用户名: 密码: 验证码:
焦炭塔的安全性分析及寿命评价——焦炭塔的结构强度分析
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
工程实际中的强度问题牵涉范围十分广泛,可归结为考虑限制结构承载能力的各种因素,包括:塑性变形引起的零件形状的显著变化、载荷超过额定值时材料的破坏和结构稳定性的丧失等。材料在高温下的应力状况更加复杂,温差应力和机械应力的耦合作用,对设备的强度造成巨大影响,分析结构在高温下的强度问题具有重要意义。
     焦炭塔是石化行业延迟焦化工艺的重要设备,由于操作条件的苛刻,容易出现强度问题引起的多种失效,对它进行全面的结构强度分析具有很大的实际意义和经济价值。
     为对实际操作的焦炭塔进行结构强度分析,本文着重对塔壁的热变形和热应力进行了研究。根据有限单元法理论,建立瞬态温度场分析模型,利用功能强大的有限元分析软件ANSYS对塔壁进行各主要操作阶段的温度场和热应力场分析。同时对改进的裙座结构进行计算,比较两种结构型式对设备受力的影响。分析焦炭塔在机械载荷,如内压、自重、风载和地震载荷作用下的应力情况,其中塔体的模态分析、风载的函数加载和地震载荷的时程分析是本文的创新。
     分析结果表明焦炭塔塔壁的温度场存在径向和轴向温度梯度,产生的热应力在塔壁组合应力中占主要成分,采用安定性准则进行评价,得出焦炭塔满足安定性条件的结论。对裙座所受轴向压应力进行校核,可知裙座满足稳定性条件。数值计算所得结果理论合理,与实际吻合良好,从而可以为焦炭塔的事故分析及结构改进提供依据。
Strength problem in practical engineering contains extensive range, and usually comes down to considering many factors relating to structural bearing capacity, such as obvious shape variation due to plastic deformation, material damage due to load over nominal scale and stability loss, etc. The stress state of material under high temperature is more complex, where temperature stress combines with mechanical stress, which produces huge effects on strength of device. So researching their strengths under high temperature has important value.
    Coke drum is the key device of delayed coking in petrochemical industry. But due to the severe service conditions, it's easy to raise some kinds of failure relating to structural strength. So analyzing its strength completely has great practical meaning and economic value.
    In order to study structural strength of the coke drum in working, paper emphasizes the study on the thermal deformations and thermal stresses of the wall. Sets up analytic models for the transient temperature field, based on theory of finite element. Makes good use of the powerful software ANSYS to calculate the temperature fields and thermal stress fields on different stages in its operation. In order to compare the effect of different structural patterns to structural strength, the improved skirt structure is studied.
    All mechanical loads are considered, including internal pressure, gravity, wind load and earthquake load, in which the modal analysis of the drum, functional wind load and temporal analysis for earthquake are the innovations of this paper.
    The analysis results indicate that not only radial temperature gradient but also a major axial one exist in temperature field of the drum wall, and the thermal stresses generated by them are the essential components of the combined stress on
    
    
    the wall. Comparing the combined stress of mechanical and thermal stress with the stability criterion, conclusion is drawn that the structure of coke drum contents the qualification of stability. Checking the axial compressive stress of the skirt, deduces that it is stable. The simulation results got in this study are reasonable and match the practical perfectly. So the methods employed in this paper is useful for the failure analysis and structural improvement of coke drum.
引文
[1] 徐积善.强度理论及其应用.水利电力出版社,1984.3:1-2
    [2] T.C.皮萨林科,A.A列别捷夫.复杂应力状态下的材料变形与强度.科学出版社,1983.3:1-3
    [3] 平修二.金属材料的高温强度理论设计.北京:科学出版社,1983.7:3-10
    [4] 代秀红.Z6110型柴油机缸盖结构强度分析.大连理工大学硕士论文,2003.4:1-3
    [5] 周惠久,黄明志.金属材料强度学,科学出版社,1989.3:32-35
    [6] 闫胜咎.加氢反应器上部应力分析与结构优化研究.河北工业大学硕士论文,2003.1:29-31
    [7] 丁伯民,黄正林.化工设备设计全书 化工容器.化学工业出版社,2003.1:3-5,75-78
    [8] 李春年.渣油加工工艺.中国石化出版社,2002.4:83,125-126
    [9] 金志英,王岫文.焦炭塔的鼓胀、裂纹容限及寿命预测.压力容器,1993,10(2):67-72
    [10] 鲍乃钊.焦化分馏塔的安全评定.石油化工设备技术,1994,15(3):11-15
    [11] 胡海龙,陈宝忠等.焦炭塔失效形式分析.机械强度,1996,18(1):66-68
    [12] 方子严,黄士南.焦炭塔裙座环焊缝裂纹形成机理与防治研究.化工装备技术.1998,19(4):19-23
    [13] 赵艳梅,郑国芬.焦炭塔裙座环缝裂因及安全分析.化工设备与管道.2001,38(6):33-38
    [14] Daryl K. Rutt, Richard D. Clark. STRESS ANALYSIS USING ACTUAL COKE DRUM BULGE PROFILES- A CASE STUDY, 2000,5:6-10
    [15] Rick D. Clark, Daryl K. Rutt, Rick D. Clark, Daryl K. Rutt. COKE BRUM LIFE IMPROVEMENT- A COMBINED APPROACH, 2002,3:3-6
    [16] 倪青,关正西.某压力容器的结构强度分析.湖北航天科技,2001,3:17-22
    [17] 杨强生,浦保荣.高等传热学.上海交通大学出版社,1996.4:9-15
    [18] 贾力,方肇洪,钱兴华.高等传热学 (研究生教学用书).高等教育出版社,2003.3:122-126
    [19] 孔祥谦.有限单元法在传热学中的应用(第3版).北京:科学出版社,1998,9:8-16,45-46
    [20] 傅永华.有限元分析基础.武汉大学出版社,2003.8:122-130,133-134
    [21] 章茹,黄文瀛.单程固定管板式换热器温差应力的计算.南昌大学学报(工科版),2003,25(3):70-76
    [22] 陈孙艺.焦炭塔的变化温度场及其应力分析.石油化工设备,1996,25(5):11-16
    [23] 贺匡国.化工容器及设备简明设计手册.化学工业出版社,2002.8:289-293
    [24] 俞昌铭.热传导及其数值分析.清华大学出版社,1982.4:475
    [25] 谭真、郭广文.工程合金热物性.冶金工业出版社,1994.9:51
    [26] 潘家祯,压力容器材料实用手册——碳钢及合金钢,化学工业出版社,2000.7:
    
    153-155
    [27] 叶先磊.ANSYS工程分析软件应用实例.清华大学出版社,2003.9:124-150
    [28] 谭建国.使用ANSYS6.0进行有限元分析.北京大学出版社,2002.5:89-112
    [29] 徐玉兵,崔孝秉.注蒸汽井温度场分析计算设计原理.石油钻采工艺,1996,18(4):53-61
    [30] 陈孙艺.焦炭塔塔壁温度场特性的研究(一)——塔壁二维瞬态温度场及热弹塑性有限元计算分析.压力容器,2001,18(4):16-21
    [31] 高学仕,张立新,潘迪超,郑金军.热采井筒瞬态温度场的数值模拟分析.石油大学学报,2001,25(2):67-69
    [32] Ramos A, Rios C C, Johnsen E, et al. Delayed Coke Drum assessment using field measurements & FEA. Analysis and Design of Composite, Process, and Power Piping and Vessels-1998, ASME 1998, 368:231-237
    [33] RAMOS, VARGAS, TAHARA, HASEGAWA. Mechanical Integrity Evaluation of Delayed Coke Drums, Fitness for Adverse Environments in Petroleum and Power Equipment, ASME 1997, 359:78-85
    [34] T.S. Kim, D.K. Lee, S.T. Ro. Analysis of thermal stress evolution in the steam drum during start-up of a heat recovery steam generator. Applied Thermal Engineering, 20(2000):977-992
    [35] J.V. Shin, S.J. Kim, S.T. Ro, Design and off-design performance analysis of heat recovery steam generators, Proceedings of the 11th International Symposium on Transport Phenomena, Hsinchu, Taiwan, Nov. 29-Dec. 3, 1998: 156-161.
    [36] Wyman Z. Zhuang, Gary R. Halford. Investigation of residual stress relaxation under cyclic load, International Journal of Fatigue, 23 (2001): 31-37
    [37] 余艳芝,陈汝庆,马斌.锅炉汽包壁三维热应力及热疲劳分析.电站系统工程,1999,15(6):13-15
    [38] 商福民,吕邦泰,庞立平.锅炉汽包壁上下温差热应力有限元分析.华北电力大学学报,1999,26(1):52-56
    [39] 薛国新,肖立川.燃煤锅炉汽包壁温差的计算.工矿自动化,2002,6:24-25
    [40] 陈孙艺.焦炭塔防变形设计骤冷因数失效分析.化工装备技术,1998,19(3):14-17
    [41] 胡鹏浩.非均匀温度场中机械零部件热变形的理论及应用研究.合肥工业大学博士论文,2001.7:67-68
    [42] 陈吉成.焦炭塔塔体结构设计的改进.炼油设计,1998,28(3):42-46
    [43] 胡明.焦炭塔塔裙连接结构的探讨.压力容器,2003,20(3):22-24
    [44] Baxter J E. Optimization of Coke Drum Support Skirt for Faster Operating Cycles. Analysis and Design of Composite, Process, and Power Piping and Vessels-ASME, 1998, 368:267-280
    [45] Baxter J E. Design Optimization of Coke Drum Support Skirt. Fitness for
    
    Adverse Environments in Petroleum and Power Equipment. ASME 1997, 359: 299-306
    [46] Leslie P. Antalffy, et al. Innovations in Delayed Coking Coke Drum Design. ASME, 1999,388:207-217
    [47] 武明波.焦炭塔裙座优化设计及更换.压力容器,2003,20(7):25-28
    [48] 方子严,黄士南.焦炭塔裙座焊缝区域温度及应力的测试与分析.压力容器,1992,9(2): 37-42
    [49] 顾一天,龙秀兰,贾桂茹.大型焦炭塔的设计.石油化工设备技术,2001,22(1):4-8
    [50] 丰定国.工程结构抗震.地震出版社,2002,10:32,82
    [51] 赵超燮.结构矩阵分析原理.人民教育出版社,1983.2:56,224-233
    [52] 徐植信,胡再龙.结构地震反应分析.高等教育出版社,1993.4:61-62,96
    [53] 董军,马星,邓洪洲.大直径钢管塔地震响应研究.世界地震工程,2001,17(4):100-103
    [54] 肖晓春,迟世春,林皋.水平地震下土-桩-结构相互作用简化分析方法.哈尔滨工业大学学报,2003,35(5):561-564
    [55] 鲍华,徐礼华,周友.用ANSYS分析某高层建筑的非线性地震反应.武汉大学学报(工学版),2003,36(4):84-87
    [56] 易升创,包世华,张铜生.简体结构连续化模型的弹性动力时程分析.工程力学,1996,13(2):34-42
    [57] 谷胜利.进水塔结构静、动力分析研究.河南农业大学硕士论文,2003,1:7-19
    [58] 赵克勤,王秀珍,王正.石油化工容器及设备.华中理工大学出版社,1990.12:165-167
    [59] 缪红燕,徐鸿,王楠,钱才富.大型组合管式反应塔的应力分析(一)—有限元应力分析模型.压力容器,2003,20(5):26-28,33
    [60] 张相庭.工程结构风载荷理论和抗风计算手册.同济大学出版社,1990.10:150-151,237-239
    [61] 王永兴.带有一个塔箍塔体风弯矩及塔顶绕度计算.化工设备设计,1996,36(2):24-27
    [62] Ronaldo C. Battista, Rosangela S. Rodrigues, Michele S. Pfeil. Dynamic behavior and stability of transmission line towers under wind forces, Journal of Wind Engineering and Industrial Aerodynamics, 91(2003):1051-1067
    [63] 任文敏,余文斌,刘文国,李宏波.旋转壳类容器的强度及稳定性分析.清华大学学报(自然科学版),1999,39(8):125-127
    [64] 卓震.化工容器及设备.中国石化出版社,1998.11:253-254

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700