blasi et al.. Nafion-TiO2 composite DMFC membranes: physico-chemical properties of the filler versus electrochemical performance, Electrochimica Acta,2005,50(5):1241-1246.
    [142]M. Schulze, M. Lorenz, N. Wagner, E. Gulzow. XPS analysis of the degradation of Nafion, Fresenius'Journal of Analytical Chemistry,1999,365(1-3):106-113.
    [143]Ulrike Diebold and T. E. Madey. TiO2 by XPS, Surface Science Spectra,1996,4(3).
    [144]Pierre Alphonse, Rudina Bleta, Regis Soules. Effect of PEG on rheology and stability of nanocrystalline titania hydrosols. Journal of Colloid and Interface Science,2009, 337(l):81-87.
    [145]Raj K. Joseph Antony, Shanmugam R., Mahalakshmi R., Viswanathan B.. XPS and IR spectral studies on the structure of phosphate and sulphate modified titania-A combined DFTand experimental study, Indian Journal of Chemistry,2010,49A(1):9-17.
    [146]S.H. de Almeida, Y. Kawano. Thermal behavior of Nafion membranes, Journal of Thermal Analysis and Calorimetry,1999,58(3):569-577.
    [147]R.K. Nagarale, G.S. Gohil, Vinod K. Shahi, R. Rangarajan. Preparation and electrochemical characterizations of cation-exchange membranes with different functional groups, Colloids and Surfaces A:Physicochemical and Engineering Aspects,2004,251(1-3):133-140.
    [148]Y.F. Rao, W. Chu. Linuron decomposition in aqueous semiconductor suspension under visible light irradiation with and without H2O2, Chemical Engineering Journal,2010, 158(2):181-187.
    [149]C. Ogino, M. F. Dadjour, Y. Iida, N. Shimizu, Decolorization of methylene blue in aqueous suspensions of titanium peroxide, Journal of Hazardous Materials,2008,153:551-556.
    [150]T. Ohno, Y. Masaki, S. Hirayama, M. Matsumura, TiO2-photocatalyzed epoxidation of 1-decene by H2O2 under visible light, Journal of Catalysis,2001,204:163-168.
    [151]X. Z. Li, C. C. Chen, J. C. Zhao, Mechanism of photodecomposition of H2O2 on TiO2 surfaces under visible light irradiation, Langmuir,2001,17:4118-4122.
    [152]A. Hiroki, J.A. LaVerne. Decomposition of hydrogen peroxide at water-ceramic oxide interfaces, The Journal of Physical Chemistry B,2005,109(8):3364-3370.
    [153]景晓辉,卑圣金,蔡再生等.锐钛矿型Ti02的制备与光催化性能研究,针织工业,2008,10:61-63.
    [154]赵红,姚金华.二氧化钛膜光催化降解脱色甲基橙,大连交通大学学报,2007,28(2):74-78.
    [155]Hutzinger O., Safe S., Zitko V.. Chemistry of PCB's, Cleveland:CRC Press,1974,7-221.
    [156]Robert P. Eganhouse, Richard W. Gossett. Sources and magnitude of bias associated with determination of polychlorinated biphenyls in environmental samples, Analytical Chemistry, 1991,63(19):2130-2137.
    [157]Wei Chu, Chi Wai Ma. Effects of UV-decolouring of aromatic dyes with different chemical structures, Toxicological & Environmental Chemistry,1997,63(1-4):247-255.
    [158]W. Chu, C.Y. Kwan.The direct and indirect photolysis of 4,4'-dichlorobiphenyl in various surfactant/solvent-aidedsystems, Water Research,2002,36(9):2187-2194.
    [159]Theresa Moore, Richard M. Pagni. Unusual photochemistry of 4-chlorobiphenyl in water, The Journal of Organic Chemistry,1987,52(5):770-773.
    [160]George M. Frame, Robert E. Wagner, James C. Carnahan et al.. Comprehensive, quantitative, congener-specific analyses of eight aroclors and complete PCB congener assignments on DB-1 capillary GC columns, Chemosphere,1996,33(4):603-623.
    [161]1-Wei Huang, Chia-Swee Hong, Brian Bush. Photocatalytic degradation of PCBs in TiO2 aqueous suspensions, Chemosphere,1996,32(9):1869-1881.
    [162]K. H. Wong, P. K. Wong. Degradation of Polychlorinated Biphenyls by UV-Catalyzed Photolysis, Human and Ecological Risk Assessment:An International Journal,2006, 12(2):259-269.
    [163]Richard M, Pagni, Reza Dabestani. Recent Developments in the Environmental Photochemistry of PAHs and PCBs in Water and on Solids, The Handbook of Environmental Chemistry,2005,2(M):193-219.
    [164]王政华,施周.利用紫外光降解多氯联苯的研究进展,环境污染治理技术与社备,2001,2(6):10-15.
    [165]Jalal Hawari, Attila Demeter, Charles Greer, Rejean Samson. Acetone-induced photodechlorination of Aroclor 1254 in alkaline 2-propanol:Probing the mechanism by thermolysis in the presence of di-t-butyl peroxide, Chemosphere,1991,22(12):1161-1174.
    [166]Wang Y, Hong C S.TiO2-mediated photomineralization of 2-chlorobiphenyl:the role of O2, Water Research,2000,34(10):2791-2797

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700