用户名: 密码: 验证码:
PDMDAAC改性高炉渣及其性能和应用研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本论文以钢铁工业中主要固体废弃物——水淬高炉渣和一种工业生产中常用的絮凝剂——聚二甲基二烯丙基氯化铵(PDMDAAC)为原料,采用水溶液吸附的方法合成了PDMDAAC改性高炉渣。考虑改性时改性剂PDMDAAC的浓度、吸附时间、温度等的影响,对水淬高炉渣进行了改性。用多种分析方法和现代测试技术,对改性高炉渣的性能进行了研究。采用水溶液吸附的方法制备出一系列的改性高炉渣,用激光粒度散射仪测定了不同条件下改性高炉渣的粒度分布情况,用电泳技术研究了原高炉渣和改性后高炉渣在水溶液中颗粒表面的电化学特性以及影响因素,探讨了改性高炉渣的电性和应用效果之间的关系,并用扫描电镜技术观察和研究了改性高炉渣的结构和形貌特征,并与原高炉渣作了比较。最后,通过对模拟印染废水、实际印染废水、含酚废水、苯胺废水等废水的处理,研究了改性高炉渣对各种废水的处理效果,以及在废水处理中的最优条件和影响因素。根据废水处理效果,结合对PDMDAAC吸附量的研究,确定出改性高炉渣的最佳改性工艺和生产配方,以生产出处理效果好、成本低的改性高炉渣。
     通过重点对分散蓝S-BL、活性翠蓝K-GL和活性艳红K-2BP三种有代表性染料模拟废水的脱色研究,结合PDMDAAC在高炉渣颗粒表面的吸附量的研究,重点考察了改性工艺中最有可能影响改性高炉渣产品效果的PDMDAAC溶液浓度、改性时间和水浴温度三个因素,从而确定了最佳改性工艺条件。最佳改性工艺条件为:PDMDAAC水溶液的浓度为3%,搅拌时间120min,水浴温度60℃。考察了处理模拟染料废水时投加量、pH、温度和反应时间等因素对处理效果的影响。结果表明,与原渣相比,高炉渣的PDMDAAC表面改性大大提高了其处理分散染料和活性染料的能力。其中,对于分散染料的处理效果优于对活性颜料的处理效果。对于粒度的分析表明,经过改性,高炉渣粒度没有发生明显变化。为电泳技术测定,高炉渣原渣颗粒表面带负电荷,吸附一定量的PDMDAAC后带正电荷,并探讨了PDMDAAC吸附量与Zeta电位的关系。扫描电镜的研究表明,高炉渣颗粒改性前后形状没有发生变化,但是,吸附PDMDAAC后的表面
PDMDAAC modified blast furnace slag(BF slag) was prepared by a method of solution adsorption. The PDMDAAC (poly dimethydiallylammonium chloride) was a kind of common flocculation, and the quenching blast furnace slag is the main solid waste of steel industry. The quenching BF slag was modified under different concentration of PDMDAAC, adsorption time and temperature. The performance of the modified BF slag was characterized by some modern testing technologies and analysis methods. The diameter distribution of modified BF slag was measured by laser particle analysis system.
    According to the study of PDMDAAC adsorption on the surface of BF slag particles and the decoloring study of simulation wastewater with dispersed blue S-BL, reactive blue K-GL and reactive red K-2BP, concentration, modified time, and temperature of water bath of PDMDAAC which are more likely to influence the effect of modified slag in the modified technics are mainly reviewed, and then the optimal condition of modified technics was decided. The optimal condition of modified technics is that the concentration of PDMDAAC is 3%, the time of milling is 120min and the temperature of water bath is 60℃. The quantity of BF slag in the simulation of coloring waste water, pH, temperature, and reaction time were also reviewed to the influence of disposal. The results shown that, PDMDAAC of slag enhances more disposal capacity of decentralization dye and active dye than original dregs and the disposal effect of decentralization dye is better than that of active dye. The analysis of granularity shows that granularity of BF slag did not change much after modified. The surface of the BF slag adsorbed some minus charge but adsorbed some positive charge after adsorbed PDMDAAC according to the electrophoresis. The relation of the adsorption of PDMDAAC and Zeta potential was studied. The morphology of modified BF slag did not change compared with BF slag, but the surface morphology changed after adsorb PDMDAAC, which became more coarse. There is a PDMDAAC
引文
[1] 张寿金,黄巍.中国水资源的可持续利用研究[J].中国人口资源与环境,1999,9(2):21-25.
    [2] 王先甲,胡振鹏.水资源持续利用的支持条件与法则[J].自然资源学报,2001,16(1):1.
    [3] 郭培章,宋群.中外节水技术与政策案例研究[M].北京:中国计划出版社,2003:3-4.
    [4] 刘兆荣,陈忠明,赵广英.环境化学教程[M].北京:化学工业出版社,2003:163-164.
    [5] 沈旭顺.二十一世纪中国面临的挑战——论水资源与环境[J].黑龙江科技信息,2003(4):22-23.
    [6] 崔蕴霞,肖锦.铝盐絮凝剂及其环境效应[J].环境污染与防治,1998(03):39-41.
    [7] 舒型武,郑怀礼.阳离子型有机絮凝剂的研究进展[J].现代化工,21(10):13-16.
    [8] 芈振明,高忠爱,祁梦兰,等.固体废物的处理与处置[M].北京:高等教育出版社,1993:306-308.
    [9] 吴达华,吴永革.高炉水淬矿渣结构特性及水化机理[J].石油钻探技术,1997,25(1):31.
    [10] Konduru R. Ramakrishna, T. Viraraghavan. Dye removal using low cost adsorbents[J]. Wat. Sci. Tech, 1997, 36(2-3): 189-196.
    [11] Konduru R. Ramakrishna, T. Viraraghavan. Use of slag for dye removal[J]. Waste Management, 1997, 17(8): 483-488.
    [12] 杜灿敏,冯萍,周海刚.钻井液用大阳离子中阳离子度的测定方法初探[J].石油工业技术监督,2000(4):27-31.
    [13] 高宝玉,宋永会,岳钦艳.聚硅酸硫酸铁混凝剂的性能研究[J].环境科学,1997(2):46-49.
    [14] 赵华章,岳饮艳,高宝玉.阳离子型高分子絮凝剂PDMDAAC与P(DMDAAC-AM)的合成及分析[J].2001,18(11):645-649.
    [15] 郭殿福.废弃物通用手册[M].北京:科学出版社,2004:441-442.
    [16] 李国鼎.环境工程手册·固体废物污染防治卷[M].北京:高等教育出版社,2003:774-775.
    [17] 吴达华,吴永革.高炉水淬矿渣结构特性及水化机理[J].石油钻探技术,1997,25(1):31.
    [18] 朱桂林,孙树杉.钢铁渣综合利用现状及问题[N].《中国冶金报》,2003-07-08.
    [19] 徐根良,陈雪明,陈海辉.废渣法处理酸性重金属废水技术研究[J].水处理技术,1994,20(2):116-120.
    [20] L. Curkovic, S. Cerjan-Stefanovic, A. Rastovean-Mioe. Batch Pb~(2+) and Cu~(2+) removal by electric furnace slag[J]. Wat. Res. 2001, 35(14): 3436-3440.
    [21] S. V. Dimitrova, D. R. Mehanjiev. Interaction of blast-furnace slag with heavy metal ions in water solutions[J]. War. Res. 2000, 34(6): 1957-1961.
    [22] S. V. Dimitrova, D. R. Mehanjiev. Lead removal from aqueous solutions by granulated blast-furnace slag[J]. Wat. Res. 1998, 32(11): 3289-3292.
    [23] S. V. Dimitrova. Metal sorption on blast-furnace slag[J]. Wat. Res. 1996, 30(1): 228-232.
    [24] S. V. Dimitrova. Use of granular slag columns for lead removal[J]. War. Res. 2002, 36: 4001-4008.
    [25] N. Ortiz, M. A. F. Pires, J. C. Bressiani. Use of steel converter slag as nickel adsorber to wastewater treatment[J]. Waste Management, 2001, 21: 631-635.
    [26] Lopez F, Perez C, Sainz E, et. Adsorption of Pb2+ on blast furnace sludge[J]. J Chem Techno Biotechnol. 1995, 62: 200-206.
    [27] Konduru R. Ramakrishna, T. Viraraghavan. Use of slag for dye removal[J]. Waste Management, 1997, 17(8): 483-488.
    [28] Konduru R. Ramakrishna, T. Viraraghavan. Dye removal using low cost adsorbents[J]. Wat. Sci. Tech.. 1997, 36(2-3): 189-196.
    [29] 黄理辉,张波,毕学军,等.高炉渣吸附除磷研究[J].化工环保,2004,24:296-298.
    [30] 郑轶荣,李文兴,胡长胜.用高炉渣处理含磷废水的试验研究[J].河北冶金,2004, 3:13-15.
    [31] Seung Hwan Lee, S. vigneswaran, Hee Moon. Adsorption of phosphorus in saturated slag media columns[J]. Separation and Purification Technology, 1997, 12: 109-118.
    [32] Lena Johansson. Blast furnace slag as phosphorus sorbents—column studies[J]. The Science of the Total Environment, 1999, 229: 89-97.
    [33] Lena Johansson, Jon Petter Gustafsson. Phosphate removal using blast furnace slags and opoka-mechanisms[J]. Wat.Res. 2000, 34(1): 259-265.
    [34] 于衍真,李云兰.高炉矿渣对工业废水处理的实验研究[J].工业水处理,1999,19(2):12-13.
    [35] 董超,谢葆青,林红.高炉矿渣混凝剂处理有机废水的研究[J].山东环境,2001,8:32.
    [36] 罗团忠.人工湿地的除污机理及进一步提高氮磷去除率的方法[J].广东水利电力职业技术学院学报,2003,1(2):25-28.
    [37] 朱夕珍,崔理华,温晓露.不同基质垂直流人工湿地对城市污水的净化效果[J].农业环境科学学报,2003,22(4):454-457.
    [38] 芈振明,高忠爱,祁梦监,等.固体废物的处理与处置[M].北京:高等教育出版社,1993:306-316.
    [39] 高宝玉.聚硅氯化铝混凝剂的应用基础研究,[博十学位论文].清华大学环境科学与工程系,1999.
    [40] 奚旦立,孙裕生,刘秀英.环境监测[M].高等教育出版社,1995:49~62.
    [41] 国家环保局和废水检测分析方法编委会.水和废水监测分析方法[M].第4版.北京:中国 环境科学出版社,2002.
    [42] 雍永智,张崇华.我国几种工业废水治理技术研究(第二分册纺织印染废水).北京,化学工业出版社,1988:55-62.
    [43] 轻工业部国外轻工业污染资料编泽组.轻工业污染及其防治[M].北京:石油化学出版社,197,128-177.
    [44] 陈银生,张新胜,袁渭康.印染废水处理技术[M].化工进展,2001,5:39-42.
    [45][46] 李树珍.染料、染色工业废水处理[M].北京,化学工业出版社,1997;148.
    [47] 于衍真,李云兰.高炉矿渣对工业废水处理的实验研究[J].工业水处理,1999-03,19(2):12-13.
    [48] 宋世谟,王正烈,李文斌.物理化学(下)(M).高等教育出版社,1993:182-184.
    [49] 徐根良,陈雪明,陈海辉.废渣法处理酸性重金属废技术水研究[J].水处理技术,1994,20(2):116-120.
    [50] 印永嘉,奚正楷,李大珍.物理化学简明教程[M].高等教育出版社,1999:383-384.
    [51] 赵华章,高宝玉,岳钦艳.二甲基二烯丙基氯化铵(DMDAAC)聚合物的研究进展[J].工业水处理,1999,19(6):1~4.
    [52] 李家珍.染料、染色工业废水处理[M].北京,化学工业出版社,1997.6:74-75。
    [53] 李玉标.含酚废水的处理方法[J].净水技术,2005,24(2):51-54.
    [54] 聂永平,邓正栋,袁进苯.苯胺废水处理技术研究进展[J].环境污染治理技术与设备,2003,4(3):77-81.
    [55] 朱王步瑶,赵振国.界面化学基础[M].化学工业出版社,1999,271-272.
    [56] 高桂波.粉煤灰与粒化高炉矿渣微粉在混凝土中的综合利用,[硕士学位论文].山东大学环境科学与工程学院,2004.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700