用户名: 密码: 验证码:
负膨胀材料Zr_2P_2MO_(12)的制备及性能研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
负膨胀材料,在一定的温度范围内,其平均热膨胀系数为负值,即具有“热缩冷胀”的特性。由于这类材料在电子,光学,航天航空等领域具有广阔的应用空间和巨大的应用价值,所以从被发现以来,已经引起大家的广泛关注。作为其中的重要成员,正交相的A2(MO4)3系列材料具有很大的各向异性负膨胀系数,且灵活多变,不仅三价离子A3+可以被不同元素替代,还可以用五价离子替代六价的M,Zr2P2MO12(M为W或Mo)材料就是用P替换其中的部分W或Mo而得到的一类材料。
     Zr2P2MO12可以在很大的温度范围内保持正交相和负膨胀性能,且不吸水,具有很高的稳定性。但对这类材料的制备方法和性能研究尚处于起步阶段。为此,我们用快速烧结合成法对Zr2P2WxMo1-xO12(0≤x≤1)和Zr2PVMoO12的制备进行了研究,运用XRD和拉曼光谱技术研究其性能,并对这些材料的拉曼光谱进行了分析。作为Zr2P2MO12材料的功能化应用,Zr2P2WO12与ZrW2O8的复合陶瓷可以用来做光纤布拉格光栅的绝热衬底,在本文中用高温快速烧结法制备出Zr2P2WO12与ZrW2O8的复合陶瓷。研究的主要结果和结论如下:
     1利用快速烧结合成法在较短的时间内制备出高纯度的Zr2P2WxMo1-xO12(0     2对于Zr2P2WO12、Zr2P2MoO12和Zr2P2WxMo1-xO12(0开放式框架结构并具有各向异性的负膨胀性能。通过测试这些材料的变温拉曼光谱发现,他们在20-600℃之间没有发生相变和放水,即始终保持了负膨胀特性。
     3通过对Zr2P2WxMo1-xO12(O≤x≤1)的拉曼光谱分析发现,相对于A2(M04)3材料的拉曼光谱,其在1200-1060cm-1和760-460cm-1之间多出了几个拉曼峰,这是由于PO4的存在引起的。对Zr2P2WxMo1-xO12 (0≤x≤1)的拉曼光谱比较后进而发现,随着x的变化,拉曼谱发生了相应改变,据此,对Zr2P2WxMo1-xO12(0≤x≤1)的拉曼峰进行了具体指认。
     4利用快速烧结合成法制备出高纯度的Zr2P2WO12与ZrW2O8的复合陶瓷以及新材料Zr2PVMO12。通过XRD分析发现,在运用了快速冷却技术后,在Zr2P2WO12与ZrW2O8的复合陶瓷中避免了ZrW2O8的分解。
Negative thermal expansion (NTE) materials have been receiving increasing attention for their potential applications in engineering materials with controlled coefficients of thermal expansion (CTE) by compositing them with positive thermal expansion materials. A large family of such materials is tungstates and molybdates with the formula A2M3O12, this type of compounds shows negative thermal expansion behavior only in orthorhombic structure. An interesting feature of these structures is the large chemical flexibility. The A3+ cation can not only be a transition metal or rare earth that occupies an octahedral position, but also be substituted by a mixture of tetravalent and bivalent cations, or by a tetravalent cation with partial replacing of M6+ by quinquevalent cations. Zr2P2MO12 (M=W or Mo) have been reported to maintain orthorhombic structure in a wide temperature range.
     Zr2P2MO12 display anisotropic volume NTE in a wide range of temperature (60-300K,122-400K respectively).In this work, a range of Zr2P2WxMo1-xO12(0≤x≤1) and Zr2PVMo12 samples were prepared by the solid state reaction. The structure changes and properties of Zr2P2WxMo1-xO12 were studied by X-ray diffraction and Raman spectroscopy. The ceramic of Zr2P2WO12 and ZrW2O8 were synthetized which can find use as substrates for athermalization of fiber Bragg gratings.The main results obtained are as follows.
     1 Zr2P2WxMo1-xO12(0≤x≤1) solid solutions were synthesized by the solid state reaction. The starting compounds of Zr2P2WO12 were sintered at 1200-1400℃for not less than 20min. The starting compounds of Zr2P2MoO12 and Zr2P2WxMo1-xO12 (0     2 The XRD analyses show that all samples maintain orthorhombic structure and contain a network of corner-sharing AO6 octahedra and MO4/PO4 tetrahedra. Raman spectroscopic studies of the samples at different temperatures reveal that there is no phase transition between 20-600℃
     3 There are more Raman bands between 1200-1060cm-1 and 760-460cm-1 in the Raman spectra of Zr2P2WxMo1-xO12 compared with the Raman spectra of A2(MO4)3. Raman spectra on the vibrational properties of three kinds of tetrahedra (MoO4, WO4 and PO4 tetrahedra) are discussed by analyzing the difference of the spectra of Zr2P2WxMo1-xO12.
     4 Zr2PVMO12 and ceramic composites of Zr2P2WO12 and ZrW2O8 were synthesized by the solid state reactions. The XRD analyses show that the ceramic composites can be prepared by rapid cooling to prevent ZrW2O8 from decomposing into ZrO2 and WO3.
引文
[I]Evans J S O, Mary T A, Sleight A W.Negative Thermal Expansion in a Large Molybdate and Tungstate Family[J].Solid State Chem.1997,133:580-583
    [2]Liang E J. Negative Thermal Expansion Materials and Their Applications:A Survey of Recent Patents[J].Recent Patents on Materials Science.2010,3:106~128
    [3]Evans J S O, Mary T A, Sleight A W.Negative thermal expansion materials[J] Physica.1998, B:241~243,311~316
    [4]Sriraman A K, Tyagi A K. A new method of Fe2(WO4)3 preparation and its thermal stability[J].Thermochimica Acta.2003,406:29-33
    [5]Forster P M, Sleight A W. Negative thermal expansion in Y2W3O12[J]International Journal of Inorganic Materials.1999,1:123~127
    [6]G Ernst, C Broholm,G R Kowach,et al.Phonon density of states and negative thermal expansion in ZrW2O8[J].Nature.1998,396:147~149
    [7]Liang E J,Huo H L, Wang J P, et al. Effect of Water Species on the Phonon Modes in rthorhombic Y2(MoO4)3 Revealed by Raman Spectroscopy[J].J. Phys. Chem.2008 Cl12:6577~6581
    [8]Sikka S K.Negative thermal expansion and its relation to high pressures[J].J. Phys.:Condens. Matter,2004,16 S:1033-S1039
    [9]Evans J S O,Z Hu,Jorgensen J D,et al.Compressibility,Phase Transitions,and Oxygen Migration in Zirconium Tungstate,ZrW2O8[J].Science,1997,275:61~65
    [10]Khosrovani N K,Sleight A W.Structure of ZrV2O7 from-263 to 470℃[J].J Solid State Chem,1997,132:355-360
    [11]Seo Dong-Kyun,Whangbo Myung-Hwan. Symmetric Stretching Vibrations of Two-Coor dinate Oxygen Bridges as a Cause for Negative Thermal Expansion in ZrVxP2-xO7 and AW2O8 (A=Zr, Hf) at High Temperature[J].J Solid State Chem,1997,129:163-160
    [12]梁源,周鸿颖,梁二军等.负热膨胀材料研究进展[J].无机化学学报,2008,24:1551-1557
    [13]严学华,李炳云,程晓农等.先进负热膨胀材料[J].硅酸盐学报,2009,37:653-658
    [14]Liang E J, Wang S H, Wu T A,et al. Raman spectroscopic study on the structure, phase transition and restoration of zirconium tungstate blocks synthesized with a CO2 laser[J].J. Raman Spectrosc.2007,38:1186-1192
    [15]Simon Allen, J S O Evans, he kinetics of low-temperature oxygen migration in ZrWMoO8[J].J.Mater.Chem.2004,141:51-156
    [16]Merkel G A. Negative Thermal Expansion Materials Including Method of Preparation and Uses Therefor[P].US6187700.2001
    [17]Agostini G Corvasce F G.Tire with low thermal expansion component[P]. US 2007007 4801.2007
    [18]Evans J S. O, David W I F, Sleight A W.Structural investigation of the negative-thermal-expansion material ZrW2O8[J].J.Acta Cryst.1999,B55:333~340
    [19]Yanase I,Miyagi M,Kobayashi H. Fabrication of zero-thermal-expansion ZrSi04/Y2W3O12 sintered body[J].Journal of the European Ceramic Society.2009,29:3129 ~ 3134
    [20]Marinkovic B J, Ari M, Rizzo F J.Correlation between AO6 Polyhedral Distortion and Negative Thermal Expansion in Orthorhombic Y2Mo3O12 and Related Materials[J].Chem. Mater.2009,21 2886~2894
    [21]Liang E J, Huo H L, Wang Z,et al. Rapid synthesis of A2(MoO4)3 (A= Y3+ and La3) with a CO2 laser[J]. Solid State Sciences,2009,11:139~143
    [22]Evans J S O, Mary T A, Sleight A W. Negative Thermal Expansion in Sc2(WO4)3[J]. J Solid State Chem,1998,137:148~160
    [23]Evans J S O, Mary T A. Structural phase transitions and negative thermal expansion in So2(MoO4)3[J]. International J Inorganic Materials,2000,2:143~151
    [24]赵新华,热致收缩化合物[J],化学通报,1998,11:19-24
    [25]黄昆,固体物理学,第二版[M],北京,高等教育出版社,1998,138-139
    [26]熊兆贤,材料物理导论[M],北京,科学出版社,2001,60-61
    [27]Mary T A, Evans J S O, Sleight A W. NTE from 0.3 to 1050 Kelvin in ZrW2O8[J]. Science, 1996,272:90~92
    [28]Ravindran T R, Arora A K, Mary T A. High pressure behavior of ZrW2O8:Gruneisen parameter and thermal properties[J], Phys. Rev. Let,2000,84:3879~3882
    [29]Giddy A P, Dove M T, Pawley G S, et al. The determination of Rigid-unit modes as potential soft modes for displacive phase transitions in framework crystal structures[J], Acta Cryst. A,1993,49:697~703
    [30]Rosseti G A,Cline J P,Navrotsky A.Phase transition energetics ans thermodynamic properties of ferroelectric PbTiO3[J].Materials Research,1998,13:3197~3206
    [31]Evans J S O,Mary T A, Sleight A W.Strcture of Zr2(W04)(PO4)2 from Powder X-Ray Date:Cation Ordering with No Superstructure[J]. J Solid State Chem.1995120:101~104
    [32]Watanabe H,Tani J, Kido H, et al.Thermal expansion and mechanical properties of pure magnesium containing zirconium tungsten phosphate particles with negative thermal expansion [J].J Materials Science and Engineering.2008,A494:291~298
    [33]Cetinkol M, Wilkinson A P. Pressure dependence of negative thermal expansion in Zr2(WO4)(PO4)2 [J]. J Solid State Communications.2009,149:421-424
    [34]Cetinkol M, Wilkinson A P, Lee P L. Structural changes accompanying negative thermal expansion in Zr2(MoO4)(PO4)2[J] J Solid State Chem.2009,182:1304~1311
    [35]Suzuki A, Omote A.Zero Thermal Expansion in (A12x(HfMg)1-x)(WO4)3[J]. J. Am. Ceram. Soc,2006,89(2):691~693
    [36]Baiz T I, Gindhart A M, Kraemer S K, et al.Synthesis of MgHf(WO4)3 and MgZr(WO4)3 using a non-hydrolytic sol-gel method[J]. J. Sol-Gel Sci Technol,2008,47:128~130
    [37]Peng J, Liu XZh,Guo F L,et al. Crystal structure and negative thermal expansion properties of Er2W3-xMoxO12[J].Trans. Nonferrous Met. Soc. China,2009,19:1623~1627
    [38]Paraguassu W, Maczka M, Souza Filho A G,et al.Mendes Filho J,Hanuza J.A comparative study of negative thermal expansion materials Sc2(MoO4)3 and Al2(WO4)3 crystals[J].J Vibrational Spectroscopy,2007,44:69~77
    [39]Sumithra S, Umarji A M. Negative thermal expansion in rare earth molybdates[J].Solid State Sciences,2006,8:1453-1458
    [40]Paraguassu W, Maczka M, Souza Filho A G,et al.Mendes Filho J,Hanuza J.High-pressure Raman study of A12(WO4)3[J]. Solid State Chemistry,2004,177:2002~2006
    [41]Sivasubramanian V, Ravindran T R, Nithya R, et al. Structural phase transition in indium tungstate[J], J. Appled Phys,2004,96:387~392
    [42]Arora A K, Arora R, Yagi T, et al. Two-stage amorphization of scandium molybdate at high pressure[J].J. Solid State Communications,2004,129:9-13
    [43]刘志国,特种陶瓷烧结技术[J],佛山陶瓷,2002,9:37-38
    [44]李友芬,刘伟伟,张麟宁,AIN陶瓷烧结技术研究进展[J].现代技术陶瓷,2006,1:28-30
    [45]韩钰,施雨湘,张凡,陈君平,致密羟基磷灰石生物陶瓷烧结技术研究进展[J],材料科学与工艺,2006,14(5):558-560
    [46]孔向阳,吴建生,曾振鹏.ZrW2O8微波合成、表征及负膨胀行为研究[J].硅酸盐学报,1999,27:265-269
    [47]方容川,固体光谱学,第一版[M],中国科学技术大学出版社,2001,282-285
    [48]于永爱,吴维,朱冬寅,黄莎莎,孙玲,拉曼光谱技术与便携式拉曼光谱仪[J].激光与光电子学进展,2009,46(8):85-87
    [49]Loyd J E. Burcham, Israel E. Wachs, Spectrochimica Acta Part A 1998,54:1355~1368
    [49]刘耀,物证鉴定科学[M],北京:群众出版社,1998,181-198
    [50]陈涛,严雪俊,鲁纬等,晶化鸡血石的宝石学研究[J].宝石和宝石学杂志,2009,2:7-10
    [51]陈应秀,杨德华,崔向群.一种测量材料线膨胀系数的新方法[J].工具技术,2006,40:84-87
    [52]唐叔进,左谨平,刘军胜.基于PSD的固体线膨胀系数测量仪[J]仪表技术与传感器,2008,1:31-33
    [53]曾为.基于PSD的微小位移测量系统研究.[硕士学位论文].武汉:华中科技大学,2006
    [54]段洁,孙向阳,蔡敬海等.PSD在激光位移检测系统中的应用研究[J]红外与激光工程,2007,36:281-284
    [55]吕爱民,袁红星,贺安之等.测试条件对PSD位置精度的影响[J].传感器技术,1999,18:43-44
    [56]高经伍,赵凤华.PSD传感器的原理及应用[J].国外电子元器件,2002,8:19-20 Vijaya
    [57]Kumar B, Velchuri R, Prasad G, et al.Preparation, characterization, spectral and conductivity studies of Na3MgZr(PO4)3 and Na0.1(H30)2.9MgZr(PO4)3[J].J.Ceramics International,2009,35:2719-2725
    [58]Chakir M, El Jazouli A, Waa D.Synthesis, crystal structure and spectroscopy properties of Na3AZr(PO4)3 (A=Mg, Ni) and Li2.6Na0.4NiZr(PO4)3 phosphates[J]. J. Solid State Chemistry,2006,179:1883-1891
    [59]Kurazhkovskaya V S, Bykov D M, Borovikova E Y, et al. Vibrational spectra and factor group analysis of lanthanide and zirconium phosphates M'"0.33Zr2PO4)3, where M'"= Y, La-Lu[J].J.Vibrational Spectroscopy,2010,52:137~143
    [60]Fatima Gimenez I, Mazali I O, Alves O L.Application of Raman spectroscopy to the study of the phase composition of phosphate based glass-ceramics [J].J. Physics and Chemistry of Solids,2001,62:1251~1255
    [61]Sleight A W,Mary A,Evans J S O.Materials With Low or Negative Thermal Expansion[P].US5919720,1999
    [62]Gregory A Merkel,Optical Device With Negative Thermal Expansion Substrate and Uses Therefor[P].US6377729,2002

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700