用户名: 密码: 验证码:
低流度油藏流体渗流特征及应用研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本文以大港南部油田为例,研究低流度油藏渗流特征和改善开发效果技术对策。针对低流度油藏开发过程中存在的采油速度低、采收率低以及储量动用程度低等难题,通过对国内外有关油藏非达西渗流方面的研究成果和文献的综合分析,确定了研究思路和研究内容,并在非达西渗流实验和数值模拟等方面开展了大量工作。通过实验研究和数值模拟研究是该论文的主要研究手段。
     通过岩芯渗流实验分析,验证了研究区低流度油藏渗流规律偏离达西定律,对低流度油藏的渗流特征进行了探讨,分析低流度油藏的非达西流特征。确定了启动压力与储层渗透率、流体粘度三者之间的变化关系和规律,描绘出研究区启动压力梯度分布图,掌握分布规律,为油藏工程研究奠定基础。
     提出和建立了油藏开发特征模型的思路和详细步骤,油藏开发特征模型包括地质特征属性、开发特征属性和渗流特征属性三个部分。在油藏开发特征模型的基础上进行多层油藏油层启动状况及条件研究,分析原油粘度、纵向非均质性、井距、注采压差和分层注水等因素对低流度油藏的启动程度的影响。优化制订出提高低流度油藏油层启动程度的注水技术政策,包括合理井距、分层注水、增注和提液、完善井网、油水井酸化压裂等,形成相应的技术政策指导参数。
     测试资料表明研究区层间矛盾突出,采用油藏数值模拟开展进行低流度多油层油藏油层启动状况及条件研究。在模拟过程中要考虑启动压力梯度,才能反映出低流度多油层油藏的开发特征。
     探讨了改善低流度油藏开发效果的技术对策。注采压力特征研究表明,油水井压力主要消耗在井筒附近。由于地层压力变化对渗透率的影响,研究区低流度油藏的合理生产压差存在一个合理范围区间,超过这个区间值,生产效率是降低的。低流度多油层油藏中,影响层间油层启动的主要因素是存在启动压力梯度和多层油藏的层间干扰。在油藏模拟过程中要考虑启动压力梯度,才能反映出低流度多油层油藏的开发特征。
     应用研究成果指导小集油田的调整治理,以建立合理、有效驱动压差为基础,采用先期注水、后期调整、简化开发层系等治理策略,取得明显效果。
To further understand flow characteristics of the low mobility reservoir,taking Xiaoji oilfield and Zaoyuan oilfield in Dagang oilfield for example.Aiming at the problems of low producing rate, low recovery rate and lowreserves producing degree in the process of the low mobility reservoirdevelopment. Through studying the research results and the analysis of theliterature about non-Darcy flow, the research ideas and content isdetermined, and non-Darcy flow experiments and numerical simulationhave been done lots of work. The research of experiment and numericalsimulation is the major research tools.
     The flow in the low mobility reservoir is diverge from the Darcy' lawthrough the core flow experiments. The characteristic of porous flow in lowmobility reservoir is discussed. Then the characteristic of non-Darcy flowis studied. The paper ensures the relationship and regular among thresholdpressure, reservoir permeability and fluid viscosity. The distribution map ofthreshold pressure gradient in research region is depicted,. And through themap, we can master the distribution regularity of threshold pressuregradient and be well prepared for the reservoir engineering research.
     The framework and detail steps of the feature model of reservoirdevelopment are described in this paper. Reservoir features model containsgeological properties, production characters and permeation fluid traits.Basing on the reservoir features model, the paper researches the reservoirstartup conditions and status in multilayer reservoir by analyzing the effect of oil viscosity, the vertical heterogeneity, the well spacing, pressuredifference between production and injection and zonal injection status,especially in low fluidity reservoir. The final research objective is toformulate the corresponding injectionervoir. Measures to optimize the lowfluidity reservoir startup conditions, which includes: reasonable well space,zonal injection, stimulation of injection, increasing liquid production, wellpattern optimizing, acidizing and hydraulic fracturing, etc. And gives theguiding technological parameters for the measures discussed above.
     The Well test data show that the layer interference is serious in the areaof study. Reservoir simulation method is applied to study the reservoirstartup status and conditions. In the simulation process, the pressuregradient is a key parameter for the low fluidity reservoir.
     The measures to improve the development effect of low mobilityreservoir are studied. Injection-production pressure system characteristicshave shown that the pressure drawdown of injection well and productionwell is near the wellbore. There is a reasonable range of producing pressuredrop because the formation pressure change affects permeability, otherwise,the productivity will be declined. The threshold pressure gradient andinterlayer interference are the main factors affecting the degree ofutilization in low mobility multilayered reservoir. In order to reflect thedevelopment characteristics of the low mobility multilayered reservoir, thethreshold pressure gradient must be considered in reservoir numericalsimulation.
引文
[1]武若霞.低渗透油田的开发特征与配套技术,全国低渗透油田开发技术座谈会论文选[M].北京:科学出版社80-88,1994年.
    [2]薛定谔.多孔介质中的渗流物理[M],石油工业出版社,北京,1982.
    [3]闫庆来,何秋轩,尉立岗.低渗透油层中单相液体渗流特征的实验研究[J].西安石油学院学报1990(2).
    [4]葛家理,低渗油藏渗流规律及其应用新探索,中国力学学会学术大会2005论文摘要集(下)[M].2005年.
    [5]贾振岐,王延峰,付俊林.低渗低速下非达西渗流特征及影响因素[J].大庆石油学院学报,2001(3).
    [6]邓玉珍,刘慧卿.低渗透岩心中油水两相渗流启动压力梯度试验[J].石油钻采工艺,2006.6.
    [7]黄延张.低渗透油藏非线性特征[J].特种油气藏,1987,(4).
    [8]赵明.大港油田异常高压低渗透油藏渗流规律和开发原则的探讨[J].低渗透油气田,2001(3).
    [9]崔英怀,于家义."三低”复杂油藏开发技术对策研究[J].石油天然气学报,2010(4).
    [10]汪全林,唐海等.低渗透油藏启动压力梯度实验研究[J].油气地质与采收率,2011(1).
    [11]吕成远,王建,孙志刚.低渗透砂岩油藏渗流启动压力梯度实验研究[J].石油勘探与开发2002(2).
    [12]李道品著.低渗透油田高效开发决策论[M].北京,石油工业出版社,2003.6.
    [13]何英,杨正明.低渗透油田考虑启动压力梯度计算井网产量[J].西南石油大学学报,2009(3).
    [14]杨满平,任宝生.低流度油藏分类及开发特征研究[J].特种油气藏,2006,13(4).
    [15]石京平,邵先权,马继红.实验测定低渗透储层最小启动压力梯度的应用[J].大庆石油地质与开发,2010,29(5).
    [16]李东霞,苏玉亮,孙瑞艳.低渗透底水油藏产能计算及其影响因素[J].大庆石油地质与开发,2010,29(5).
    [17]张家良.浅析储层半径大小、井距与油层连通程度的关系[J].特种油气藏.2004(2).
    [18]赵明.利用系统试井资料求取异常高压油藏储层渗透率变化系数的方法[J].石油地球物理勘.2006(S1).
    [19]何英,杨正明,刘学武等.低渗透油田考虑启动压力梯度计算井网产量[J].西南石油大学学报,2009,31(3).
    [20]罗银富,隆正风.对含有启动压力的达西公式的改进[J].油气井测试,2007(5).
    [21]高锡兴.黄骅坳陷石油天然气地质[M].北京,石油工业出版社,2004.2.
    [22]沈平平.油层物理实验技术[M].北京,石油工业出版社,1996.
    [23]熊伟,雷群等.低渗透油藏拟启动压力梯度[J].石油勘探与开发,2009,36(2).
    [24]田冀,许家峰.普通稠油启动压力梯度表征及物理模拟方法[J].西南石油大学学报,2009,31(3).
    [25]刘清华,吴亚红,赵仁保等.特低渗储层敏感性实验研究[J].大庆石油地质与开发,2009,28(4).
    [26] N.R. Warpinski.Determination of the effective-stress law for permeability and deformation inlow-permeability rocks. SPE20572.1990,11~22;
    [27] Kikani J and Pedrosa O A JR. Perturbation analysis of stress-sensitive reservoirs. SPEFE,1991,(Sept):379~386;
    [28] Farpuhar R A,Smar B G D t. Stress sensitivity of low permeability sandstones from therotliegendes sandstone, SPE26501,1993(Oct.):851~859;
    [29] Ruistuen.H.,Teufel. L.W. Influence of Reservoir Stress Path on Deformation and Permeabilityof Weakly Cemented Sandstone Reservoir,SPE36535,presented at the1996SPE AnnualTechnical Conference and Exhibition,Denver,Colorado,U.S.A.,Oct.6-9;
    [30] Hojka K., Dusseault M. B., Analytical solution for Transient Thermoelastic fields around aborehole during injection into permeable media. JCPT,1993(4):49~57;
    [31] Vaziri H. H., Coupled fluid flow and stress analysis of oil sand subject to heating. JCPT,1988(5):84~91;
    [32] Vairogs J and Rhoades V W. Pressure transient tests in formation having stress-sensitivepermeability. JPT,1973,(Aug):965~970;
    [33] Samaniego V and Cinco L H. Production rate decline in pressure-sensitive reservoirs. J. Can.Pet. Tech.,1980(July-Sept),19,75;
    [34] Ostensen,R.W. The Effect of Stress-dependent Permeability on Gas Production and WellTesting, SPEFE (June1986)227-235;
    [35] Pedrosa OA JR. Pressure transient response in stress-sensitive formations, SPE15115,California Regional Meeting,Oakland:2-1April1986.203~215;
    [36] Richard G. W.,A constitutive model for the effective stress-strain behavior of oil sands,JCPT,1991(1):87~96;
    [37] Zhang M Y and Ambastha A K. New insights in pressure-transient analysis for stress-sensitivereservoirs. SPE28420,SPE69thAnnual Technical Conference and Exhibition. New Orleans,LA,U. S. A.:25~28September1994,617~627;
    [38] M. Kelly, B. Mohamed, and R. L. Lee,Net-stress/permeability effect on gas non-darcy flow.SPE38038,1997(April):191~202;
    [39] Osorio J. G,Chen H. Y. and Teufel L. W.,Numerical simulation of the impact of floe-inducedgeomechanical response on the productivity of stress-sensitive reservoirs. SPE51929,1999(Feb.):14~17
    [40] Claudia L. Pinzon,Her-Yuan Chen,and Lawrence W.,Numerical well test analysis ofstress-sensitive reservoirs. SPE71034,2001,(may):1~10;
    [41] L. Y. Chin,Rajagopal Raghavan and L. K. Thomas,Fuly coupled geomechanics and fluid-flowanalysis of wells with stress-dependent permeability. SPE Journal5(1) March2000:32~45;
    [42] L. Y. Chin,R. Raghavan and L. K. Thomas,Fully coupled analysis of well responses instress-sensitive reservoirs. SPE Reservoir Eval.&Eng.3(5),October2000:435~443;
    [43] Settari A.,and Mourits F. M.,A coupled reservoir and geomechanical simulation system. SPEJ,1998(Sept.):219~226;
    [44] Fung L. S. A coupled geomechanical multiphase flow model for analysis of in-situ recovery incohesionless oil sands. JCPT,1992,31(6):56~66;
    [45] Gatmiri B.,Delage P.,Anew formulation of fully coupled thermalhydro-mechanical behaviorof saturated porous media-numerical approach. Int. J. Numer. Anal. Methods Geomech.,1997,21(3):199~225;
    [46] C.D.Ward, K.Coghill, M.D.Broussard.Pore-and fracture-pressure determinations:effectives-stress approach. J. Pet. Tech.,1995,10(3):134~143;
    [47] Yunting Duan, Yingfeng Meng, Pingya Luo and Wangyong Su, Stress Sensitivity ofnaturally fractured-porous reservoir with Dual-porosity. SPE50909.1998,(Nov.):295~302;
    [48] M. Jin,SPE,J. Somerville,SPE,and B.G.D. Sm-art. Coupled Reservoir Simulation Appliedto the Management of Production Induced Stress-Sensitivity. SPE64790,presented at the2000SPE International Oil and Gas Conference and Exhibition,China.7–10November;
    [49] Bandis S. C.,A. C. Lumsdem and N. R. Barton,Fundamentals of rock joint deformation,Int.J. Rock Mech. Min. Sci. and Geomech. Abstr.1983,Vol.20(6):249~268;
    [50] Gale J.E., The effects of fracture type (induced versus natural) on the stress-frctureclosure-fracture permeability relationships,Issues in rock mechanics23rdsymposium on rockmechanics,1982,290~298
    [51] Raven K. G. and J. E. Gale,Water flow in a natural fracture,Int. J. Rock Mech. Min. Sci. andGeomech. Abtr.,1985, Vol.22(4):251~261;
    [52] Yamada K., N. Takeda, J. Kagami and T. Naoi, Surface density of asperities and realdistribution of asperity heights on rubbed surfaces, Wear,1978, Vol.47:5~20;
    [53] Yamada K., N. Takeda, J. Kagami and T. Naoi, Mechanisms of elastic contact and frictionbetween rough surface, Wear,1978, Vol.48:15~34;
    [54] Walsh J. B. and M. A. Grosenbaugh, A new model for analyzing the effect of fractures oncompressibility, J. Geophy. Res.,1979, Vol.84, B7:3532~3536;
    [55] Swan G., Determination of stiffness and other joint properties from roughness messurements,Rock Mech. Rock Engng.,1983, Vol.10:19~38;
    [56] Browns S. R. and C. H. Scholz, Closure of random elastic surface in contact, J. Geophy.Res.,1985, vol.90, B:4939~4948;
    [57] Dlsson W. A. and S. R. Brown, Hydromechanical response of a fracture undergoingcompression and shear, Int. J. Rock Mech. Min. Sci. and Geomech. Abtr.,1993, Vol.30(7):845~851;
    [58] Yoshioka N. and C. H. Scholz, Elastic properties of contacting surfaces under normal andshear loads,1. theory, J. Geophy. Res.,1989, Vol.94, B12:17681~17690;
    [59] Yoshioka N. and C. H. Scholz, Elastic properties of contacting surfaces under normal andshear loads,2. comparison of theory with experiment, J. Geophy. Res.,1989, Vol.94,B12:17691~17700;
    [60] Yoshioka N., Elastic behavior of contacting surfaces under normal loads: A computersimulation using three-dimensional surface topographies, J. Geophy. Res.,1994, Vol.99,B8:15549~15560;
    [61]张琰,崔迎春.低渗气藏应力敏感性及评价方法的研究[J].现代地质,2001,15(4).
    [62]阮敏,王连刚.低渗透油田开发与压敏效应[J].石油学报,2002,23(3).
    [63]赵国忠,杨清彦,唐文锋.大庆长垣外围低渗透油田开发机理[J].大庆石油地质与开发,2009,28(5).
    [64]刘建军,刘先贵.有效压力对低渗透多孔介质孔隙度、渗透率的影响[J].地质力学学报,2001,7(1).
    [65]张新红,秦积舜.低渗岩芯物性参数与应力关系的实验研究[J].石油大学学报,2001,25(4).
    [66]迟善武,任荣亭.岩石孔隙体积压缩系数测量仪的设计[J].石油仪器,1997,11(2).
    [67]吴凡,孙黎娟,何江.孔隙度、渗透率与净覆压的规律研究和应用[J].西南石油学院学报,1999,21(4).
    [68]周远田.岩石渗透率与其应力的关系及应用[J].矿物岩石,1999,19(1).
    [69]周远田.岩石应力与渗透率的关系[J].岩石力学与工程学报,1998,17(4).
    [70]陈祖安,伍向阳.砂岩渗透率随净压力变化的关系研究[J].石力学与工程学报,1995(6).
    [71]张景存,颜五和.大庆油田小井距注水开发及提高采收率实验综述[J].大庆石油地质与开发,1992,11(2).
    [72]闫存章,李秀生.低渗透油藏小井距开发实验研究[J].石油勘探与开发,2005,32(1).
    [73]海中兴,王权杰,赖铁明.低渗透油田分层注水工艺技术[J].1996,15(3).
    [74]谢晓庆,姜汉桥.王全柱等.低渗透油藏压敏效应与注水时机研究[J].石油学报,2009,30(4).
    [75]杨康敏,马宏伟.河南油田特高含水期分层注水配套工艺技术[J],钻采工艺,2002,25(1).
    [76]王晓刚,袁业启,耿兆华.文留油田高效分层注水实践[J].内蒙古石油化工,2005(9).
    [77]裴承河,陈守民,陈军斌.分层注水技术在长6油藏开发中的应用[J].西安石油大学学报,2006,21(2).
    [78]王志章.油气田渗流场特征[M].石油工业出版社,2003.7.
    [79]何芬,李涛.周期注水提高水驱效率技术研究[J].特种油气藏,2004,11(3).
    [80]高养军,潘凌.周期注水效果及其影响因素[J].大庆石油学院学报,2004,28(5).
    [81]殷代印,翟云芳,卓兴家.非均质砂岩油藏周期注水的室内实验研究[J],大庆石油学院学报.2000,24(1).
    [82]姜泽菊,安申法.注水油田转周期注水开发影响因素探讨[J].石油钻探技术,2005,33(6).
    [83]杨勇.低渗透压敏油藏产量递减动态预测方法研究[J].大庆石油地质与开发,2008,27(3)
    [84]张金才,张玉卓.应力对裂隙岩体渗流影响的研究[J].岩土工程学报,1998,20(2).
    [85]苏玉亮,栾志安,张永高.变形介质油藏开发特征[J].石油学报,2000,21(2).
    [86]宋付权,李画眉.变形介质油藏中的不稳定渗流[J].水动力学研究与进展A辑,2007,22(1).
    [87]李中锋,何顺利.低渗透储层非达西渗流机理探讨[J].特种油气藏,2005,12(2).
    [88]刘启国,鲜国勇.低速非达西渗流流量动态规律研究[J].西南石油学院学报,2003,25(4).
    [89]姚约东,葛家理,李相方.低渗透油藏油水两相渗流研究[J].石油大学学报,2005,29(2).
    [90]姚约东,葛家理,魏俊之.低渗透油层渗流规律的研究[J].石油勘探与开发,2001,28(4).
    [91]范学平,李秀升,张士诚.低渗透变形介质油气藏渗流流固耦合研究[J].新疆石油地质,2001,22(1).
    [92]薛强,梁冰,李宏艳.可压缩流体渗流的流固耦合问题数值模拟研究[J].地下空间,2001,21(5).
    [93]刘建军,刘先贵.煤储层流固耦合渗流的数学模型[J].焦作工学院学报,1999,18(6).
    [94]熊伟,田根林.变形介质多相流动流固耦合数学模型[J].水动力学研究与进展,2002,17(6).
    [95]周志军,刘永建.低渗透储层流固耦合渗流理论模型[J].大庆石油学院学报,2002,26(3).
    [96]刘建军,张盛宗.裂缝性低渗透油藏流-固耦合理论与数值模拟[J].力学学报,2002,34(5).
    [97]刘建军,刘先贵.低渗透储层流-固耦合渗流规律的研究[J].岩石力学与工程学报,2002,21(1).
    [98]王自明,杜志敏.弹性油藏中多相渗流的流-固-热耦合数学模型[J].大庆石油地质与开发,2003,22(1).
    [99]杨满平.油气储层多孔介质的变形理论及应用研究[D].西南石油学院博士学位论文,2004.
    [100]刘清华,吴亚红,赵仁保.特低渗储层敏感性实验研究[J].大庆石油地质与开发,2009,28(4).
    [101]杨文新,胡玫.稠油油藏注水渗流特性与改善开发效果研究[D].中国科学院上海冶金研究所材料物理与化学博士论文,2000年度.
    [102]周新茂,郝明强,鲍敬伟.特低渗透压敏油藏压力分布特征[J].大庆石油地质与开发,2009,28(6).

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700