用户名: 密码: 验证码:
超高韧性水泥基复合材料试验研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
超高韧性水泥基复合材料(Ultra High Toughness Cementitious Composites,简称UHTCC)是一种新型的高性能纤维水泥基复合材料,它利用不超过2.5%体积率的短纤维增强,使用常规的搅拌工艺便可加工成型,硬化后的复合材料具有显著的应变硬化特性,极限拉应变能力在3%以上,并可以有效地将极限裂缝宽度限制在100μm以内,有的甚至可以限制在50μm以内,在某种意义上可称为“无缝混凝土”。UHTCC的开发与应用必将有助于解决我国混凝土结构因混凝土韧性差、易开裂、开裂后裂缝宽度难以控制等缺点所引起的一系列工程难题。本文结合自然科学基金项目(50438010)和南水北调项目(JGZXJJ2006-13)开展了一系列的研究,主要内容总结如下:
     1.配制了23组应变硬化水泥基复合材料,利用改进的直接拉伸试验方法测试其直接拉伸性能,并依此判定属于UHTCC的配比。
     2.依据直接拉伸试验过程和试验结果,合理描述UHTCC应变硬化以及试件开裂的全过程。
     3.依据UHTCC直接拉伸应力应变试验曲线,对UHTCC材料在极限抗拉强度之前的应力应变关系进行了合理简化,并给出了相应的抗拉本构方程。
     4.利用双边对称开口薄板直接拉伸试验证明了UHTCC材料极限抗拉强度具有对缺口的不敏感性。
     5.利用四点弯曲试验研究了UHTCC的抗弯力学性能及在弯曲荷载条件下UHTCC材料的裂缝无害化分散能力。
     6.根据UHTCC抗弯力学性能特点,在参考已有纤维混凝土弯曲韧性评价方法的基础上,考虑材料显著的变形硬化特征,提出了适用于评价UHTCC的弯曲韧性评价方法。
     7.关于使用四点弯曲试验反分析确定UHTCC的极限抗拉应变,结合材料受弯及受拉特性,在分析JCI及UM反分析方法的基础上,提出了更为合理且简单易行的反分析法。
     8.使用UHTCC制作小尺寸的平板式永久性模板和U型永久性模板,用这些模板浇注混凝土复合梁试件,而后进行的四点弯曲试验证明了UHTCC材料是制作参与性永久性混凝土模板的理想选择之一,它不仅可以明显提高结构的极限承载力改善结构延性,更能有效地将混凝土中的有害裂缝分散为多条细密的无害扁平裂缝,尤其是U型UHTCC永久性模板,能够有效地将裂缝宽度在整个梁深都控制在非常细的范围内。
Ultra High Toughness Cementitious Composite (UHTCC) is a new kind of high performance cementitious composite, which is reinforced with less than 2.5% short fibers by composite volume fraction and can be mixed with normal procedures, while the hardened composite possesses significant strain hardening properties with the ultimate tensile strain above 3% and ultimate crack width below 100μm. Some UHTCCs even can well control the ultimate crack width under 50μm, which is harmless to safety, durability and bearing capacity of structures, thus the corresponding composites can be called 'Crack Free Concrete'. It can be expected that the research and application of UHTCC will be great helpful to solve the widely existing problems caused by the lack of toughness, small deformability and easily cracking of concrete in engineering. Accordingly, a series of experiments and analyses regarding the basic mechanical properties and elementary applications of UHTCC are conducted:
     1. Uniaxial tensile test is the only test method to verify a cementitious composite is strain hardening or not. Appropriate specimen preparation and testing method for uniaxial tension are proposed for strain hardening cementitious composites. Uniaxial tensile tests are conducted to confirm which of the 23 composites, designed by the author, satisfy the basic properties requirement of UHTCC.
     2. The tensile strain hardening process and the whole cracking process of UHTCC are reasonably described according to the experimental results and the phenomena observed in uniaxial tensile tests, besides, UHTCC's ability of dispersing wide harmful crack into harmless ones is also evaluated accordingly.
     3. Reasonable simplifications of tensile stress versus strain relationship before ultimate tensile strength are conducted according to experimental curves, and the corresponding constitutive equations are also given accordingly.
     4. Property of notch insensitivity of UHTCC is verified with uniaxial tension tests on the double-notched plate specimens.
     5. Third-point bending tests are conducted to study the flexural properties of UHTCC, and great attention is paid to observe the ability of dispersing harm crack into harmlessly ones of UHTCC under flexural loading.
     6. Appropriate flexural toughness evaluating method is porposed for UHTCC.
     7. Regarding how to measure the ultimate tensile strain of strain hardening material with third-point bending test, new reverse method named NRA method is proposed after analyzing the existing methods of JCI method and UM method.
     8. Flat-shape and U-shape small scale permanent formworks made of UHTCC are cast with different surface corrugation, and concrete is cast above to make UHTCC permanent formwork/concrete composite beams. Third-point bending tests on composite beams confirm that UHTCC is an ideal material for production of participating permanent formwork, UHTCC permanent formwork can promote structural toughness and structural bearing capacity, especially, it can effectively disperse the wide harmful crack into multiple fine harmless flat cracks. It's observed that the use of U-shape permanent formwork can effectively control the crack width under a very fine level along the whole depth of the beams, which may be greatly beneficial for improving structural durability.
引文
[1]吴中伟,廉惠珍.高性能混凝土.北京:中国铁道出版社,1999.
    [2]王铁梦.工程结构裂缝控制.北京:中国建筑工业出版社,1997.
    [3]Naamann A E,Homrich Joseph R.Tensile stress-strain properties of SIFCON.ACI Materials Journal(American Concrete Institute),1989,86(3):244-251.
    [4]Hidenori Murakami,Jack Y Zeng.Experimental and analytical study of SIMCON tension members.Mechanics of Materials,1998,28(1-4):181-195.
    [5]Josef Hegger,Oliver Bruckermann,Rostislav Chudoba.Modellierung des Verbundes von Filament und Roving.Proceedings of 2~(nd) Colloquium on Textile Reinforced Structures (CTRS2).Dresden,2003(in German).
    [6]Li V C,Leung C K Y.Steady State and Multiple Cracking of Short Random Fiber Composites.Journal of Engineering Mechanics,ASCE,1992,188(11):2246-2264.
    [7]Li V C.Reflections on the Research and Development of Engineered Cementitious Composites(ECC).Proceedings of the JCI International Workshop on Ductile Fiber Reinforced Cementitious Composites(DFRCC).Tokyo,2002:1-21.
    [8]Li V C.On engineered cementitious composites(ECC)-A review of the material and its applications.Journal of Advanced Concrete Technology,2003,1(3):215-230.
    [9]JCI-DFRCC Committee.DFRCC terminology and application concepts.Journal of Advanced Concrete Technology,2003,1(3):335-340.
    [10]Li V C,Fischer G,Kim Y,et al.Research Report RC-1438,Durable Link Slabs for Jointless Bridge Decks Based on Strain-Hardening Cementitious Composites,Michigan,USA:University of Michigan 2003.
    [11]Rokogo K,Kanda T.Presentation "Recent HPFRCC R&D Progress in Japan" Proceedings of International Workshop on HPFRCC in Structural Applications,Bagneux:RILEM Publications SARL,2005:23-26.
    [12]吴人杰.复合材料.天津:天津大学出版社,2000:208-210
    [13]陈婷,詹炳根.设计PVA纤维水泥基复合材料的研究进展.混凝土,2003(11):3-6,10.
    [14]陈中原.弹性混凝土有了用武之地.建筑工人,2005(10):57
    [15]王晓刚,毛新奇,赵铁军.聚乙烯醇纤维水泥基复合材料.青岛建筑工程学院学报,2004,25(4):28-31.
    [16]田砾,刘丽娟,赵铁军,等.沿海混凝土结构耐久性问题研究现状与对策.海岸工程,2005,24(3):58-66.
    [17]Li V C,Mishra D K,Wu H C.Matrix design for pseudo strain-hardening fiber reinforced cementitious composites.Materials and Structures,1995,28(10):586-595.
    [18] Li V C, Wang S, Wu H C. Tensile strain-hardening behavior of PVA-ECC. ACI Materials Journal, 2001, 98(6): 483-492.
    [19] Li V C, Obla K H. Effect of fiber length variation on tensile properties of carbon fiber cement composites. Composite Engineering, 1994, 4(9):947-964.
    [20] Li V C, Wu H C. Maalej M, et al. Tensile behavior of cement based composites with random discontinuous steel fibers. Journal of the American Ceramic Society, 1996, 79(1): 74-78.
    [21] Fukuyama H, Suwada H, Ilseung Y. HPFRCC damper for structural control. Proceedings of the JCI International Workshop on ductile Fiber Reinforced Cementitious Coposites (DFRCC). Tokyo, 2002:219-228.
    [22] Maalej M, Zhang J, Quek S T, et al. High-velocity impact resistance of hybrid-fiber engineered cementitious composites. Proceedings of Fracture Mechanics of Concrete Structures, Colorado, 2004:1051-1058.
    [23] Kong H J, Bike S G, Li V C. Development of a self-consolidating engineered cementitious composite employing electrosteric dispersion/stabilization. Cement and Concrete Composites, 2003, 25(3):301-309.
    [24] Kong H J, Bike S G, Li V C. Constitutive rheological control to develop a self-consolidating engineered cementitious composite reinforced with hydrophilic polyvinyl alcohol fibers. Cement and Concrete Composites, 2003, 25(3):333-341.
    [25] Kong H J. Electrosteric stabilization of heteroflocculating suspensions and its application to the processing of self-compacting engineered cementitious composites (doctoral dissertation).Michigan: University of Michigan, 2001.
    [26] Kim Y Y , Kong H J, Li V C. Design of engineered cementitious composite (ECC) suitable for wet-mix shotcreting. ACI Materials Journal, 2003, 100(6): 511-518.
    [27] Kim Y Y, Fischer G, Lim Y M, et al. Mechanical performance of sprayed engineered cementitious composite (ECC) using wet-mix shotcreting process for repair. ACI Materials Journal, 2004, 101(1):42-49.
    [28] Stang H, Li V C. Extrusion of ECC-Material. Proceedings of High Performance Fiber Reinforced Cement Composites 3 (HPFRCC-3), New York: Chapman & Hull, 1999: 203-212.
    [29] Wang S, Li V C. Lightweight ECC. Proceedings of High Performance Fiber Reinforced Cement Composites 4 (HPFRCC-4), Michigan: 2003: 379-390.
    [30] Li V C, Lepech M, Wang S, et al. Development of Green ECC for Sustainable Infrastructure Systems. Proceedings of International Workshop on Sustainable Development and Concrete Technology. Iowa State University, 2004:181-192
    [31] Martinola G, Bauml M F, Wittmann F H. Modified ECC Applied as an Effective Chloride Barrier. Proceedings of the JCI International Workshop on Ductile Fiber Reinforced Cementitious Composites. Tokyo: Japan Concrete Institute, 2002:171-180.
    [32] Li V C, Lim Y M, Chan Y W. Feasibility study of a passive smart self-healing cementitious composite. Composites Part B: Engineering(UK), 1998:819-827.
    [33] Fischer G. Deformation Behavior of Reinforced ECC Flexural Members under Reversed Cyclic Loading Conditions: (Doctoral Thesis). University of Michigan, 2002.
    [34] Kamada T, Li V C. The effects of surface preparation on the fracture behavior of ECC/concrete repair system. Cement and Concrete Composites, 2000, 22(6):423-431.
    [35] Li V C, Horikoshi T, Ogawa A, et al. Micromechanics-based durability study of polyvinyl alcohol-engineered cementitious composite (PVA-ECC). ACI Materials Journal, 2004, 101(3): 242-248.
    [36] Li V C, Wu H C. Conditions for Pseudo Strain-Hardening in Fiber Reinforced Brittle Matrix Composites. Applied Mechanics Reviews, 1992, 45(8):390-398.
    [37] JCI-DFRCC Committee. DFRCC terminology and application concepts. Journal of Advanced Concrete Technology, 2003, 1 (3):335-340.
    [38] Li V C, Wang S. On High Performance Fiber Reinforced Cementitious Composites. Proceedings of the JCI International Workshop on ductile Fiber Reinforced Cementitious Coposites (DFRCC).Tokyo: Japan Concrete Institute, 2003:13-23.
    [39] Wu C. Micromechanical Tailoring of PVA-ECC for Structural Applications: (doctoral dissertation), Michigan:University of Michigan, 2001.
    [40] Maalej M, Li V C. Flexural Strength of Fiber Cementitious Composites. Journal of Materials in Civil Engineering, ASCE ,1994, 6(3):390-406.
    [41] Maalej M, Li V C. Flexural/Tensile Strength Ratio in Engineered Cementitious Composites. Journal of Materials in Civil Engineering, ASCE, 1994, 6(4):513~528.
    [42] Lepech M, Li V C. Size Effect in ECC Structural Members in Flexure. Li V C, et al. ed. Proceedings of FRAMCOS-5, Colorado, USA, 2004:1059-1066.
    [43] Kunieda M, Kamada T, RokugoK. Size Effects on Flexural Failure Behavior of ECC Members. Proceedings of the JCI International Workshop on Ductile Fiber Reinforced Cementitious Composites (DFRCC). Tokyo: Japan Concrete Institute, 2002: 229- 238.
    [44] Kanda T, Watanabe S, Li V C. Application of pseudo strain-hardening cementitious composites to shear resistant structural elements. Fracture Mechanics of Concrete Structures Proceedings FRAMCOS-3, Freiburg, Germany, 1998:1477-1490.
    [45] Vasillaq X. Investigating the shear characteristics of high performance fiber reinforced concrete: (Dissertation). Toronto, University of Toronto, 2003.
    [46] Li V C, Fischer G. Interaction between steel reinforcement and engineered cementitious composites. Proceedings of High Performance Fiber Reinforced Cement Composites 3 (HPFRCC 3), Mainz, Germany, 1999:361-370.
    [47]Fischer G,Li V C.Influence of matrix ductility on tension-stiffening behavior of steel reinforced Engineered Cementitious Composites(ECC).ACI Structural Journal,2002,99(1):104-111.
    [48]Li V C.Damage tolerance of engineered cementitious composites.Proceeding of 9th ICF Conference on Fracture,Oxford:Pergamon Press,1997:619-630.
    [49]Li V C,Hashida T.Engineering ductile fracture in brittle matrix composites.Journal of Materials Science Letters,1993(12):898-901.
    [50]Aveston J.,Cooper G.A.,and Kelly A.,Single and Multiple Fracture,in the Properties of Fiber Composites,Conf.Proc.,IPC Science and Technology Press Ltd.,1971:15-24.
    [51]Marshall DB and Evans A G,Failure Mechanisms in Ceramic-Fiber/Cement-Matrix Composites,Journal of American Ceramic Society.1985,68(5):225-231.
    [52]Marshall DB,Cox BN,Evans AG,The Mechanics of Matrix Cracking in Brittle-Matrix fiber Composites,Acta Metal,1985,33(11):2013-2021.
    [53]Li V.C.,From Micromechanics to Structural Engineering-the Design of Cementitous Composites for Civil Engineering Applications,JSCE Journal of Structural Mechanics and Earthquake Engineering,1993,10(2)37-48.
    [54]Marshall,D.B.,Cox B.N.,A J-integral Method for Calculating Steady-state Matrix Cracking Stresses in Composites,Mechanics of Material,1988(7):127-133.
    [55]Kanda T.,and Li V.C.,Multiple Cracking Sequence and Saturation in Fiber Reinforced Cementitious Composites,Concrete Research and Technology,Japan Concrete Institute,1998,9(2):1-15.
    [56]Lin Z.and V.C.Li,Crack Bridging in Fiber Reinforced Cementitious Composites with Slip-hardening Interfaces,J.Mechanics and Physics of Solids,1997,45(5):763-787
    [57]Zhang J.and Li V.C.,Effect of Inclination Angle on Fiber Rupture Load in Fiber Reinforced Cementitious Composites,Composite Science and Technology,2002,62(6):775-781.
    [58]Li V.C.,Wu H.C.,Chan Y.W.,Effect of Plasma Treatment of Polyethylene Fibers on Interface and Cementitious Composite Properties,J.of American Ceramics Society,1996,79(3):700-704.
    [59]高淑龄,PVA纤维增强水泥基复合材料假应变硬化及断裂特性研究[博士学位论文],大连:大连理工大学,2006.
    [60]高淑玲,徐世娘.PVA纤维增强水泥基复合材料拉伸特性试验研究.大连理工大学学报,2007,47(2):233-239.
    [61]高淑玲,徐世娘.利用水平外力总功研究PVA纤维增强水泥基复合材料韧性.东南大学学报,2007,37(2):324-329.
    [62]徐世娘,李贺东,张英华,等.南水北调工程超高韧性绿色ECC新型材料研究及应用进展报告[报告].大连:大连理工大学,2007.
    [63]张君,公成旭.高韧性纤维增强水泥基复合材料单轴抗拉性能研究,第十一届全国纤维混凝土学术会议论文集,大连,2006:27-32.
    [64]公成旭,张君.高韧性纤维增强水泥基复合材料的抗拉性能.水利学报,2008,39(3):361-366
    [65]丁一,陈小兵,李荣.ECC材料的研究进展与应用.建筑结构-增刊,2007,37(S1):94-98.
    [66]王晓刚,Wittmann Folker H.,赵铁军.优化设计水泥基复合材料应变硬化性能研究.混凝土与水泥制品,2006,149(3):46-49.
    [67]Maalej M.,Li V.C.,Introduction of Strain Hardening Engineered Cementitious Composites in the Design of Reinforced Concrete Flexural Members for Improved Durability.Structural Journal,American Concrete Institute,1995,92(2):167-176.
    [68]Beeby A.W.,Cracking:What Are Crack Width Limits for?.Concrete,1977-1978,12(7):313-33.
    [69]Tsukamoto M.,Tightness of Fiber Concrete.Darmstadt Concrete,Annual Journal on Concrete and Concrete Structures,1990,5:215-225
    [70]ACI Committee 224.Control of Crack in Concrete Structures.[Standard],American Concrete Institute,1991
    [71]Comité Euro-International du Béton(CEB).CEB-FIP Model Code for Concrete Structures.Paris,1978:348
    [72]中国土木工程学会标准,CCES01-2004(2005年修订版)混凝土耐久性设计与施工指南,北京:中国建筑工业出版社,2005
    [73]Lepech M.,V.C.Li,Durability and Long Term Performance of Engineered Cementitious Composites,Proceedings of Int'l workshop on HPFRCC in structural applications,Honolulu,Hawaii,USA,2005:23-26
    [74]Li V.C.,M.Lepech,Crack Resistant Concrete Material for Transportation Construction.[Report],Michgan:University of Mitchigan,2004
    [75]ECC Technology Network.Repair of Mitaka Dam[EB/OL].http://www.engineeredcomposites.com/Applications/mitaka_dam.html
    [76]Kojima,N.Sakata,T.Kanda et al,Application of Direct Sprayed ECC for Retrofitting Dam Structure Surface Application for Mitaka-Dam.Concrete Journal,Japan Concrete Institute(JCI 464),2004,42(5):135-139(in Japanese)
    [77]Hiroshi Inaguma et al,Experimental Study on Crack-Bridging ability of ECC for Repair under Train Loading,Proceedings of Int'l workshop on HPFRCC in structural applications,Honolulu,Hawaii,USA,May 23-26,2005
    [78]ECC Technology Network.Patch repair of viaduct[EB/OL].http://www.engineeredcomposites.com/Applications/viaduct.html
    [79]Caner A.,Zia P.,Behavior and design of link slabs for jointless bridge decks.PCI Journal,May-June,1998:68-80.
    [80] Gilani A., Link slabs for simply supported bridges: Incorporating Engineered Cementitious Composites [Report], Report No. MDOT SPR-54181, 2001.
    [81] Kuraray Co. Ltd. About PVA fibers: applications: structural [EB/OL]. http://kuraray-am. com/pvaf/structural_case. php
    [82] Kuraray Co. Ltd. Steel /ECC composite bridge deck [EB/OL]. http://www. engineeredcomposites. com/Applications/mihara_bridge. html
    [83] Japan Society of Civil Engineers. Recommendations for Design and Construction of High Performance Fiber Reinforced Cement Composite with Multiple Fine Cracks (HPFRCC) [S]. 2007. (in Japanese)
    [84] S. Wang and Victor Li. Presentation "PVA-ECC: Material Design and Performances" in Proceedings of Int' 1 workshop on HPFRCC in structural applications, Honolulu, Hawaii, USA, May 2005:23-26,.
    [85] Toshiyuki Kanakubo, Tensile Characteristics Evaluation Method for Ductile Fiber-Reinforced Cementitious Composites. Journal of Advanced Concrete Technology. 2006, 4(1) :3-17.
    [86] Li V C, Wu H C. Pseudo strain-hardening design in cementitious coposites. Proceedings of High performance fiber reinforced cement composites. edited by Reinhardt H W and Naaman A E. 1992:371-387.
    [87] Philips V, Zhang B S. Direct tension tests on notched and un-notched plain concrete specimens, Magazine of Concrete Research, 1993(162):25-35
    [88] Gopalaratnam Vellore S. On the characterization of flexural toughness in fiber reinforced concretes. Cement & Concrete Composites, 1995, 17(3):239-254
    [89] ASTM C 1018-89, Standard method for flexural toughness and first crack strength of fiber reinforced concrete [S]
    [90] JSCE-SF4. Method of test for flexural strength and flexural toughness of steel fiber reinforced concrete [S]
    [91] Li, V. C., Maalej, M., and Hashida, T. Experimental determination of stress-crack opening relation in fiber cementitious composites with crack tip singularity. Journal of Materials Science, 1994, 29(10): 2719-2724.
    [92] Maalej, M. Fracture resistance of engineered fiber cementitious composites and implications to structural behavior [Doctoral Dissertation]. University of Michigan, USA. 1994.
    [93] Qian S, Li V C. Simplified inverse method for determining the tensile strain capacity of Strain Hardening Cementitious Composites. Journal of Advanced Concrete Technology, 2007, 5(2): 235-246
    [94] Toshiyuki Kanakubo, Katsuyuki Shimizu, Makoto Katagiri, et al. Tensile Characteristics Evaluation of DFRCC - Round Robin Test Results by JCI-TC. Proceedings of International RILEM Workshop on High Performance Fiber Reinforced Cementitious Composites in Structural Applications. Hawaii: RILEM Publications SARL, 2005: 27-36
    [95] Gopalaratnam Vellore S. On the characterization of flexural toughness in fiber reinforced concretes. Cement & Concrete Composites, 1995, 17(3):239-254
    [96] Wringley R G. Permanent Fonnwork in Construction (CIRIA C558). CIRIA/Concrete Society, 2001
    [97] Giovanni MARTINOLA, Martin F BAUML and Folker H WITTMANN. Modified ECC Applied as an Effective Chloride Barrier. Proc. JCI Int. Workshop Ductile Fiber Reinforced Cementitious Composites - Application and Evaluation, Japan Concrete Institute, 2002: 171-180

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700