用户名: 密码: 验证码:
马铃薯生料糖化发酵转化乙醇的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
我国是世界上最大的马铃薯生产国,种植面积达8000万亩,产量超过8000万吨。尽管生产占据第一位,但加工业却很薄弱,严重制约了整个产业的发展。以马铃薯为原料生产乙醇可为我国马铃薯的深加工开辟一条新途径。乙醇通过进一步的纯化,即可成为食用乙醇,也可用作工业乙醇,还可成为燃料乙醇。随着全球性能源安全问题的出现,以马铃薯为原料生产燃料乙醇是最有发展前景的。
     目前,能耗较大和成本偏高是制约乙醇产业发展的主要问题,因此,有关乙醇生产的研究也主要集中在这两方面。以淀粉质为原料发酵生产乙醇,传统工艺必须先通过高温高压蒸煮工序,而该蒸煮工序消耗的能量占到了整个生产过程总能耗的30%-40%。生料发酵技术省去了高温蒸煮糊化工艺,避免了高温条件下可发酵性糖的损失,因而具有降低能耗、简化操作工序、降低生产成本等优点,但目前其工业化应用受到了菌株产酶活力低、酶活力不稳定、发酵周期长、效率低、容易污染等因素的限制。生料发酵技术的关键在于生淀粉的水解糖化,因此通过选育生淀粉酶高产菌株和提高淀粉对酶解的敏感性等途径来增加生淀粉的糖化效率,是当前的研究重点和热点。
     本文以马铃薯为对象,开展生料糖化发酵技术转化乙醇的研究。一方面通过选育马铃薯生淀粉酶高产菌株,并通过产酶条件的优化,获得高活力生淀粉酶,以达到实现生料糖化发酵转化乙醇的目的。另一方面,采用辐照技术对马铃薯原料进行预处理,以提高糖化效率,并通过进一步的条件优化,实现马铃薯生料发酵转化乙醇。本研究旨在建立起以马铃薯为原料转化乙醇新技术体系,为解决我国马铃薯加工产业问题提供新思路,为乙醇产业发展开辟原料新途径提供技术支持,对于我国马铃薯和乙醇产业乃至能源的可持续发展都有重要意义。取得研究结果如下:
     1、通过从马铃薯加工基地、酒精厂和淀粉厂附近的腐殖土壤及腐烂马铃薯中广泛取样,初步筛选出了10株具有较强马铃薯生淀粉糖化能力的菌株,并通过进一步筛选,获得了1株对马铃薯生淀粉糖化能力相对较强的菌株,其液体培养所产的生淀粉酶活力达30.5 U/ml,固体培养所产生淀粉酶的活力达19.3U/ml。对菌株的形态学研究和ITS rDNA序列同源性比较分析表明,该菌株属于黑曲霉(Aspergillus niger)。
     2、采用紫外辐照和硝基胍处理相结合的方法对上述菌株进行了诱变,得到1株产酶能力大大提高的突变株,其固体发酵所产生淀粉酶的酶活力为43.8U/ml,比出发菌株提高了127%。经连续6代传代试验验证,该突变株的遗传性能稳定。为方便起见,将该突变菌株命名为Aspergillus niger AF-1。
     3、对菌株AF-1固态发酵所产生淀粉酶的酶学性质分析表明,酶的最适反应温度为55℃,在60℃以下稳定,具有一定的耐热能力;最适反应pH为4.0,在pH 3.5-5.0范围内稳定,为一种酸性酶;Mn~(2+)、Fe~(2+)、Zn~(2+)、Mg~(2+)、Ca~(2+)、Ba~(2+)对酶有一定的激活作用,而Cu~(2+)、K~+、Na~+则抑制酶的活性。酶对底物的作用方式表现出多样性,以表面扩散侵蚀的方式作用于马铃薯和木薯生淀粉,以表面扩散侵蚀和形成大侵蚀孔洞的方式同时作用于红薯淀粉。
     4、利用响应面法对菌株AF-1固态发酵产生淀粉酶的条件进行了优化。首先采用单因素试验筛选出马铃薯粉、豆粕粉、FeSO_4为最适碳源、氮源和无机盐。然后通过Plackett-Burman设计对影响产酶条件的12个相关因素进行效应评价,筛选出具有显著效应的豆粕粉、温度和麸皮三个因素。再利用最陡爬坡试验逼近以上三个因素的最大响应区域。最后采用响应面中心组合设计对显著因素进行优化,得出豆粕粉含量、温度和麸皮添加量的最佳值分别为11.46%、26.26℃和17.41g。优化后的酶活提高到204 u/ml,比初始酶活提高了3.85倍。
     5、采用γ射线对马铃薯进行辐照处理,发现马铃薯淀粉经50-400kGy剂量照射后原有颗粒形貌并没有改变,但经200kGy剂量处理后溶于水6h颗粒表面出现明显裂痕,经400kGy剂量处理后溶于水3h颗粒表面出现大量裂痕,6h颗粒失去原有形貌。进一步的分析表明,马铃薯粉经不同剂量辐照处理后,溶解度增加,其中以400kGy剂量处理增加效果最显著,溶解度达61%,比对照的提高了4倍;辐照处理具有直接糖化效果,还原糖的含量随着辐照剂量的加大而增加,其中以400kGy剂量辐照处理的糖化效果最明显,DE值达5.1%;马铃薯经辐照处理后,对酶的作用变得敏感,且随着辐照剂量的增加而加强;200kGy剂量范围内辐照处理对糖化效率的提高不如95℃蒸煮显著,但400kGy剂量辐照处理的要远远高于蒸煮的;离子色谱法分析检测表明,马铃薯粉经200、400kGy剂量辐照处理后,降解产物主要为葡萄糖和麦芽糖;经400kGy辐照处理后酶解产物主要为葡萄糖,酶解的主要产物单一。
     6、以生马铃薯粉为原料,采用酵母菌和菌株Aspergillus niger AF-1所产生淀粉酶进行同步糖化发酵转化乙醇时,合适的酶添加量为150U/g,料水比为1:2.5,酵母添加量为5×10~7个/ml。另外,添加外源氮源硫酸铵能够提高发酵液的乙醇浓度。Ca~(2+)、Mg~(2+)对发酵有一定的促进作用,分别在8mmol/L和4mmol/L浓度条件下表现出最大效应。50kGy剂量辐照处理对生淀粉酶和酵母菌同步糖化发酵产乙醇的影响不大;100kGy剂量辐照处理对发酵有一定的促进效果;200kGy、400kGy剂量辐照处理的促进效果最显著,发酵液最终的乙醇浓度均达到11%。
     7、50kGy、100kGy剂量辐照处理对商品糖化酶和酵母菌同步糖化发酵产乙醇的影响不大;200kGy剂量辐照处理对发酵有一定的促进效果,但不是很显著;400kGy剂量辐照处理的促进效果最强烈,发酵液最终的乙醇浓度可达10.1%。采用单因素试验、Plackett-Burman试验、最陡爬坡试验和响应面分析相结合的试验方法对经400kGy剂量辐照处理后的马铃薯生料商品酶和酵母菌同步糖化发酵产乙醇的工艺条件进行了优化,优化条件下发酵液的乙醇浓度可达12.4%,较优化前提高了22.8%。通过条件优化研究,将马铃薯生料发酵生产乙醇的最佳条件确定为:温度35.27℃、料水比1:2.07、pH4.0、装瓶量125ml、(NH_4)_2SO_4 0.2%、接种量2.5×10~7个/ml、糖化酶200U/g、淀粉酶15U/g、纤维素酶10U/g、发酵周期48h。
China is the largest potato producing country in the world. However the industrial process of potato is very weak, it has been holding up the development of the whole potato industry. Ethanol production from potato provides a new way for potato process industry. Ethanol can be edible, industrial and fuel use, in which fuel ethanol has good prospects.
     However, main issues with fuel ethanol are high production cost and high energy consumption. Hence researches have been focused on these two aspects. The process of producing fuel ethanol from starch, traditionally involves high temperature cooking, this step consumes about 30 - 40% of energy of the whole process. While the technology of raw material fermentation removes the step of high temperature cooking, avoids the loss of fermentable sugar under high temperature, hence it has the advantages of lower energy consumption, simplying process, and lower costs. However, it's industrialization is still inhibited by issues like low activity of enzyme, unstable enzyme activity, long fermentation cycle, low efficiency, easy to be contaminated etc. The critical point of the technology of raw material fermentation lies in the saccharification of raw starch, hence screening microbes producing raw-starch-hydrolysing enzyme and improving the sensitivity of enzyme would be the critical and hot subject of current researches.
     This article uses potato as the material, focusing on the raw material fermenting technology to produce fuel ethanol. From one aspect, try to obtain high activity raw-starch-hydrolysing enzyme by screening microbes, and optimizing conditions to produce enzymes; on the other hand, utilize radiation technology to pretreat potato to increase enzyme degradation efficiency, at the same time, optimize the process conditions to produce fuel ethanol by fermenting potatoes. The purpose of this research is to set up a fuel ethanol production system by fermenting potato, hence provide a new idea of industrial process of potato, provide a new path of exploring fuel ethanol industry production. Here are the research results:
     1、Screening microbes from soil around potato industry bases, ethanol producing plant, starch producing plant and spoiled potatoes, preliminarily screened out 10 species of fungi that has the ability of producing raw potato starch hydrolysing enzymes. By further screening, obtained one species of fungi that has strong hydrolysing ability. It's amylase activity gets high of 30.5 U/ml in liquid fermentation and 19.3 U/ml in solid state fermentation. Morphology of this fungi and ITS rDNA sequence same origin comparison indicate that this species belongs to Aspergillus niger.
     2、Tried to mutate the species by UV radiation combined with NTG treatment, obtained one mutated species that has much higher enzyme producing ability. It's raw-potato-starch-hydrolysing amylase activity is high of 43.8U/ml in solid state fermentation, which was improved 127% compared to the original species. This mutated species has genetic stability, named as Aspergillus niger AF-1.
     3、The enzymology characteristic analysis of the amylase produced by the mutant indicates that the optimal temperature of reaction is 55℃, it's stable under 60℃, the enzyme is heat resistant. The optimal pH is at 4.0, it's stable between pH 3.5-5.0. Mn~(2+), Fe~(2+),Zn~(2+), Mg~(2+), Ca~(2+), Ba~(2+) can activate the enzyme, while Cu~(2+), K~+, Na~+ can actually inhibit the activity of the enzyme. The enzyme reacted to difference substrates in two ways, showed centrifugal hydrolysis on potato and cassava granules, and showed both centrifugal and centripetal hydrolysis on sweet potato starch with deep holes into the granules.
     4、Response surface methodology was used to optimize solid state fermentation for raw-starch-hydrolysing amylase production by Aspergillus niger AF-1. Potato flour, soybean powder, FeSO_4 were screened out as the most suitable carbon source, nitrogen source and inorganic salt source, respectively. Based on these, screening methodology Plackett-Burman design was used to evaluate the effects of twelve factors related to amylase production and three statistically significant factors soybean powder, temperature, bran were selected. The path of steepest ascent was used to approach the optimal region of above three factors subsequently. These optimal factors were further optimized using central composite designs and response surface methodology and determined as follows: soybean powder 11.46%, temperature 26.26℃and bran 17.41g. Amylase activity after optimization of the fermentation medium increased to 204 u/ml, increased by 3.85 times.
     5、After treating the potatoes withγray, the granule morphology of potato starch did not change under the doses of 50-400kGy. However, under dose of 200kGy treatment, the surface of the granule cracked obviously 6 hours after being dissolved in water, under the dose of 400kGy , granual cracked 3 hrs after being dissolved in water, lost it's original morphology 6 hrs after being dissolved in water. Further analysis showed that the dissolving ability increased after being treated at different doses ofγray, among which 400kGy increased the dissolving ability the most to 61%, which is 4 times that of the control,γray irradiation has the effect of dehydrolysating directly, the content of sugars increased with the dose ofγray, among which 400kGy is the best, has DE value of 5.1%. Potatoes became more sensitive to enzyme after exposed to y ray, 400kGy increased saccharification efficiency much greater than that of 95℃cooking, but 200kGy has less saccharification efficiency than that of 95℃cooking. Ion-chromatography analysis showed that after potatoes being treated with y ray at 200 and 400 kGy, it's degraded product are mainly glucose and maltose, while at 400kGy, degraded product was mainly glucose only.
     6、In ethanol production from raw potato flour using simultaneous saccharification and fermentation technology by yeast and raw-starch-hydrolysing amylase produced by Aspergillus niger AF-1, the suitable enzyme amount is 150U/g, solid-liquid rate 1:2.5, yeast inoculation amount 5×10~7cell/ml,. It is also discovered that foreign nitrogen source (NH_4)_2SO_4 can increase ethanol concentration in fermentation. Ca~(2+), Mg~(2+) can improve the ferment process, most effective at 8mmol/L and 4 mmol/L. 50kGy dose treatment on potato has little effect on ethanol yield, 100kGy can improve the fermentation, 200kGy and 400 kGy can significantly improve the fermentation, ethanol concentration reached 11% at the end of fermentation.
     7、50kGy dose treatment on potato has little effect on ethanol production from raw potato flour using simultaneous saccharification and fermentation technology by yeast and glucoamylase , 100kGy and 200kGy can improve the fermentation, 400 kGy can significantly improve the fermentation, ethanol concentration reached 10.1% at the end of fermentation. Used single factor experiment, Plackett-Burman design, the path of steepest ascent design, central composite designs and response surface methodology to optimize the fermentation of potatoes treated at 400 kGy does, the optimized condition are temperature 35,27°C, solid-liquid rate 1:2.07, pH4.0, bottle filled up to 125ml, (NH_4)2SO_4 0.2%, yeast inoculation amount 2.5×10~7cell/ml, glucoamylase 200U/g,α-amylase 15U/g, cellulase 10U/g, fermentation cycle 48 h. Under the optimal conditions, ethanol concentration could reach 12.4%, the ethanol concentration increased 22.8% compared with non-optimized conditions.
引文
ABU E.A., ADO S.A., James D.B.. 2005. Raw starch degrading amylase production by mixed culture of Aspergillus niger and Saccharomyces cerevisae grown on sorghum pomace.African Journal of Biotechnology, 4(8): 785-790.
    Aktinson B, Mavituna F. 1991. Upstream processing. In: Biochemical engineering and biotechnology. Stockton, New York, pp525.
    Alison M. Knox, James C. du Preez, Stephanus G. Klilian. 2004. Starch fermentation characteristics of Saccharomyces cerevisiae strains transformed with amylase genes from Lipomyces kononenkoae and Saccharomycopsis fibuligera. Enzyme and Microbial Technology, 34: 453-460.
    Atsuo Kimura, John F.Robyt. 1995. Reaction of enzymes with starch granules: kinetics and products of the reaction with glucoamylase. Carbohydrate Research, 277: 87-107.
    Ballesteros I, Ballesteros M, Cabanas A, Carrasco J, Martin C, Negro MJ, Saez F, Saez R. 1991.
    
    Selection of thermotolerant yeasts for simultaneous saccharification and fermentation (SSF) of cellulose to ethanol. Appl Biochem Biotechnol, 28-29: 307-315.
    Ballesteros I, Oliva JM, Ballesteros M, Carrasco J. 1993. Optimization of the simultaneous saccharification and fermentation process using thermotolerant yeasts. Appl Biochem Biotechnol, 39-40: 201-211.
    Catherine A.G.Cornett, Tsuei-Yun Fang, Peter J.Reilly, Clark Ford. 2003. Starch-binding domain shuffling in Aspergillus niger glucoamylase. Protein Engineering, 16(7): 521-529.
    Chen G. I, Luo GM, Cheng YH. 1991. Purification and characterization of the gluoamylase from Aspergillus niger. Acta Microbiol Sin, 31(3):213-220.
    Dien B.S., Cotta M.A., Jeffries T.W.. 2003. Bacteria engineered for fuel ethanol production:current status. Appl Microbiol Biotechnol, 63: 258-266.
    Elibol M, Ozer D. 2002. Response surface analysis of lipase production by freely suspended Rhizopus arrhizus. Process Biochemistry, 38: 367-372.
    Elif Sarikaya, Takahiko Higasa, Motoyasu Adachi, et al. 2000. Comparison of degradation abilities of α- and β-amylase on raw starch granules. Process Biochemistry, 35: 711-715.
    Fujii N, Oki T, Sakurai A, Suye S, Sakakibara M. 2001. Ethanol production from starch by immobilized Aspergillus awamori and Saccharomyces pastorianus using cellulose carriers.Journal of Industrial Microbiology and Biotechnology, 27: 52-57.
    Fumihisa Kobayashi, Yoshitoshi Nakamura. 2004. Mathematical model of direct ethanol production from starch in immobilized recombinant yeast culture. Biochemical Engineering Journal, 21: 93-101.
    Gashaw Mamo, Amare Gessesse. 1999. Purification and characterization of two raw-starch-digesting thermostable a-amylases from a thermophilic Bacillus. Enzyme and Microbial Technology, 25: 433-438.
    Gasperik H, Hostinova E, Zeinka J. 1985. Production of extracellular amylase by Endomycopsis fibuligera on complex starch substrates. Biologia(Bratisl), 40:1176-1194.
    Gervais P, Molin P. 2003. The role of water in solid-state fermentation. Biochemical Engineering Journal, 13:85-101.
    Golias Helen; Dumsday Geoffrey J.; Stanley Grant A.; Pamment Neville B. 2002. Evaluation of a recombinant Klebsiella oxytoca strain for ethanol production from cellulose by simultaneous saccharification and fermentation: comparison with native cellobiose-utilising yeast strains and performance in co-culture with thermotolerant yeast Zympomonas mobilis. Journal of Biotechnology, 96(2): 155-168.
    Gong CS. Maun CM, Tsao GT. 1981. Direct fermentation of cellulose to ethanol by a cellulolytic filamentous fungus Monilia sp. Biotechnol Lett, 3: 77-82.
    Gonzalez R, Tao H, Purvis JE, York SW, Shanmugam KT, Ingram LO. 2003. Gene Array-Based identification of changes that contribute to ethanol tolerance in ethanolgenic Escherichia coli:comparison of KO11 (patent) to LY01 (resistant mutant). Biotechnol Prog, 19: 612-623.
    Goyal Nidhi, Gupta J.K., Soni S.K.. 2005. A novel raw starch digesting thermostable a-amylase from Bacillus sp. 1-3 and its use in the direct hydrolysis of raw potato starch. Enzyme and Microbial Technology, 37(7): 723-734.
    Guan HC, Yan ZZ, Zhang SZ. 1993. Purification and properties of raw starch-digesting glucoamylase from a Aspergillus niger mutant. Acta Biochim and Biophys Sin, 25(5): 453~459
    Haiyan Sun, Xiangyang Ge, Weiguo Zhang. 2007. Production of a novel raw-starch-digesting glucoamylase by Penicillium sp. X-1 under solid state fermentation and its use in direct hydrolysis of raw starch. World Journal of Microbiology and Biotechnology, 23: 603-613.
    Hari Krishna S, Janardhan Reddy T, Chowdary GV. 2001. Simultaneous saccharification and fermentation of lignocellulosic wastes to ethanol using a thermotolerant yeast. Bioresource Technology, 77(2): 193-196.
    Haruyuki IEFUJI, Mariko CHINO, Miyoshi Kato, Yuzuru IIMURA. 1996. Raw-starch-digesting and thermostable a-amylase from yest Cryptococcus sp. S-2: purification, characterization, cloning and sequencing. Biochem. J, 318: 989-996.
    Helen Golias; Geoffrey J. Dumsday; Grant A. Stanley; Neville B. Pamment. 2002. Evaluation of a recombinant Klebsiella oxytoca strain for ethanol production from cellulose by simultaneous saccharification and fermentation: comparison with native cellobiose-utilising yeast strains and performance in co-culture with thermotolerant yeast Zympomonas mobilis. Journal of Biotechnology, 96(2): 155-168.
    Hinman, N. D., Schell, D.J., Riley, C.J., Bergeron, P., Walter, P.J. 1992. Preliminary estimate of the cost of ethanol production for Simultaneous saccharification and fermentation technology.Appl. Biochem. Biotechnol, 34/35: 639-649.
    Hinrikson H P, Hurst S F, Lott T J, et al. 2005. Assessment of ribosomal large-subunit D1-D2, internal transcribed spacer 1, and internal transcribed spacer 2 regions as targets for molecular identification of medically important Aspergillus species. J Clin Microbiol,43(5):2092-2103.
    Hiroshi Morita, Mayumi Matsunaga, Kouhei Mizuno, Yusaku Fujio. 1998. A comparison of raw starch-digesting glucoamylase production in liquid and solid cultures of Rhizopus strains. J Gen Appl Microbiol, 44: 211-216.
    Huang, S.Y., Chen, J.C.J. 1988. Ethanol production in simultaneous saccharification and fermentation of cellulose with temperature profiling. Ferment. Technol, 66: 509-516.
    Ingram LO, Doran JB. 1995. Conversion of cellulosic materials to ethanol. FEMS Microbiol Rev, 16:235-241.
    Jose Goldembery, Suani Teixeira Coelho, Plinio Mario Wastari. 2004. Ethanol learning curve the Brazilian experience. Biamass and Bioenergy, 26:301-304.
    Kaar WE, Holtzapple MT. 2000. Using lime pretreatment to facilitate the enzymatic hydrolysis of corn stover. Biomass Bioenergy, 18:189-199.
    Kadar, Zs., Szengyel, Zs., Reczey, K. 2004. Simultaneous saccharification and fermentation (SSF) of industrial wastes for the production of ethanol. Industrial Crops and Products,20(1):103-110.
    Kelly CT, Moriarty ME, Fogarty WM. 1985. Thermostable extracellular a-amylase and a-glucosidase of Lipomyces starkeyi. Appl Microbiol Biotechnol, 22: 352-358.
    Kelly CT, Tigue MM, Doyle EM, Fogarty WM. 1995. The raw starch-degrading alkaline amylase of Bacillus sp. IMD 370. J Ind Microbiol, 15: 446-8.
    Kobayashi F; Sawada T; Nakamura Y; Ohnaga M; Godliving M; Ushiyama T. 1998. Saccharification and alcohol fermentation in starch solution of steam-exploded potato. Appl Biochem Biotechnol, 69 (3): 177-89.
    Krishna HS, GV Chowdary D Reddy, C Ayyanna. 1999. Simultaneous saccharification and fermentation of pretreated Antigonum leptopus(Linn) leaves to ethanol. J Chem Technol Biotechnol, 74: 1055-1060.
    Lemmel S. A., R. C. Helmsch, and R. A. Korus. 1980. Kinetics of growth and amylase production of Saccharomycopsis fibuligera on potato processing wastewater. Appl. Environ.Microbiol,39: 387-393.
    Liimatainen H, Kuokkanen T and Kaariainen J. June 10, 2004. Development of bio-ethanol production from waste potatoes. In:Pongracz E(ed.) Proceedings of the waste minimization and resources use optimization conference, University of Oulu, Finland. Oulu Universitu Press: Oulu. P.123-129.
    Lisen Wang, Xiangyang Ge, Weiguo Zhang. 2007. Improvement of ethanol yield from raw corn flour by Rhizopus sp.. World Journal of Microbiology and Biotechnology, 23:461-465.
    Lorena Latorre-Garcia, Ana Cristina Adam, Paloma Manzanares, Julio Polaina. 2005. Improving the amylolytic activity of Saccharomyces cerevisiae glucoamylase by the addition of a starch binding domain. Journal of Biotechnology, 118: 167-176.
    Lynn M. Hamilton, Catherine T. Kelly, Willian M. Fogarty. 1998. Raw starch degradation by the non-raw starch-adsorbing bacterial alpha amylase of Bacillus sp. IDM 434. Carbohydrate Research, 314:251-257.
    Mann P, Siewert S, Totter J. 2002. Fermenting potato peels and chips into ethanol. Biocycle, 43:12,38-40.
    Mamo G, Gessesse A. 1999. Purification and characterization of two raw starch digesting thermostable alpha amylases from a thermophilic Bacillus sp. Enzyme Microb Technol, 25:433-8.
    Marihart, J. 1982. Production of ethanol from starch industry by-products, especially potato pulp. Starch, 34: 290.
    Marlida Y, Saari N, Hassan Z, et al. 2000. Improvement in raw sago starch degrading enzyme production from Acremonium sp. endophytic fungus using carbon and nitrogen sources.Enzyme Microb Technol, 27: 511-515.
    Matthew H, Ashley O, Brian K, Alisa E, Benjamin JS. 2005. Wine making 101,http://www.arches.uga.edu/~matthaas/strains.htm.
    
    Miyamoto K. 1997. Renewable biological systems for alternative sustainable energy production,http://www.fao.org/docrep/w7241 e/w7241 e00.htm#Contents.
    Mohamed M. Abouzied and C. Adinarayana Reddy. 1986. Direct fermentation of potato starch to ethanol by cocultures of Aspergillus niger and Saccharomyces cerevisiae. Applied and Environmental Microbiology, 52(5): 1055-1059.
    Motsumoto N, Yoshizumi H, Miyata S, Inoue S. 1985. Development of the non-cooking and low temperature cooking systems for alcoholic fermentation of grains. Nippon Nogeikagaku Kaishi, 59: 291-299.
    Nakamura Y, Kobayashi F, Ohnaga M, Sawada T. 1997. Alcohol fermentation of starch by a genetic recombinant yeast having glucoamylase activity. Biotechnology Bioeng, 53: 21-25.
    Nguyen Q.A., Saddler, J.N.. 1991. An integrated model for the technical and economic of an enzymatic biomass conversion process. Bioresource Technol, 35:275-282.
    Omenu, A.M., Akpan, I, Bankole, M.O., Teniola,O.D. 2005. Hydrolysis of law tuber starches by amylase of Aspergillus niger AM07 isolated from the soil. African Journal of Biotechnology,4(1): 19-25.
    Pastore GM, Park YK, Min DB. 1994. Production of a fruity aroma by Neurospora from beiju. Mycol Res, 98: 25-35.
    Qates CG. 1997. Towards an understanding of starch granule structure and hydrolysis. Trends Food Sci Technol, 8: 375-82.
    Rajoka M.I., Yasmin A., Latif F. 2004. Kinetics of enhanced ethanol productivity using raw starch hydrolyzing glucoamylase from Aspergillus niger mutant produced in solid state fermentation. Letter in Applied Microbiology, 39: 13-18.
    Raouf, M.A.EI Saadany, Abd EI Fatah, A. EI Safti and Farag, M. EI Saadany, Heliopolis-Cairo. 1974. Effect of Gamma irradiation on egyptian sweet potato starch. Starch, 6: 190-192.
    Reddy L.V.A., Reddy O.V.S.. 2005. Improvement of ethanol production in very high gravity fermentation by horse gram (Dolichos biflorus) flour supplementation.Letters in Applied Microbiology, 41(5): 440-444.
    Rogers PL, Lee KJ, Skotnicki ML. 1982. Ethanol production by Zymomonas mobilis. Adv Biochem Eng, 23: 27-84.
    Ryszka L, Czakaj J, Sawicka-Zukowska R, et al. 2002. Glucoamylase production using transformants of Aspergillus constructed by genetic engineering methods in liquid and solid medium cultures. Prace Instytutow i Laboratoriow Badawczych Przemyslu Spozywczego,57:7-26.
    Saddler JN, Chan MKH. 1982. Optimization of Clostridium thermocellum groth on cellulose and pretreated wood substrates. Eur J Appl Microbiol Biotechnol, 16: 99-104.
    
    Shengdong Zhu, Yuanxin Wu, Ziniu Yu, Xuan Zhang, Cunwen Wang, Faquan Yu, Siwei Jin,Yufeng Zhao, Shaoyong Tu, Yongping Xue. 2005. Simultaneous saccharification and fermentation of microwave/alkali pre-treated rice straw to ethanol. Biosystems Engineering,92(2): 229-235.
    Shigechi Hisayori, Koh Jun, Fujita Yasuya, et al. 2004. Direct production of ethanol from raw corn starch via fermentation by use of a novel surface-engineered yeast strain codisplaying glucoamylase and a-amylase. Applied and Environmental Microbiology, 70(8): 5037-5040.
    Shinsaku Hayashida, Yuji Teramoto, Takehiro Inoue. 1988. Production and characteristics of raw-potato-starch-digesting a-amylase from Bacillus subtilis 65. Applied and Environmental Microbiology, 54(6): 1516-1522.
    Shoemaker SP. 1984. Cellulase system of Trichoderma reesei: trichoderma strain improvement and express of Trichoderma cellulases in yeast. World Biotech Rep, 2: 593-600.
    Southall S.M., Simpson P.J., Gilbert H.J., Williamson G., Williamson M.P.. 1999. The starch-binding domain from glucoamylase disrupts the structure of starch. FEBS Lett, 447:58-56.
    Stepanov AL, Afanaseva VP, Zaitseva GV, Mednokova AP, Lupandina IB. 1975. Regulation of the biosynthesis of the enzyme of amylolytic acomplex of Endomycopsis fibuligera. Prikl Biohim Mikrobiol, 11: 682-685.
    Sun HY, Zhao PJ, Peng M. 2008. Application of maltitol to improve production of raw starch digesting glucoamylase by Aspergillus niger F-08. World J Microbiol Biotechnol, 24:2613-2618.
    Swift RJ, Wiebe MG., Robson GD, et al. 1998. Recombinant glucoamylase production by Aspergillus niger B1 in chemostat and pH auxostat cultures. Fungal Genetics andBiology,25(2):100-109.
    Tao H, Gonzalez R, Martinez A, Rodriguez M, Inhram LO, Preston JF, Shanmugam KT. 2001. Engineering a homo-ethanol pathway in E. coli: increased glycolytic flux and levels of expression of glycolytic genes during xylose fermentation. J Bacterial, 183: 2979-2988.
    Thierry Montesinos, Jean-Marie Navarro. 2000. Production of alcohol from raw wheat flour by Amyloglucosidase and Saccharomyces cerevisiae. Enzyme and Microbial Technology, 27:362-370.
    Thomas K.C., A. Dhas, B.G. Rossnagel, W.M. Ingledew. 1995. Production of fuel alcohol from hull-less barley by very high gravity technology[J]. Cereal Chemistry, 72(4): 360-364.
    Ulgen KO, Saygili B, Onsan ZI, Kirdar B. 2002. Bioconversion of starch by a recombinant Saccharomyces cerevisiae strain YPG-AB. Process Biochem, 37: 1157-1168.
    Vallet C, Said R, Rabiller C, Martin ML. 1996. Natural abundance isotopic fractionation in the fermentation reaction influence of the nature of the yeast. Bioorg Chem, 24: 319-330.
    
    Van der Maarel M.J.E.C., B. van der Veen, J.C.M. Uitdehaag, H. Leemhuis, L. Dijkhuizen. 2002.Properties and applications of starch-converting enzymes of the a-amylase family. Journal of Biotechnology, 94:137-155.
    VanSivers, M., Zacchi, G. 1995. A techno-economical comparison of three processes for the production of ethanol from pine. Bioresource Technol, 51: 43-52.
    
    Verma G, Poonam Nigam, Dalel Singh, Kamla Chaudhary. 2000. Bioconversion of starch to ethanol in a single-step process by coculture of amylolytic yeasts and Saccharomy cerevisiae 21. Bioresource Technology, 72: 261-266.
    Wang S., Thomas K.C., Sosulski K., Ingledew W.M., Sosulski F.W.. 1999. Grain pearling and very high gravity (VHG) fermentation technologies for fuel alcohol production from rye and triticale. Process Biochemistry, 34:421-428.
    Wyman CE, Hinman ND. 1988. Ethanol fundamentals of production from renewable feedstocks and use as a transportation fuel. Appl Biochem Biotechnol, 24/25: 735-42.
    Yan Lin, Shuzo Tanaka. 2006. Ethanol fermentation from biomass resources: current state and prospects. Appl Microbiol Biotechnol, 69: 627-642.
    Zertuche L, Zall RR. 1982. A study of producing ethanol from cellulose using Clostridium thermocellum. Biotechnol Bioeng, 24: 57-68.
    Zhangwen Wu, Y.Y.Lee. 1998. Nonisothermal simultaneous saccharification and fermentation for direct conversion of lignocelulosic biomass to ethanol. Applied Biochemistry and Biotechnology, 70-72: 479-492.
    白璐,南方.2008.燃料乙醇的现在和未来.太阳能,10:32-34.
    毕金峰.2005.真菌α-淀粉酶酶学性质研究.粮油食品,13(3):30-32.
    曹小红,蔡萍,李凡,等.2007.利用响应面法优化Bacillus natto TK-1产脂肽发酵培养基.中国生物工程杂志,27(4):59-65.
    陈萌山.2004.中国马铃薯产业发展现状及展望.中国(昆明)第五界世界马铃薯大会文集,81-83.
    陈学鹏,周剑平,王治业,等.2001.同定化复合酵母连续发酵生产乙醇的工业化研究.甘肃科学学报,14(4):44-47.
    陈远钊,罗俊成,胡佳,等.2007.酸性 α-淀粉酶菌株的诱变及酶的性质研究.中国酿造,1:10-13.
    程少菊,张添元,罗进贤,等.2007.可降解淀粉酿酒酵母基因工程菌的构建及其生产应用.中山大学学报(自然科学版),46(3):128-130.
    戴彦德.2003.我国可持续发展中的能源问题.节能,2:3-5.
    戴彦德,任东明.2005.从我国社会经济发展所面临的能源问题看可再生能源发展的地位和作朋.政策与管理,2:4-8.
    丁立孝,顾军,倪新江,等.2002.无蒸煮生淀粉糖化酶霉菌的选育.食品科学,23(2):78-80.
    董永存,刘洋,陈源源,等.2008.嗜热菌来源的生淀粉酶分离纯化及酶学性质.微生物学报,48(2):169-175.
    方毅,印培民,黄莜萍.2008.红薯干原料同步糖化发酵生产燃料乙醇的研究.江西科学,10(5):719-723.
    高嘉安.2001.淀粉及淀粉工艺学.北京:中国农业科技出版社,22-50.
    高鹏飞,李妍,赵文静,等.2008.益生菌增殖培养基的优化.微生物学通报,35(4):623-628.
    葛毅强,陈颖.2003.快步发展我国马铃薯加工业.中国马铃薯,17(1):48-51.
    郭爱莲,郭延巍,杨琳,等.2001.生淀粉糖化酶的菌种筛选及酶学研究.食品科学,45-48.
    郭伊均,陈盛梁.1997.汽车排气污染及控制对策.重庆环境科学,19(3):9-13.
    顾树华,曾麟.2005.我国生物液体燃料的生产现状与前景.中国建设动态:阳关能源.12:56-58.
    韩德奇,李伟,张冬捧,等.2002.燃料乙醇的生产进展和应用探讨.化工技术经济,20(6):9-15.
    何世念.2005.五大问题制约我国乙醇汽油的推广.中国石化,6:15-17.
    洪楠.侯军.MINITAB统计分析教程.电子工业出版社.
    侯保朝,杜风光,郭永豪,等.2005.高浓度酒精发酵.酿酒科技,4:93-96.
    胡青平,徐建国,李琪,等.2007.营养盐对酵母发酵的影响初探.沈阳农业大学学报,38(3):428-430.
    胡志鹏.2008.国内外能源结构的变化及替代能源的发展前景.电器工业,10:29-38.
    黄宇彤,伍松陵,杜连祥.2002.玉米酒精超高浓度发酵工艺条件的优化.食品工业科技,23(8):67-70.
    贾树彪,李盛贤,吴国峰.2004.新编酒精工艺学.北京:化学工业出版社.
    姜巍,张雷.2005.中国能源消费变化过程及其时空效应分析.辽宁工程技术大学学报,24(4):612-615.
    金慧,刘荣厚,沈飞,等.2008.甜高粱茎汁同定化酵母乙醇发酵的工艺优化的试验研究.农业工程学报,24(4):194-198.
    靳胜英,张福琴,张礼安.2008.木质纤维原料制乙醇原料预处理技术.中国工程科学,11:82-88.
    康利平,刘莉,刘萍,等.2008.甜高粱茎秆固态发酵生产燃料乙醇的研究.农业工程学报,24(7):181-184.
    兰志平,马海柳,朱西儒.2008.甘薯直接发酵生产酒精工艺条件的研究.广州大学学报(自然科学版),7(5):52-55.
    李勃,党永等,马瑜,等.2007.黑曲霉TX-78耐酸性α-淀粉酶的分离纯化及性质研究.微生物杂志,28(4):30-34.
    李崇光,章胜勇.2008.中美两国马铃薯产业的对比分析.世界农业,7:7-9.
    李代昆,张德纯.2005.酿酒酵母发酵糖类生产酒精的研究现状.中国微生态学报,17(2):160-161.
    李惠.2003.做大做强中国的马铃薯加工业.农产品加工.3:6-7;10.
    李江华,房峻.2007.真菌α-淀粉酶产生菌的筛选及其固态发酵条件的初步研究.食品科学,28(11):373-378.
    李魁.2005.酵母菌与糖化菌共同定化木薯酒精连续发酵工艺研究.中国粮油学报,20(1):36-40
    李清明,谭兴和,熊兴耀,等.2007.利用马铃薯生产燃料乙醇的可行性分析.酿酒科技,11:125-127.
    李盛贤,贾树彪,顾立文.2005.利用纤维素原料生产燃料酒精的研究进展.酿酒,32(2):13-16.
    李树君,林亚玲.2003.马铃薯加工业发展现状与对策.农产品加工,1:10-12.
    李旺军,方华,谢广发,等.2007.RSM法优化Aspergillus oryzae AO-01产糖化酶条件的研究.食品科学,28(11):322-327.
    李祥,吕嘉枥,李小奎.2002.生料酿酒工艺技术研究.酿酒科技,6:42-44.
    李亚芳,张华山,夏帆,等.2007.电融合法构建黑曲霉与K氏酵母融合子的研究.中国酿造,4:21-23.
    李艳华,张雯,房彩琴,等.2008.固定化混合菌种发酵玉米秸秆水解液的研究.北京化工大学学报,35(5):74-77.
    李永飞,吕欣,段作营,等.2003.高浓度酒精补料发酵工艺的研究.酿酒,30(4):31-33.
    李志平,庞宗文.2005.生木薯淀粉直接发酵生产酒精的发酵条件研究.酿酒科技,12:57-59.
    梁金钟.2005.无蒸煮无糖化一步发酵法生产燃料酒精.酿酒,32(2):60-65.
    梁勇,张本山,杨连生,等.2005.非晶颗粒态玉米淀粉结构及酶降解活性研究.中国粮油学报,20(1):22-25.
    廖昱泓,赵德刚.2005.利用淀粉的酿酒酵母基因工程菌研究进展.酿酒科技,6:44-47;50.
    蔺玉萍,张木清,陈柏铨.2005.产乙醇运动单胞菌的研究进展.微生物学报,45(3):472-477.
    柳辉,杨江科,等.2007.产α-淀粉酶菌株分离、鉴定及酶学性质研究.生物技术,17(2):34-37.
    刘德礼,谢林生,马玉录.2009.木质纤维素预处理技术研究进展.酿酒科技,1:105-110.
    刘红梅,许琳,严明,等.2008.gTME构建共发酵木糖和葡萄糖的重组酿酒酵母.生物工程学报,24(6):1010-1015.
    刘建军,姜鲁燕,赵祥颖,等.2003.高产酒精酵母菌种的选育.酿酒,30(1):57-59.
    刘凯,张琦琦,石瑛,等.2008.不同生态条件下马铃薯品种的淀粉含量分析.中国马铃薯,22(2):85-87.
    刘文秀,李树君,彭鉴君,等.2004.中国马铃薯加工业发展现状及创新思路.中国(昆明)第五界世界马铃薯大会文集.昆明:云南美术出版社.
    刘喜凤,王肇悦,张博润.2007.糖化酶及糖化酶基因在酿酒酵母中表达的研究进展.酿酒,34(4):73-76.
    刘永乐,李忠海,杨培华,等.2007.诱变法选育产耐酸α-淀粉酶菌株的研究.食品与机械,23(5):11-13.
    刘振,王金鹏,张立峰,等.2005.木薯干原料同步糖化发酵生产乙醇.过程工程学报,5(3):353-356.
    刘振,冯书晓.2008.玉米生料发酵制乙醇.酿酒,35(2):42-44.
    刘振,周兴国,曾爱武,等.2006.稻谷生料发酵生产乙醇研究.化学工程,34(3):49-52.
    刘仲敏,曹友声,何伯安.1995.生淀粉糖化酶产生菌1-16的选育研究.河南科学,13(2):164-167.
    吕欣,毛忠贵.2003.高浓度乙醇发酵研究进展.酿酒科技,5:58-59.
    吕跃刚,马家津,顾天成.2003.利用固定化菊粉酶和酵母细胞以菊芋为原料发酵生产乙醇的研究.食品与发酵工业,29(5):66-68.
    罗进贤,叶若邻,张添元.2000.用基因重组技术构建可降解淀粉和产生酒精的酵母工程菌.食品与发酵工业,26(5):1-4.
    罗军侠,李江华,陆健,等.2008.耐酸生淀粉糖化酶的菌种筛选、酶的性质及发酵条件.食品工业科技,29(5):151-154.
    罗文,张永华,王启军.2006.生料酿酒用微生物的分离与筛选.中国酿造,3:20-23.
    罗希,何华坤,刘莉,等.2008.高浓度发酵制备红薯燃料乙醇的研究.酿酒科技,7:32-35.
    马德瑞.1984.辐射加工技术.四川科学技术出版社,成都,p14.
    马丽娜,陈喜文,陈德富.2007.糖化酶工业株的鉴定及糖化酶基因的克隆.华北农学报,22(1):103-107
    马文超,石贵阳,章克昌.2005.玉米原料无蒸煮发酵酒精工艺的研究.酿酒科技,2:50-53.
    马莺,顾瑞霞著.2003.马铃薯深加工技术.中国轻工业出版社.
    毛志群,檀建新,袁耀武,等.2003.燃料乙醇用高产酒精酵母的筛选及鉴定.酿酒,30(3):35-37.
    潘明,周永进,张强,等.2006a.产生淀粉糖化酶菌株的分离以及酶性质的初步研究.四川理工学院学报(自然科学版),19(6):66-68.
    潘明,周永进,张强.2006b.产生淀粉糖化酶菌株的诱变选育.酿酒科技,10:37-39.
    潘志坚,胡杰.2005.我国可持续发展油气、能源战略探析.中国石油和化工经济分析,5:29-35.
    庞芳兰,肖春生.2007.提升我国马铃薯的加工能力.商场现代化.12/523:357-358.
    钱瑞生,张莲珍,宋联,等.1999.γ-射线辐照在酒精发酵中的应用.江苏食品与发酵,9(3):1-3.
    钱瑞生,赵阳,秦佚.1992.γ-射线辐照甘薯淀粉对酶促水解的影响.无锡轻工业学院学报,11(4):280-284.
    邱怡,叶君,熊犍.2007.微波辐射对淀粉结构及性质的影响.高分子通报.,2:57-62.
    屈冬玉,谢开云,金黎平,等.2003.中国马铃薯产业发展与技术需求.中国马铃薯研究与产业开发.223-229.
    邵强.2005.我国能源现状及可再生能源开发问题.西部探矿工程.4:208-209.
    沈微,华国强,王正祥.2003.古菌(Pyrococcus furiosus)嗜热a-淀粉酶基因在酿酒酵母中的表达.微生物学通报,30(3):22-25.
    沈煜,王颖,鲍晓明,曲音波.2003.酿酒酵母木糖发酵酒精途径工程的研究进展.生物工程 学报,19(5):636-640.
    沈志强.2008.辐照预处理提高小麦秸秆酶解产糖的研究.湖南大学硕士学位论文.p10.
    史立山.2006.我国可再生能源现状及展望.财经界,3:57-59.
    宋杰鲲,张在旭,李继尊.2008.我国能源安全状况分析.工业技术经济,27(4):10-13.
    孙海彦,张伟国.2007.Penicillium sp.X-1液态发酵生产生淀粉酶的优化.食品与生物技术学报,26(3):106-109.
    孙振钧.2004.中国生物质产业及发展取向.农业工程学报,20(5):1-5.
    谭显平.2007.籽实作物、茎秆作物和块根(茎)作物作车用乙醇原料的优势探讨.可再生能源,25(3):21-26,30.
    唐国敏,龚辉.1994.黑曲霉糖化酶在酿酒酵母中的表达和分泌.生物工程学报,10(3):213-217.
    唐国敏,扈芝香,陈必成.1988.红曲霉As313491葡萄糖淀粉酶形成的研究.微生物学报,28(4):319-324.
    唐炼.2005.世界能源供需现状与发展趋势.国际石油经济,13(1):30-33.
    田沈,王菊,陈新芳,等.2005.固定化运动发酵单胞菌乙醇发酵研究.太刚能学报,26(2):219-223.
    田植群.2001.辐射对玉米淀粉理化性质和颗粒结构的影响.吉林农业大学硕士学位论文.p45.
    魏晶石.1990.马铃薯淀粉的特性及其对粉丝生产性状的影响.马铃薯杂志,4(3):167-169.
    汪江波,薛海燕,邹玉玲,等.2005a.酶制剂的添加对早籼稻谷生料发酵生产酒精的影响.中国酿造.4:15-17.
    汪江波,薛海燕,邹玉玲,等.2005b.早籼稻谷生料发酵生产酒精的工艺研究.酿酒科技 4:58-60.
    汪树生,田植群,苏玉春,等.2004.辐射对淀粉作用的研究概况.中国粮油学报,19(5):27-29
    王晨霞,杜风光,李根德.2008.淀粉原料生料发酵法生产酒精概述.粮食与油脂,6:11-13.
    王传荣.2004.酒精生产技术.科学出版社.
    王晓青,曾洪梅,石义萍.2005.农用抗生素2-16高产菌株选育及发酵优化组合研究.微生物学通报,32(6):7-11.
    王永吉,刘宏迪,孙彤,等.1998.西方许旺酵母α-淀粉酶的基因克隆及其在啤酒酵母中的高效表达与分泌.中国科学(c辑),28(3):231-236.
    王仲颖,张正敏.2006.中国可再生能源技术现状和优先发展领域.科技中国,1:38-43.
    吴延东.2005.综合比较法确定生料酿酒的影响因素.淮海工学院学报,14(4):62-65.
    武宗文.2006.淀粉复合变性及浆纱应用性能研究.东华大学博士学位论文,p19-21.
    武宗文,李爱梅,赵红士.1998.淀粉的辐射降解及应用研究.核技术,21(10):634-637.
    肖长清.2008.一株产生淀粉糖化酶的拟青霉.湖北第二师范学院学报,25(2):43-45.
    肖长清,戚天胜,赵海.2006.生淀粉糖化酶产生菌Aspergillus niger(6#)的分离筛选及其产酶条件.应用与环境生物学报,12(1):76-79.
    夏帆,张华山,顾亚婧,等.2008.化学融合法构建淀粉生料发酵菌株.中国酿造,10:49-51.
    肖冬光,许葵,李瑞青.2000a.酒精浓醪发酵生产工艺的优化.酿酒科技,6:40-42.
    肖冬光,邹海宴.2000b.生料酿酒技术有关问题探讨.酿酒科技,6:39-42.
    肖琳,黄为一.2002.尼日利亚菌素高产菌株的选育.微生物学通报,29(4):59-62.
    谢慧玲,阮森林,刘亮伟,等.2008.酸性生淀粉酶产生菌的筛选及酶学性质研究.食品工业科技,29(10):85-87.
    徐桂转,马俊军,张百良.2007.固态发酵技术在酶生产中的应用研究进展.河南农业科学,12:13-16.
    许晖,孙兰萍,张斌,等.2008.米曲霉固态发酵啤酒糟产α-淀粉酶的优化.农业机械学报,39(1):82-86.
    徐开生.2007.中国马铃薯加工业现状及发展对策.农产品加工,9:55-57.
    徐勇,陈英,勇强,等.2008.重组酿酒酵母的木糖发酵性能研究。林产化学与工业,28(1):23-28.
    徐忠,王鹏,缪铭.2007.复合酶水解生淀粉形成微孔的机理研究.哈尔滨商业大学学报(自然科学版),23(1):49-52,57.
    徐子钧,李剑,梁凤来,等.2004.利用SAS软件优化L-乳酸发酵培养基.微生物学通报,31(3):85-87.
    薛正莲.1999.玉米原料无蒸煮酒精发酵工艺的研究.工业微生物,29(4):31-33;36.
    阎金勇,杨江科,闫云君.2007.单因素-响应面法优化白地霉Y162产脂肪酶条件.中国生物工程杂志,27(8):69-75.
    闫丽珍,闵庆文,成升魁.2005.中国农村生活能源利用与生物质能开发.资源科学,27(1):8-13.
    闫志农,赵志峰,沈晓平.2004.马铃薯及甘薯全粉的加工与应用.四川食品与发酵,2:1-3.
    杨长军,汪勤,张光岳.2008.木质纤维素原料预处理研究进展.酿酒科技,3:77-81.
    杨雄年,冯永忠,任广鑫,等.2005.中国能源供需特点及对策分析.西北农林科技大学学报,33(5):147-150.
    姚卫蓉,姚惠源.2005.复合淀粉酶酶解生淀粉机理探讨.工业微生物,35(4):15-19.
    姚跃飞,曾柏全.2005.现代固态发酵技术在食品加工业中的应用.食品与机械,21(6):89-92.
    于天峰,夏平.2005.马铃薯淀粉特性及其利用研究.中国农学通报,2l(1):55-58.
    袁建微,黄祖强,胡宇华,等.2007.机械活化对木薯淀粉与真菌α-淀粉酶糖化效果的影响.粮食工程。11:105-109.
    苑中显.2005.中国能源现状与发展对策.中国冶金,15(5):7-9;20.
    张波,张进江,陈晨,等.2004.中国能源安全现状及其可持续发展.国土与自然资源研究, 3:75-76.
    张承龙.2002.农业废弃物资源化技术现状及前景.环境保护,1:22-23.
    张德强.张志毅.2000.木质纤维素一步法(SSF)转化成乙醇的研究(Ⅲ)-毛白杨爆破原料一步法转化成乙醇的研究.北京林业大学学报,22(6):50-54.
    张东亮,王启军,张水华.2006.生料酿酒工艺概述.酿酒,33(6):46-48.
    张恩铭,刘荣厚,孙清,等.2005.营养盐对甜高粱茎秆汁液酒精发酵的影响.农机化研究,11(6):175-180
    张继福.1999.马铃薯酒精发酵的研究.青海科技,6(2):13-15;24.
    张君,刘德华.2004.世界燃料酒精工业发展现状与展望.酿酒科技,5:118-121.
    张丽,梁磊,郭勇,等.2008.无机盐对新型固定化酵母蔗汁酒精发酵的影响.现代食品科技,24(3):223-226.
    张世坤,许晓光.2004.我国当前能源问题及未来能源发展战略.能源研究与信息,20(4):211-219.
    张扬健,向威达,周涛,等.2009.我国燃料乙醇发展现状和趋势分析。中国能源,31(1):31-33,42.
    张以祥,曹湘洪,史济春.2004.燃料乙醇与车用乙醇汽油.北京:中国石化出版社.
    张菡,杜双奎.2006.酿酒酵母细胞固定化研究.中国酿造,2:12-15.
    张永光.2001.乙醇作为车用燃料的可行性及发展趋势.石油商技,19(5):16-19.
    郑博福,邓红兵,严岩,等.2005.我国未来能源消费及其对环境的影响分析,26(3):1-6.
    郑长义,王玉忠,杜爱华.1989.红薯淀粉的辐射对酶促水解的影响.化学世界,8:128-129.
    郑晓冬,楼建荣,吴金鹏.1994.黑曲霉和运动发酵单胞菌共固定化细胞酒精发酵的研究.生物技术,4(5):13-17.
    诸葛斌,姚惠源,诸葛健.2001a.生淀粉糖化酶高产菌的选育.微生物学通报,28(6):60-64.
    诸葛斌,姚惠源,姚卫蓉.2001b.生淀粉糖化酶的结构和作用机理.工业微生物,31(1):49-51.
    朱龙宝,汤斌,陶玉贵,等.2007.黑曲霉固态发酵酸性α-淀粉酶的培养基优化研究.安徽工程科技学院学报,22(3):12-15.
    朱圣东,吴元欣,喻子牛,等.2003.植物纤维素生产燃料酒精研究进展.化学与生物工程,5:5-11.
    朱文优,刘军.2006.生料发酵技术概述.粮食与食品工业,13(3):38-41.
    朱作华,张海燕,吴天祥,等.响应面法优化芭蕉芋酒精发酵工艺条件.酿酒科技,2007,7:10-14.
    邹东恢,梁敏,马翠翠.2005.生料酿酒技术的应用与开发.酿酒科技,6:61-64.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700