用户名: 密码: 验证码:
板状Nd:YAG激光晶体水平定向结晶法生长机理与性能研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
由于Nd:YAG晶体材料具有优异的激光性能以及良好的热学特性和机械性能,自上世纪60年代以来,钕掺杂钇铝石榴石晶体就成为固体激光器中占主要地位的工作物质。近年来,随着激光二极管泵浦激光晶体的激光器技术的发展,使得Nd:YAG激光材料在通信、材料加工、激光医疗领域广泛应用,特别是随着激光二极管作为惯性约束核聚变择优泵浦源的出现,使其军事上应用更为突出。Nd:YAG晶体已成为“三大基础激光晶体”之一,作为中、高功率激光器应用方向的主要支撑材料。这些领域向着高能量、大功率固体激光器方向发展,而目前传统的生长方法存在核心、侧心及Nd~(3+)离子梯度等缺陷问题难以满足这些领域对大尺寸、高品质及高光学均匀性Nd:YAG激光晶体迫切需求。本文针对上述问题,在晶体尺寸和品质方面进行提升,利用水平定向结晶法(HorizontalDirectional Solidification, HDS)生长板状Nd:YAG激光晶体,计算分析了其生长过程中固液界面的变化形式以及熔体的对流形式;探讨了Nd~(3+)离子在晶体中的分布规律及其与对流的关系;分析了生长出Nd:YAG激光晶体结构品质及在生长过程中出现的缺陷类型、分布规律和形成原因,提出了相应的改进措施;最后测试水平定向结晶法生长Nd:YAG晶体的光学性能,利用Judd-Ofelt理论预估其吸收截面、荧光寿命、发射截面等参数,预测了其激光输出特性。
     采用水平定向结晶法,设计合理的工艺参数,生长出舟型板状的大尺寸板状Nd:YAG激光晶体,尺寸达220mm×140mm×25mm,晶体的物相分析测试、晶体结构的摇摆曲线和透射电镜测试表明Nd:YAG激光晶体的结构完整性优良;晶体干涉条纹和消光比的测试表明晶体的干涉条纹为零级,晶体中无核心和侧心,晶体品质优良;退火后研究表明退火有利于提高其结构完整性。热学和力学性能的测试分析表明水平定向结晶法生长的Nd:YAG晶体的基本物理性能优异。
     针对水平定向生长Nd:YAG晶体过程中固液界面的热质传递发生变化,导致的固液界面结晶速率和坩埚移动速率不同步问题,推导出水平定向结晶法生长大尺寸Nd:YAG激光晶体过程中固液界面的实际结晶速率公式,对固液界面的结晶速率进行了数值计算分析,结果表明在晶体生长过程中实际的固液界面结晶速率是不断变化的,且与坩埚尺寸、温场梯度及熔体厚度等因素有关;并详细模拟计算了这些因素对固液界面实际结晶速率的影响。
     优异的热质传递是生长高质量大尺寸Nd:YAG激光晶体的重要条件之一,因此对水平定向生长Nd:YAG激光晶体的熔体对流进行了计算分析,明确在水平定向结晶法生长Nd:YAG晶体过程中的主要对流机制。研究了掺杂Nd~(3+)离子在晶体中的沿生长方向的分布规律,及分布规律和温度梯度的关系;研究了掺杂离子(Nd~(3+))在晶体中的垂直于生长方向的分布规律及分布机制;结果显示其分布优于其他生长方法,表明该方法更适合生长Nd:YAG晶体。
     采用光学显微镜和扫描电镜等实验方法,对Nd:YAG晶体宏观缺陷及微观缺陷进行观测和研究,表明其缺陷主要为散射颗粒(气泡、小的夹杂物及大的包裹体)和位错。详细的研究了散射颗粒的形貌、在晶体中分布规律及形成原因。结合化学腐蚀法及X射线相貌分析法测试了水平定向结晶法生长Nd:YAG激光晶体的位错类型、分布规律;探讨了其形成原因,结果表明晶体中心区域的品质要好于边缘区域,中心区域的位错密度相对较低。
     表征了水平定向结晶法生长Nd:YAG激光晶体的吸收光谱和荧光光谱。结果表明在808nm处吸收谱带峰值有较大的半峰宽,荧光光谱呈带状的连续分布,中心波长谱图峰值1064.59nm对应于跃迁峰值的理论值1064.15nm,匹配非常好,表明水平定向结晶法生长的Nd:YAG晶体光学质量良好。应用Judd-Ofelt理论求得最佳唯象强度参数分别为Ω_2=0.5022×10~(-20)cm~2,Ω_4=3.3506×10~(-20)cm~2和Ω_6=5.1653×10~(-20)cm~2,同时预估了激光晶体的吸收截面、荧光寿命、发射截面等参数;并测试了实际的激光输出性能,获得了较为优异的功-功转换效率高达37.44%。
Neodymium-doped yttrium aluminum garnet (Nd:YAG) crystal has become themost suitable and dominant solid-state laser material since the1960’s. It is primarilyattributed to its excellent laser properties and outstanding thermal and mechanicalproperties. Recently, along with the development of pump technology of lasercrystal using laser diode, Nd:YAG single crystal has been widely applied in thefields of communication, material processing and laser medical treatment.Especially with the prosperous of the pumping source of the inertial confinementfusion (ICF) using laser diode, the field of military application has been moreprominent. The Nd:YAG crystal has become one of the "three basic laser crystals"and the main pillar of medium and high power laser applications. The increasingdemands for high-energy and high-power solid laser technology in those areas causethe Nd:AYG crystal struggles to satisfy the clients’ demands, however, the centralcores, lateral core and Nd~(3+)concentration gradient of Nd:YAG crystal grown byexisting technologies cannot settle the problem. This article addresses the aboveproblems by using the horizontal directional solidification (HDS) method to growNd:YAG single crystal. The mode of solid-melt interface and mechanism of meltflow patterns were computed, Nd~(3+)ion distribution and the relation with meltconvection were discussed. The quality and morphology of the structure,constituents and formation reasons of defects in crystal were analysised. Finally, theJudd-Ofelt theory was introduced, and absorption cross section, radiative life timeand emission cross section were estimated based on the absorption and fluorescencespectra, in order to predict the laser output property.
     The large-plate Nd:YAG laser crystal with a size of220mm×140mm×25mmwas successfully grown by HDS method based on reasonable process parameters.The analytical tests of phase, X-ray rocking curves and TEM shown that thestructural integrity of Nd:YAG laser crystal was excellent. The results ofinterference pattern and extinction ratio indicated that the quality of crystal withoutcentral cores and lateral cores was excellent, and the relations between structuralintegrity and anneal were studied as well. Meanwhile, analysis of thermal andmechanical properties also shown that the basic physical performances of crystalgrown by HDS method were good.
     For the change of heat mass transfer of solid-melt interface in the Nd:YAGcrystal growth process, which resulted in the inconformity of the crystallizationfront velocity and crucible pulling rate, the formula of crystallization front velocityin Nd:YAG crystal growth process by HDS method was derived and numerical analyzed. The results indicated that the crystallization front velocity was influencedby crystal thickness, crucible size and temperature gradient, furthermore, the effectswere calculated and analyzed in detail.
     One of the important conditions for high-quality large Nd:YAG laser crystal isthe excellent thermal mass transfer. Therefore, the mechanism of melt flow patternsin Nd:YAG crystal growth process by HDS method was derived and numericalanalyzed, in order to make clear of the main mechanism of the melt flow patterns.Meanwhile, the distribution of Nd~(3+)ions in crystal was studied, and the relation withtemperature gradient was discussed as well. The results indicated that thedistribution was superior to that of other growth methods, and the HDS method wasmore suitable for Nd:YAG crystal growth.
     The growth defects of HDS-grown Nd:YAG crystal were carried out by meansof laser scanning confocal microscope and scanning electron microscope. Theresults manifested that scattering particles (bubbles, small inclusions and largeinclusions) and dislocations were the main growth defects, and the distribution andformal reasons of growth defects were discussed. Meanwhile, the distribution,density and categories of dislocations in grown crystal were also analyzed bychemical etching and XT methods, which indicated that the quality of crystal centerwas better than that of the crystal edge, and the dislocation density of the center wasrelatively lower.
     Absorption and fluorescence spectra of HDS-grown Nd:YAG crystal werecharacterized and analyzed. The results shown the maximum absorption at808nmwith a wide FWHM and strong emission peak at1064.59nm was coincident withtheoretical value (1064.15nm), which proved the well optical quality of HDS-grownNd:YAG crystal. The intensity parameters were obtained to be Ω_2=0.5022×10~(-20)cm~2,Ω_4=3.3506×10~(-20)cm~2and Ω_6=5.1653×10~(-20)cm~2based on the Judd-Ofelt theory, andabsorption cross section, radiative life time and emission cross section and otherparameters were estimated as well. Meanwhile, the laser conversion efficiency ofoutput power-input power was37.44%.
引文
[1]林来兴.空间控制技术[M].北京:中国宇航出版社,1992:25-42.
    [2]张振亚.激光晶体的研究与进展[J].激光与红外,1996,26(5):303-305.
    [3]徐军.激光晶体材料的发展和思考.激光与光电子学进展[J].2006,43(9):17-24.
    [4]徐学珍,桂尤喜,王永国.优质大尺寸激光晶体研究进展[J].激光与红外,2007,37(4):295-299.
    [5] Galazka Z,Schwabe D,Wilke H. Influence of Internal Radiation on the HeatTransfer during Growth of YAG Single Crystals by the Czochralski Method[J].Crystal Research and Technology,2003,38(10):859-867.
    [6] Banerjee J, Muralidhar K. Simulation of Transport Processes duringCzochralski Growth of YAG Crystals[J]. Journal of Crystal Growth,2006,286:350-364.
    [7] Kamaruddin WHA,Kusuma HH,Khume TK,Adam MH,Rohani MS,SaharMR. The Growth of Nd:YAG Single Crystals by Czochralski Method withADC-CGS Preliminary Work[J]. Applied Physics Research,2010,2(1):135-137.
    [8]苏伟,钟静昌,张丽波,岑学员,李林,赵英杰. Nd:YAG晶体生长过程中Nd3+浓度场的数值模拟[J].中国激光,2003,30(5):435-440.
    [9]周永宗,邓珮珍,乔景文.温梯法生长优质Nd:YAG激光晶体[J].硅酸盐学报,1983,11(3):357-360.
    [10]姜本学,徐军,李劲东,李红军,胡企铨.温度梯度法生长Nd:YAG晶体的1200W激光输出[J].中国激光,2006,33(7):973-976.
    [11]姜本学,徐军,李红军,王静雅,赵广军,赵志伟.温度梯度法生长Nd:YAG激光晶体的核心分布[J].物理学报,2007,56(2):1014-1016.
    [12] Eunchong K,Didier C M,Milan K,Jennifer SS,Paul S,Julian S,JonathanS. Crystal Growth of High Doped Nd:YAG[J]. Optical Materials,2004,26:337-341.
    [13] Asadian M,Seyedein SH,Aboutalebi MR,Maroosi A. Optimization of theParameters Affecting the Shape and Position of Crystal-Melt Interface in YAGSingle Crystal Growth[J]. Journal of Crystal Growth,2009,311:342-348.
    [14] Nagashio K,Kuribayashi K. Rapid Solidification of Y3Al5O12Garnet fromHypercooled Melt[J]. Acta Mater,2001,49:1947-1955.
    [15] Lan CW,Tu CY. Three-Dimensional Simulation of Facet Formation and theCoupled Heat Flow and Segregation in Bridgman Growth of Oxide Crystals[J].Journal of Crystal Growth,2001,233:523-536.
    [16] Ma Y,Zheng LL,Larson DJ. Transient Simulation of Facet Growth DuringDirectional Solidification[J]. Journal of Crystal Growth,2004,266:257-263.
    [17] Brandon S,Gazit D,Horowitz A. Interface Shapes and Thermal Fields duringthe Gradient Solidification Method Growth of Sapphire Single Crystals[J].Journal of Crystal Growth,1996,167:190-207.
    [18]臧竞存,邹玉林,宋晏蓉. Nd:YAG晶体的光谱测试及其新波长激光[J].硅酸盐学报,2009,37(8):1339-1350.
    [19]李述涛,张行愚,王青圃,范书振,李昀初,刘兆军.关于Nd:YAG晶体R2-Y3跃迁有效受激发射截面的讨论[J].激光与红外,2004,34(2):157-158.
    [20]陈艳,赵洋. LD泵浦Nd:YAG微片激光器[J].光学技术,1997,2:4-8.
    [21]陈家璧.激光原理及应用[M].电子工业出版社,2010.
    [22]孙华燕,张廷华,韩意.军事激光技术[M].国防工业出版社,2012.
    [23] Linares RC. Growth of Garnet Laser Crystals[J]. Solid State Communications,1964,2:229.
    [24] Belt RF. Crystal Growth and Perfection of Large Nd:YAG Single Crystals[J].Journal of Crystal growth,1972,13:268-271.
    [25]白凤周.感应加热引上法生长大直径Nd:YAG晶体[J].激光与红外,1986,16(2):2.
    [26]周永宗,黄智宪,陆民华.大尺寸高温氧化物晶体生长[J].人工晶体学报,1994,23(增刊):104.
    [27] Yang XB, Li HJ, Bi QY, Su LB, Xu J. Growth of Large-SizedCe:Y3Al5O12(Ce:YAG) Scintillation Crystal by the Temperature GradientTechnique(TGT)[J]. Journal of Crystal Growth,2009,311:3692-3696.
    [28] Li HJ,Xu J,Su LB,Jiang BX,Zhao GJ,Zhou GQ,Dong YJ. Optimizationof Thermal Environment during Crystal Growth of Large-Sized Nd:YAG byTemperature Gradient Technique[J]. Crystal Research and Technology,2007,42(2):107-113.
    [29] Xu XD,Zhao ZW,Zhao GJ,Song PX,Xu J,Deng PZ. Comparison of Yb:YAGCrystals Grown by CZ and TGT Method[J]. Journal of Crystal Growth,2003,257:297-300.
    [30] Zhao GJ,Zeng XH,Xu J,Xu YQ,Zhou YZ. Characteristics of Large-SizedCe:YAG Scintillation Srystal Grown by Temperature Gradient Technique[J].Journal of Crystal Growth,2003,253:290-296.
    [31] Jiang BX,Xu J,Li HJ,Wang JY,Zhao GJ. A Comparison between TGT andCz Grown Nd:YAG[J]. Journal of Materials Science&Technology,2006,22(5):581-583.
    [32] Schmid F,Viechnicki DJ. Apparatus and Method for Unidirectional SolidifyingHigh Temperature Material. U.S.1972,Patent3,653,432.
    [33] Chandra PK,Frederick S. Growth of the World’s Largest Sapphire Crystals[J].Journal of Crystal Growth,2001,225:572-579.
    [34] Rudolph P,Kiessling FM. The Horizontal Bridgman Method[J]. CrystalResearch and Technology,1988,23(10/11):1207-1224.
    [35] Lan CW,Su MC,Liang MC. A Visualization and Computational Study ofHorizontal Bridgman Crystal Growth[J]. Journal of Crystal Growth,2000,208:717-725.
    [36] Edwards K,Brandon S,Derby JJ. Transient Effects during the TorizontalBridgman Growth of Cadmium Zinc Telluride[J]. Journal of Crystal Growth,1999,206:37-50.
    [37] Roy UN,Mekonen B,Adetunji OO,Chattophhyay K,Kochari F,Cui Y,Burger A,Goldstein JT. Compositional Variations and Phase Stability duringHorizontal Bridgman Growth of AgGaTe2Crystals[J]. Journal of CrystalGrowth,2002,241:135-140.
    [38] Wang HP,Lan WW,Shih I. Crystal Growth of Cu(In1-xGax)3Se5by HorizontalBridgman Method[J]. Journal of Crystal Growth,1999,200:137-142.
    [39] Cui YL,Roy UN,Burger A,Goidstein JT. Photo Luminescence Study ofAgGaSe2, AgGa0.9In0.1Se2, and AgGa0.8In0.2Se2Crystals Grown by theHorizontal Bridgman Technique[J]. Journal of Applied Physics,2008,103:123514.
    [40] Roy UN,Cui Y,Miles R,Burger. Micro-Raman and PhotoluminescenceSpectroscopies of Horizontal Bridgman-Grown AgGaSe2[J]. Journal ofApplied Physics,2005,98,093523.
    [41]韩杰才,李长青,张明福,左洪波,孟松鹤,姚泰.单晶水平定向凝固法[J].材料导报,2006,20(7):10-15.
    [42] Azrakantsyan M,Albach D,Ananyan N,Gevorgyan V,Chanteloup JC. Yb3+:YAG Growth With Controlled Doping Distribution Using ModifiedHorizontal Direct Crystallization[J]. Journal of Crystal Growth,2011,329:39-43.
    [43] Banerjee J, Muralidhar K. Simulation of Transport Processes duringCzochralski Growth of YAG Crystals[J]. Journal of Crystal Growth,2006,286:350-364.
    [44] Lebedev GA, Malyukov SP, Stefanovich VA, Cherednichenko DI.Thermophysical Processes during Sapphire Crystal Growth by the HorizontalBridgman Method[J]. Crystallography Reports,2008,53(2):356-360.
    [45] Malyukov SP,Stefanovich BA,Cherednichenko DI. Study of Model ofSelf-Coordinated Growth of Single Crystals of Sapphire by HorizontalDirected Crystallization[J]. Semiconductors,2008,42(13):1508-1511.
    [46] Golubovi A,Nikoli S,Gaji R, uri S,Val i A. The Growth of Nd: YAGSingle Crystals[J]. Journal of the Serbian Chemical Society,2002,67(4):291-300.
    [47] Yadegari M,Asadian M,Saeedi H,Khodaei Y,Mirzaei N. Formation ofGaseous Cavity Defect during Growth of Nd:YAG Single Crystals[J]. Journalof Crystal Growth,2013,76:7-61.
    [48] Saeedi H,Yadegari M,Enayati S,Asadian M,Shojaee M,Khodaei Y,MirzaeiN,Mashayekhi I. Thermal Shocks Influence on the Growth Process andOptical Quality of Nd:YAG Crystal[J]. Journal of Crystal Growth,2013,363:171-175.
    [49] Yeoh GH,Vahldavis GD,Leonardi E. Anumerical and Experimental Study ofNatural Convection and Interface Shape in Crystal Growth[J]. Journal ofCrystal Growth,1997,173:492.
    [50] Xu TH,Wu ZH,Peng WQ,Zhen QM,Zhou JM,Zhang SX,Xie SW,XuSW,Hang CM. Growth of Nd:YAG Free Core and Dislocation[J]. ChinesePhysics Letters,1993,10(11):698-701.
    [51] Eakins DE,Held M,Norton MG,Bahr DF. A Study of Fracture and Defects inSingle Crystal YAG[J]. Journal of Crystal Growth,2004,267:502-509.
    [52] Yang PZ,Deng PZ,Xu J,Yin ZW. Growth of High-Quality Single Crystal of30at%Yb:YAG and Its Laser Performance[J]. Journal of Crystal Growth,2000,216:348-351.
    [53] Yang PZ, Deng PZ, Yin ZW, Tian YL. The Growth Defects inCzochralski-Grown Yb:YAG Crystal[J]. Journal of Crystal Growth,2000,218:87-92.
    [54]曾贵平,曹余惠,殷绍唐.掺质YAG晶体中的缺陷[J].人工晶体学报,1999,28(4):990409.
    [55]孙晶,李昌立,于文生,李四海,张大龙,刘景和.化学腐蚀法研究Nd:YAG晶体位错[J].人工晶体学报,2009,38(6):1320-1323.
    [56]冯锡淇. YAG和LuAG晶体中的反位缺陷[J].无机材料学报,2010,25(8):785-793.
    [57] Katsurayama M,Anzai Y,Sugiyama A. Growth of Nd:YAG Crystals by DoubleCrucible Method[J]. Journal of Crystal Growth,2001,229(1-4):193-198.
    [58]葛传珍,徐秀英,冯端.直拉法生长Y3Al5O12(YAG)单晶体中的位错和包裹物[J].物理学报,1882,31(3):415-418.
    [59] Selim FA,Solodovnikov D,Weber MH,Lynn KG. Identification of Defects inY3Al5O12Crystals by Positron Annihilation Spectroscopy[J]. Applied PhysicsLetters,2007,91:104105.
    [60]宋平新,赵志伟,徐晓东,邓佩珍,徐军.提拉法Tm:YAG晶体的生长缺陷研究[J].无机材料学报,2005,20(4):869-874.
    [61]权纪亮,谢致薇,杨元政,陈先朝,李文涛,刘了,武南平.激光晶体位错蚀坑的SEM研究[J].人工晶体学报,2009,38(4):1004-1007.
    [62]权纪亮,谢致薇,杨元政,陈先朝,李文涛,刘了,武南平. Nd:YAG激光晶体开裂与缺陷研究[J].量子电子学报,2010,27(3):270-275.
    [63] Brown DC. Ultrahigh-Average-Power Diode-Pumped Nd:YAG and Yb:YAGLasers[J]. IEEE Journal of Quantum Electronics,1997,33(5):861-872.
    [64] Gupta TK,Valentich J. Thermal Expansion of Yttrium Aluminum Garnet[J].Journal of the American Ceramic Society,1971,54:355–357.
    [65] Brown DC. Nonlinear Thermal Distortionin YAG Rod Amplifiers[J]. IEEEJournal of Quantum Electronics,1998,34(12):2383-2392.
    [66]王保松,江海河,贾先德,张庆礼,孙敦陆,殷绍唐.掺杂YAG和GGG激光晶体热导率研究[J].激光技术,2007,31(12):141-143.
    [67] Azrakantsyan M,Albach D,Ananyan N,Gevorgyan V,Chanteloup JC.Yb3+:YAG Crystal Growth With Controlled Doping Distribution[J]. OpticalMaterials Express,2012,2(1):153937.
    [68] Reese DJ,Szeles C,Harris KA. Impurity Segregation in Horizontal BridgmanGrown Cadmium Zinc Telluride[J]. Journal of Electronic Materials,2000,29(6):771-774.
    [69] Pokhrel M,Ray N,Kumar GA,Sardar DK. Comparative Studies of theSpectroscopic Properties of Nd3+:YAG Nanocrystals, Transparent Ceramic andSingle Crystal[J]. Optical Materials Express,2012,2(3):235-249.
    [70] Mao YL,Deng PZ,Zhang YH,Guo JP,Gan FX. High Efficient LaserOperation of the High-Doped Nd:YAG Crystal Growth by TemperatureGradient Technology[J]. Chinese Physics Letters,2002,19(9):1293-1295.
    [71] Zhang C,Zhang XY,Wang QP,Cong ZH,Fan SZ,Chen XH,Liu ZJ,Zhang Z. Diode-Pumped Q-Switched946nm Nd:YAG Ceramic Laser[J].Laser Physcal Letters,2009,6(7):521-525.
    [72] Kaminskii AA. Laser Crystals and Ceramics: Recent Advances[J]. Laser&Photon Review,2007,1(2):93-177.
    [73] Li J,Zhang HJ,Chen F,Hua WQ,Zhang Yu,Qiao Y,Cui W. Theoretiacaland Experimental Research on the Quasi-Three-Level Thermal Effect ofLD-Pumped Nd:YAG Crystal[J]. Infrared and Laser Engineering,2011,40(12):2354-2364.
    [74] Gheorghe C,Lupei A,Lupei V,Gheorghe L,Han S. Judd-Ofelt Analysis ofNd3+in CLNGG Single Crystals[J]. Journal of Optoelectronics and AdvancedMaterials,2010,12(4):818-820.
    [75] Maruyama N,Honma T,Komatsu T. Electronic polarizability and Judd–OfeltParameters of Nd3+and Er3+Ions in Transparent Crystallized Glasses withNonlinear Optical Ba2TiSi2O8Nanocrystals[J]. Journal of Chemical Physics,2008,128:184706.
    [76] Gandhi Y,Kityk IV,Brik MG,Rao PR,Veeraiah N. Influence of Tungsten onthe Emission Features of Nd3+,Sm3+and Eu3+ions in ZnF2-WO3-TeO2Glasses[J]. Journal of Alloys and Compounds,2010,508:278-291.
    [77] Cheng SS,Xu XD,Li DZ,Zhou DH,Wu F,Zhao ZW,Xu J. Growth andSpectroscopic Properties of Yb:Lu1.5Y1.5Al5O12Mixed Crystal[J]. OpticalMaterials,2010,33:112-115.
    [78] Nizhankovsky SV,Dan’ko AY,Zelenskaya OV,Tarasov VA,Zorenko YV,Puzikov VM,Grin’ LA,Trushkovskii AG,Savchin VP. Cathodoluminescenceand Scintillation Characteristics of YAG:Ce Crystals Grown by HorizontalDirectional Crystallization in a Protective Atmosphere[J]. Technical PhysicsLetters,2009,35(10):964-966.
    [79] Houchens BC,Becla P,Trithler SE,Goza AJ,Bliss DF. Crystal Growth of BulkTernary Semiconductors: Comparison of GaInSb Growth by HorizontalBridgman and Horizontal Traveling Heater Method[J]. Journal of CrystalGrowth,2010,312:1090-1094.
    [80] Henry D,Hadid HB,Kaddeche S,Dridi W. Magnetic Stabilization of MeltFlows in Horizontal Bridgman Configurations[J]. Journal of Crystal Growth,2008,310:1533-1539.
    [81] Ma J,Khoo B C,Xu D. Influence of Coriolis Force on Bulk Flows duringHorizontal Bridgman Growth on a Centrifuge: a Numerical Study[J]. Journalof Crystal Growth,1998,193:430-442.
    [82] Arzakantsyan M,Ananyan N,Gevorgyan V,Chanteloup JC. Growth of Large90mm Diameter Yb:YAG Single Crystals with Bagdasarov Method[J]. OpticalMaterials Express,2012,2(9):166801.
    [83] Ortiz RS, Tupitsyn E, Nieves I, Bhattacharya P, Burger A. GrowthImprovement and Characterization of AgGaxIn1-xSe2Chalcopyrite CrystalsUsing the Horizontal Bridgman Technique[J]. Journal of Crystal Growth,2011,314:293-297.
    [84] Brandon S. Flow Fields and Interface Shapes during Horizontal BridgmanGrowth of Fluorides[J]. Modelling and Simulation in Materials Science andEngineering,1997,5:259-274
    [85] Ates A,Tüzemen S,Yildirim M. Modification of Exciton Binding Energy in theHorizontal Bridgman-Stockbarger Growth of InSe by Ho Doping[J]. Journal ofApplied Physics2004,96(6):3324-3326.
    [86] Fujiwara M,Makino T,Nakabayashi T,Tanaka H,Kinoshita K,Kishida S.Growth of Bi-2212Single Crystals by a Horizontal Bridgman Method UsingDifferent Oxygen Pressure[J]. Physica C,2009,469:1178–1181.
    [87] Liang MC, Lan CW. Three-Dimensional Thermocapillary and BuoyancyConvections and Interface Shape in Horizontal Bridgman Crystal Growth[J].Journal of Crystal Growth,1997,180:587-596.
    [88] Zeng GP,Cao YH, Yin ST. Defects in Doped YAG Crystal[J]. Journal ofSynthetic Crystals,1999,28(4)354-358
    [89]张克从,张乐惠.晶体生长科学与技术[M].科学出版社,1997.
    [90] Edwards K,Derby JJ. Understanding Horizontal Bridgman Shelf Growth ofCadmium Telluride and Cadmium Zinc Telluride I. Heat and MomentumTransfer[J]. Journal of Crystal Growth,1997,179:120-132.
    [91] Edwards K,Derby JJ. Understanding Horizontal Bridgman Shelf GrowthTelluride and Cadmium Zinc Telluride II. Thermoelastic Stresses ofCadmium[J]. Journal of Crystal Growth,1997,179:133-143.
    [92]闵乃本.晶体生长的物理基础[M].上海:上海科技出版社,1982.
    [93] Chun WL,Chen JC. Numerical Simulation of Thermal and Mass Transportduring Czochralski Crystal Growth of Sapphire[J]. Crystal Research andTechnology,2010,45(4):371-379.
    [94] Kakimoto K,Ozoe H. Heat and Mass Transfer during Crystal Growth[J].Computational Materials Science,1998,10:127-133.
    [95] Celentano D,Cruchaga M,Romero J,Ganaoui M. Numerical Simulation ofNatural Convection and Phase-Change in a Horizontal Bridgman Apparatus[J].International Jounal of Numerical Methods for Meat&Fluld Flow,2011,21(3-4):366-376.
    [96] Daggolu P,Yeckel A,Bleil CE,Derby JJ. Stability Limits for the HorizontalRibbon Growth of Silicon Crystals[J]. Journal of Crystal Growth,2013,363:131-140.
    [97] Daggolu P,Yeckel A,Bleil CE,Derby JJ. Thermal-Capillary Analysis of theHorizontal Ribbon Growth of Silicon Crystals[J]. Journal of Crystal Growth,2012,355:129-139.
    [98] Touihri R,Gallaf A E,Henry D,Hadid H B. Instabilities in a Cylindrical CavityHeated from Below with a Free Surface. II. Effect of a Horizontal MagneticField[J]. Physical Review,2011,84:056303.
    [99] Kokta M. Growth of Oxide Laser Crystals[J]. Optical Materials,2007,30:1-5.
    [100]Simpson JE,Garimella SV. The Influence of Gravity Levels on the HorizontalBridgman Crystal Growth of an Alloy[J]. International Journal of Heat andMass Transfer,2000,43:1905-1923.
    [101]Savino R,Fico S. Buoyancy and Surface Tension Driven Convection Around aBubble[J]. Physics of Fluids,2006,18:057104.
    [102]Lan CW, Chen MK, Liang MC. Bifurcation and Stability Analyses ofHorizontal Bridgman Crystal Growth of a Low Prandtl Number Material[J].Journal of Crystal Growth,1998,187:303-313.
    [103]陆军,白博峰,郭烈锦.垂直Bridgman多组元化合物晶体生长热质对流[J].工程热物理学报,2008,29(4):653-658.
    [104]苏伟,钟静昌,张丽波,李林,赵英杰,岑学员. Nd:YAG晶体生长过程中熔体液流速度场的数值模拟[J].发光学报,2004,25(1):85-88.
    [105]Salah NB,Baaziz I,Rousse D,Zlaoui K,Dutil Y. Magnetic Control of NaturalConvection in the Horizontal Bridgman Configuration: Symmetric andNon-symmetric Cross Sections[J]. International Journal of Computation FluidDynamics,2011,25(3):127-138.
    [106]Battira M,Bessaih R. Three-Dimensional Natural Convection in the HorizontalBridgman Configuration Under Various Wall Electrical Conductivity andMagnetic Field[J]. Numetacal Heat Transfer Part A-Applications,2009,55(1):58-76.
    [107]张思远.稀土离子光谱学-光谱性质和光谱理论[M].北京:科学出版社,2007.
    [108]Chani VI,Yoshikawa A,Kuwano Y. Growth of Y3Al5O12:Nd Fiber Crystals byMicro-Pulling-Down Technique[J]. Journal of Crystal Growth,1999,204:155-162.
    [109]Nagira T,Yasuda H,Takeshima S,Sakimura T,Waku Y,Uesugi K. ChainStructure in the Unidirectionally Solidified Al2O3-YAG-ZrO2EutecticComposite[J]. Journal of Crystal Growth,2009,311:3765-3770.
    [110]Hosokawa S,Tanaka Y,Iwamoto S,Inoue M. Defect Structure of Rare EarthAluminium Garnets Obtained by the Glycothermal Method[J]. Journal ofAlloys and Compounds,2008,451:309-313.
    [111]CNGS和CTGS晶体的生长及其性能研究[D].山东:山东大学博士学位论文,2007:26-50.
    [112]Nizhankovskiy SV,Krivonosov EV,Baranov VV,Budnikov AT,KanishchevVN,Grin LA,Adonkin GT. Optical Homogeneity of Ti:Sapphire CrystalsGrown by Horizontal Directional Solidification[J]. Inorganic Materials,2012,48(11):1111-1114.
    [113]McMillen CD, Mann M, Fan JH, Zhu L, Kolis JW. Revisiting theHydrothermal Growth of YAG[J]. Journal of Crystal Growth,2012,356:58-64.
    [114]陆燕玲.掺铥铝酸钇晶体Tm:YAP制备与性能研究[D].上海:上海交通大学博士学位论文,2007:51-115.
    [115]Slack GA,Oliver DW. Thermal Conductivity of Garnets and Phonon Scatteringby Rare-Earth Ions[J]. Physcal Review B,1971,4:592-608.
    [116]严祖同.固体的热膨胀系数[J].高压物理学报,1911,5(2):145-148.
    [117]徐国纲. Ga3PO7晶体生长的熔盐法生长、结构及性质研究[D].山东:山东大学博士学位论文,2009:38-77.
    [118]高文兰.弛豫铁电铌酸钙钡系列晶体生长与性能研究[D].山东:山东大学博士学位论文,2010:42-76.
    [119]徐民. NdxLu1-xVO4系列激光晶体的生长与其性能研究[D].山东:山东大学博士学位论文,2011:49-64.
    [120]丛恒将.几种重要激光晶体的生长与物性研究[D].山东:山东大学博士学位论文,2010:41-75.
    [121] ulc H,JelínkováH,Kube ek V,Jelínek M,Nejezchleb K,Bla ek K. ThermalProperties of Nd:YAG-Composite Active Media in a Diode-Pumped Laser[J].Laser Physics,2003,23(10):1284-1289.
    [122]Yagi H,Takaichi K,Ueda K,Yamasaki Y,Yanagitani T,Kaminskii AA. ThePhysical Properties of Composite YAG Ceramics[J]. Laser Physics,2005,15(9):1338-1344.
    [123]高品质铌酸锂、钽酸锂晶体的生长、结构与性质研究[D].山东:山东大学博士学位论文,2011:37-107.
    [124]王旭平. KTN系列晶体的生长及其性能研究[D].山东:山东大学博士学位论文,2011:21-70.
    [125]Wang GG,Zhang MF,Zuo HB,Xu CH,He XD,Han JC. Dislocation Analysisfor Large Sized Sapphire Single Crystal Grown by SAPMAC Method[J].Chinese Journal of Structural Chemistry,2007,26(11):1332-1336.
    [126]Shimizu A,Nishizawa J I,Oyama Y,Suto K. Dislocation Densities in InPDingle Crystals Grown under Controlled Phosphorus Vapor Pressure by theHorizontal Bridgman Method[J]. Journal of Crystal Growth,2000,209:21-26.
    [127]Librant Z,Jabczyński JK,Weglarz H,Wajler A,Tomaszewski H,LukasiewiczT, Zendzian W, Kwiatkowski J. Preparation and Characterization ofTransparent Nd:YAG Ceramics[J]. Opto-Electronics Review,2009,17(1):72-77.
    [128]Fukuda T,Okano Y,Kodama N,Yamada F,Hara S,Yoon DH. Growth ofBubble-Free Ti-Doped A1203Single Crystal by the Czochralski Method[J].Crystal Research and Technology,1995,30(2):185-188.
    [129]Lim LC,Tan LK,Zeng HC. Bubble Formation in Czochralski-Grown LeadMolybdate Crystals[J]. Journal of Crystal Growth,1996,167:686-692.
    [130]Tao Y,Kou S. Segregation Control in Horizontal Bridgman Crystal Growth[J].Journal of Crystal Growth,1996,165:195-197.
    [131]Yu JQ,Liu LJ,Wang XY,Zhou HT,He XL,Zhang CL,Zhou WN,ChenCT. Study on Defects in Hydrothermal-Grown KBe2BO3F2Crystals[J].Journal of Crystal Growth,2011,318:621–624
    [132]Wang GG,Zhang MF,Wu QB,Zhang HY,Zuo HB,Han JC,He XD,Huang WX. Synchrotron X-ray Diffraction Studies of Large Sapphire CrystalGrown by Kyropoulos-Like Method[J]. Physica Status Solidi[A],2010,207(1):92-96.
    [133]Xu CH,Zhang MF,Meng SH,Han JC,Wang GG,Zuo HB. Temperature FieldDesign, Process Analysis and Control of SAPMAC Method for the Growth ofLarge Size Sapphire Crystals[J]. Crystal Research and Technology,2007,42(8):751-757.
    [134]Nehari A,Brenier A,Panzer G,Lebbou K,Godfroy J,Labor S,Legal H,Chéeriaux G,Chambaret J P,Duffar T,MoncorgéR. Ti-Doped Sapphire SingleCrystals Grown by the Kyropoulos Technique and Optical Characterizations[J].Crystl Growth and Desing,2011,11:445-448.
    [135]王亚男,陈树江,董希淳.位错理论及其应用[M].北京:冶金工业出版社,2007,111-112.
    [136]Luo WQ,Liao JS,Li RF,Chen XY. Determination of Judd–Ofelt IntensityParameters from the Excitation Spectra for Rare-Earth Doped LuminescentMaterials[J]. Physical Chemistry Chemical Physics,2010,12:3276-3282.
    [137]Tian Y,Xu RR,Hu LL,Zhang JJ. Broadband2.84mm LuminescenceProperties and Judd–Ofelt Analysis in Dy3+Doped ZrF4-BaF2-LaF3-AlF3-YF3Glass[J]. Journal of Luminescence,2012,132:128-131.
    [138]Preda E,Stef M,Buse G,Pruna A,Nicoara I. Concentration Dependence ofthe Judd-Ofelt Parameters of Er3+Ions in CaF2Crystals[J]. Physica Scripta,2009,79:035304.
    [139]Majchrowski A,Jaroszewicz LR,Swirkowicz M,Miedzinski R,Piasecki M,Kityk IV,Wojciechowski A,Brik MG. Crystal Growth and Judd-Ofelt Analysisof Novel Yb-Doped RbNd(WO4)2Single Crystals[J]. Materials Letters,2010,64:295-297.
    [140]Cao JF,Ji YX,Li JF,Zhu ZJ,Wang Y,You ZY,Tu CY. Crystal Growth,Judd–Ofelt Analysis and Fluorescence Properties of Tm3+:CaNb2O6Crystal[J].Journal of Luminescence,2011,131:1350-1354.
    [141]Brenier A,Kityk IV,Majchrowski A. Evaluation of Nd3+-Doped BiB3O6(BIBO) as a New Potential Self-Frequency Conversion Laser Crystal[J].Optical Communications,2002,203:125-132.
    [142]Ghosh A, Debnath R. Judd–Ofelt Analysis of Er3+Activated Lead FreeFluoro-Tellurite Glass[J]. Optical Materials,2009,31:604-608.
    [143]Do PV,Tuyen VP,Thanh NT,Ha VTT,Khaidukov NM,Lee YI,Huy BT.Judd-Ofelt Analysis of Spectroscopic Properties of Sm3+Ions in K2YF55Crystal[J]. Journal of Alloys and Compounds,2012,520:262-265.
    [144]Yang YM,Yao BQ,Chen BJ,Wang C,Ren GZ,Wang XJ. Judd–Ofelt Analysisof Spectroscopic Properties of Tm3+,Ho3+Doped GdVO4Crystal[J]. OpticalMaterials,2007,29:1159-1165.
    [145]Seshadri M,Rao KV,Kumar GNH,Ratnakaram YC. Optical Spectra andJudd-Ofelt Analysis of Pr3+and Er3+in Different Phosphate Glasses[J].Materials Science and Engineering,2009,2:012032.
    [146]Wang DY,Guo YY,Wang QK,Chang ZY,Liu JQ,Luo JL. Judd-OfeltAnalysis of Spectroscopic Properties of Tm3+Ions in K2YF5Crystal[J]. Journalof Alloys and Compounds,2009,474:23-25.
    [147]Choi JH,Margaryan A,Margaryan A,Shi FG. Judd-Ofelt Analysis ofSpectroscopic Properties of Nd3+-doped Novel Fluorophosphate Glass[J].Journal of Luminescence,2005,114:167-177.
    [148]Raju CN,Reddy CA,Sailaja S,Seo HJ,Reddy BS. Judd–Ofelt Theory: OpticalAbsorption and NIR Emission Spectral Studies of Nd3+:CdO-Bi2O3-B2O3Glasses for Laser Applications[J]. Journal of Materials Science,2012,47:772-778.
    [149]Silva MC,Cristovan FH,Nascimento CM,Bell MJV,Cruz WO,MarlettaA. Judd–Ofelt Analysis of Nd3+Ions in Poly (Styrene Sulfonate) Films[J].Journal of Non-Crystalline Solids,2006,352:5296-5300.
    [150]黄毅华,江东亮,张景贤,林庆铃.高折射率Nd,La共掺杂氧化钇透明陶瓷的光谱性质及其Judd-Ofelt理论分析[J].物理学报,2010,5(91):300-305
    [151]丁君,杨秋红,唐在峰,徐军,苏良碧.用Judd-Ofelt理论计算Nd3+掺杂氧化镧钇透明陶瓷的光谱参量[J].光子学报,2007,36(8):1453-1456.
    [152]Wang DY,Guo YY. A Comparative Study of the Energy Migration and EnergyTransfer in Highly Doped Nd:YAG Single Crystal[J]. Physica B,2009,404:55-57.
    [153]Pourmand SE,Bidinand N,Bakhtiar H. Effects of Temperature and InputEnergy on a Quasi-Three-Level Emission Cross Section of Nd3+:YAG Pumpedby a Flash Lamp[J]. Chinese Physcal.B,2012,21(9):094214.
    [154]Jiang SL,Chen J,Long Yao,Lu T. Atomic Structure, Electronic Structure andOptical Properties of YAG (110) Twin Grain Boundary[J]. Journal of theAmerican Ceramic Society,2012,95(12):3894-3900.
    [155]Boulesteix R,Ma tre A,Baumard JF,Rabinovitch Y,Reynaud F. LightScattering by Pores in Transparent Nd:YAG Ceramics for Lasers: Correlationsbetween Microstructure and Optical Properties[J]. Optics.Express,2010,18(14):14992-15002.
    [156]Zhydachevskii Y,Syvorotka II,Vasylechko L,Sugak D,Borshchyshyn ID,Luchechko AP,Vakhula YI,Ubizskii SB,Vakiv MM,Suchocki A. CrystalStructure and Luminescent Properties of Nanocrystalline YAG and YAG:NdSynthesized by Sol-Gel Method[J]. Optical Materials,2012,34:1984-1989.
    [157]Puncken O,Winkelmann L,Frede M,Weflels P,Neumann J,Kracht D. HeatGeneration in Nd:YAG at Different Doping Levels[J]. Applied Optics,2012,51(31):7585-7590.
    [158]Liu WB,Zhang D,Li J,Pan Y B,Bo Y,Li CY,Wang BS,Peng QJ,Cui DF,Xu ZY. High Power Single Wavelength Ceramic Nd:YAG Laser at1116nm[J]. Optics&Laser Technology,2013,46:139-141.
    [159]Cheng Y,Dong J,Ren YY. Enhanced Performance of Cr,Yb:YAG MicrochipLaser by Bonding Yb:YAG Crystal[J]. Optics Express,2012,20(22):24803.
    [160]Dong J,Ueda K,Yagi H,Kaminskii A A,Cai Z. Comparative Study the Effectof Yb Concentrations on Laser Characteristics of Yb:YAG Ceramics andCrystals[J]. Laser Physcal Letters,2009,6(4):282-289.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700