用户名: 密码: 验证码:
hBMP-7基因修饰的骨髓基质细胞修复骨质疏松大鼠牙周组织缺损的实验研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
目的:用人骨形成蛋白-7(human bone morphogenetic protein-7, hBMP-7)基因转染SD大鼠骨髓基质细胞(bone marrow stromal cells,BMSCs),并复合胶原膜BME-10X在体外构建组织工程化复合物,移植修复骨质疏松症SD大鼠牙周组织缺损,探讨hBMP-7基因修饰的BMSCs在促进骨质疏松大鼠牙周组织再生中的作用,为基因治疗与组织工程技术联合在牙周组织再生治疗中的进一步应用奠定基础。
     方法:1、利用切除SD大鼠双侧卵巢的方法建立骨质疏松大鼠模型,通过体重检测、骨密度测量、血清生化检测以及标本组织学观察确定绝经后骨质疏松症模型建立成功;2、全骨髓贴壁法培养SD大鼠骨髓基质细胞,观察去卵巢(OVX)大鼠和假手术大鼠(SHAM)BMSCs的增殖情况及碱性磷酸酶(alkaline phosphatase, ALP)表达的差异。体外通过重组腺病毒转染hBMP-7基因,通过荧光倒置相差显微镜观察、流式细胞仪、RealTime-PCR、免疫细胞化学染色、ELISA以及Western Blot检测目的基因的转录和表达。3、体外hBMP-7基因转染后,观察细胞形态变化,MTT法描绘细胞的生长曲线,流式细胞技术检测细胞的周期变化、ALP、及钙化结节等成骨细胞表型。4、将转染hBMP-7基因的BMSCs与胶原膜BME-10X复合,通过荧光显微镜、激光共聚焦扫描显微镜、扫描电镜及组织学进行观察,分析细胞和胶原膜载体的复合情况。5、人工构建OVX大鼠牙周组织缺损模型,将转染hBMP-7基因的BMSCs与未转染的BMSCs接种于胶原膜BME-10X后,植入牙周缺损内。并以空白胶原膜植入缺损部位和缺损处只覆盖e-PTFE膜为对照组,4周后取材作病理切片,H.E染色观察牙周组织再生情况,测量新生牙槽骨面积、新生牙骨质面积以及新生牙周膜宽度,结果进行统计学分析。
     结果:1、去卵巢手术8周后对大鼠进行相关检测证实大鼠骨质疏松模型构建成功。2、通过重组腺病毒AD5-hBMP7-EGFP对OVX和SHAM大鼠BMSCs成功进行瞬时转染。腺病毒转染72h后转染效率为达到70%以上,转染的细胞发出较强的绿色荧光。RT-PCR、免疫细胞化学染色、ELISA检测和Western Blot检测表明,hBMP-7在OVX和SHAM大鼠BMSCs中得到了有效表达。3、hBMP-7基因转染后细胞形态略有变化,增殖能力无明显改变,细胞周期无明显变化,ALP活性明显增高,钙化结节略有增大。4、转染细胞复合胶原膜后生长良好,24h后细胞在胶原膜中贴附、伸展,并复层生长。在激光共聚焦显微镜下,可见发出绿色荧光的细胞附着于胶原膜,分层扫描可见各层胶原膜均有不同数量的BMSCs附着。5、动物实验结果发现:各实验组和对照组均可见不同程度的牙周组织再生;各实验组新生牙槽骨面积与对照组相比有明显增加(P<0.05);转染基因组的新生牙槽骨量与未转染基因组和空白BME-10X组相比差异有显著性(P<0.05);而OVX大鼠BMSCs转染组和SHAM大鼠BMSCs转染组组间比较则无显著性差异(P>0.05);OVX大鼠BMSCs组和SHAM大鼠BMSCs组组间比较也无显著性差异(P>0.05);各组新生牙骨质面积之间以及新生牙周膜宽度之间无显著性差异(P>0.05)。
     结论:1、通过去除大鼠双侧卵巢可成功构建骨质疏松大鼠模型。2、hBMP-7基因可在骨质疏松大鼠BMSCs中有效表达,并可加速骨质疏松大鼠BMSCs向成骨细胞表型转化。3、hBMP-7基因转染的骨质疏松大鼠BMSCs在胶原膜BME-10X上生长良好,hBMP-7基因转染的BMSCs与胶原膜复合物可促进骨质疏松大鼠牙周组织再生,具有很好的临床应用前景。
Objective:This study is to assess the potential effects of human bone morphogenetic protein-7 (hBMP-7) gene transfected bone marrow stromal cells (BMSCs) in periodontal regeneration of osteoporosis Sprague Dawley rats. hBMP-7 gene was transfected into BMSCs, which was then inplanted in a collagen membrane (BME-10X) and transplanted into periodontal fenestration defects of osteoporosis Sprague Dawley rats.
     Methods: 1 Osteoporosis models of the female Sprague Dawley rats were induced by ovariectomy. Eight weeks after the operation, the body weight, the bone mineral density (BMD), histological examination and serum levels of biochemical indices were investigated to confirm the osteoporosis models were successful. 2. BMSCs from osteoporosis rats and the sham control were isolated and cultured in DMEM. The morphology, growth feature and alkaline phosphatase (ALP) of BMSCs were monitored. Then BMSCs were transfected with recombinant AD5-hBMP7-EGFP virus and observed by fluorescence microscope. RT-PCR, immunohistochemical straining,FCM,ELISA, as well as Western Blot were employed to observe the transcription and expression of hBMP-7. 3. The morphology and growth feature of the transfected cells were detected and FCM were used to test the cell cycle. Alkaline phosphatase (ALP) and Von Kossa were tested to determine osteogenic property of osteoblast. 4. The hBMP-7 transfected BMSCs were cultured with BME-10X in vitro. Histological examination was performed with light microscopy and H.E stained. The adhesion situation was analyzed by fluorescence microscope, confocal laser scanning microscope and scanning electron microscope. 5. BMSCs with different treatment were seeded on the collagen membranes. The complex and blank collagen membranes without cells were implanted into the acute periodontal defects in osteoporosis rats, and then the defects were covered with e-PTFE membranes. Defects only covered with e-PTFE membranes were served as empty controls. Histometric measurements with H&E staining were performed after 4 weeks, the formation of new alveolar bone area, cementum area and the width of periodontal ligament were measured and compared.
     Results: 1. Eight weeks after ovariectomy, osteoporosis models of the female Sprague Dawley rats were successful according to the criteria. 2. The BMSCs were transfected with recombinant AD5-hBMP7-EGFP virus showed a successful transfection. Under the inverted-phase-contrast fluorescence microscope, cells emiting green fluorescence convinced the successful transfection and the transfection efficiency was over 70% by calculating the ratio of luminescent cells. Using RT-PCR, immunocytochemistry, ELISA and Western Blot, it was convinced that effective expression of hBMP-7 in all transfected cells. 3. Compared to the control group, morphological feature of the transfected cells showed little alterations, however, there were no significant differences of cell proliferation and apoptosis rate compared with the controls. ALP activity was increased significantly, as well as the size of mineralization nodule formation in transfected cells. 4. The transfected cells adhered to BME-10X and stretched well after 24h of culture. By tomographic scanning with confocal laser scanning confocal microscope, it was showed that cell and material intergrated together, cell attached to BME-10X with different amount. 5. Animal study showed various degrees of periodontal tissue regeneration in the experimental and control groups. The area of newly formed alveolar bone was significantly larger in all experimental groups compared with the empty control group (P<0.05). The area of new alveolar bone from the transfected BMSCs was significantly higher than that of the non-transfected BMSCs and the control (P<0.05). When the defect healing was compared between the OVX rats and SHAM rats, it was noted that there was no significant difference (P>0.05) in both transfected BMSCs and non-transfected BMSCs.
     Conclusion: 1. Osteoporosis models of the female Sprague Dawley rats can be made by ovariectomy. 2. The transfected BMSCs can highly express hBMP-7. The transfection of hBMP-7 gene promoted the differentiation of BMSCs to osteoblasts. BMSCs transfected by hBMP-7 gene may serve as an ideal cell source for periodontal tissue engineering. 3. The transfected cells adhered to BME-10X and stretched well. hBMP-7 gene enhanced periodontal defect healing, which shows a potential in clinical application.
引文
[1] Donos N, Sculean A, Glavind L, Reich E, Karring T. Wound healing of degree III furcation involvements following guided tissue regeneration and/or Emdogain. A histologic study. J Clin Periodontol. 2003. 30(12): 1061-1068.
    [2] Kostopoulos L, Karring T. Susceptibility of GTR-regenerated periodontal attachment to ligature-induced periodontitis. J Clin Periodontol. 2004. 31(5): 336-340.
    [3] Wolff LF. Guided tissue regeneration in periodontal therapy. Northwest Dent. 2000. 79(6): 23-28, 40.
    [4] Yeh LC, Lee JC. Co-transfection with the osteogenic protein (OP)-1 gene and the insulin-like growth factor (IGF)-I gene enhanced osteoblastic cell differentiation. Biochim Biophys Acta. 2006. 1763(1): 57-63.
    [5] Jin QM, Anusaksathien O, Webb SA, Rutherford RB, Giannobile WV. Gene therapy of bone morphogenetic protein for periodontal tissue engineering. J Periodontol. 2003. 74(2): 202-213.
    [6] Osteoporosis prevention, diagnosis, and therapy. JAMA. 2001. 285(6): 785-795.
    [7] Sidiropoulou-Chatzigiannis S, Kourtidou M, Tsalikis L. The effect of osteoporosis on periodontal status, alveolar bone and orthodontic tooth movement. A literature review. J Int Acad Periodontol. 2007. 9(3): 77-84.
    [8]刘忠厚.骨质疏松学. 2001.科学出版社.
    [9]骆凯,闫福华,陈凌,郑碧琼,陈玉玲.绝经后骨质疏松大鼠实验性牙周炎动物模型研究.口腔医学研究. 2006. 22(2): 130-132.
    [10]马增春,王道福,邱贞琴,高月,谭洪玲.建立骨质疏松症模型的研究与进展.中国临床康复. 2004. 8(33): 7478-7480.
    [11] Rodgers JB, Monier-Faugere MC, Malluche H. Animal models for the study of bone loss after cessation of ovarian function. Bone. 1993. 14(3): 369-377.
    [12]贾经汉,邱新建,陈志坚.常用骨质疏松动物模型特点的综述.广西中医学院学报. 2006. 9(4): 76-79.
    [13]冯坤,陈宝龙.骨质疏松研究中的动物模型.中国实验动物学杂志. 1999. 9(1): 62.
    [14] Saville PD. Changes in skeletal mass and fragility with castration in the rat; a model of osteoporosis. J Am Geriatr Soc. 1969. 17(2): 155-166.
    [15] Kalu DN. The ovariectomized rat model of postmenopausal bone loss. Bone Miner. 1991. 15(3): 175-191.
    [16] Lelovas PP, Xanthos TT, Thoma SE, Lyritis GP, Dontas IA. The laboratory rat as an animal model for osteoporosis research. Comp Med. 2008. 58(5): 424-430.
    [17]宋敏,李晶.大鼠骨质疏松模型的复制方法及意义.当代医学. 2010. 16(15): 16-18.
    [18]刘锡仪,刘浩宇, Xiyi L, Haoyu L.大鼠脑源性骨质疏松动物模型.中国骨质疏松杂志. 2008. 14(3): 143-147.
    [19] Thorndike EA, Turner AS. In search of an animal model for postmenopausal diseases. Front Biosci. 1998. 3: 17-26.
    [20] Thompson DD, Simmons HA, Pirie CM, Ke HZ. FDA Guidelines and animal models for osteoporosis. Bone. 1995. 17(4 Suppl): 125-133.
    [21]刘忠厚.骨质疏松学. 2001.科学出版社.
    [22] Giavaresi G, Borsari V, Fini M, et al. Different diagnostic techniques for the assessment of cortical bone on osteoporotic animals. Biomed Pharmacother. 2004. 58(9): 494-499.
    [23]肖建德.实用骨质疏松学.北京.科学出版社. 171-176.
    [24]杨永红,何成奇,王维, yong-hong Y, Cheng-qi HE, Wei W.骨质疏松患者体重及体重指数与腰椎骨密度和骨矿含量关系的临床研究.现代预防医学. 2008. 35(9): 1745-1746,1748.
    [25]骆凯,闫福华,陈凌,郑碧琼,陈玉玲.绝经后骨质疏松大鼠实验性牙周炎动物模型研究.口腔医学研究. 2006. 22(2): 130-132.
    [26] Kanis JA. Diagnosis of osteoporosis. Osteoporos Int. 1997. 7 Suppl 3: 108-116.
    [27] Abbasi-Jahromi SH, Matayoshi A, Kimble R, Dimarogonas A, Pacifici R. Bone quality factor analysis: a new noninvasive technique for the measurement of bone density and bone strength. J Bone Miner Res. 1996. 11(5): 594-599.
    [28]肖恩,孟萍, En X, Ping M.骨质疏松骨代谢生化指标的研究进展.中国骨质疏松杂志. 2008. 14(3): 212-216,147.
    [29]谈志龙,任海龙,白人骁,王学谦.骨质疏松症与骨代谢生化测定指标.中国骨质疏松杂志. 2006. 12(1): 89-93.
    [30] Falla N, Van Vlasselaer, Bierkens J, Borremans B, Schoeters G, Van Gorp U. Characterization of a 5-fluorouracil-enriched osteoprogenitor population of the murine bone marrow. Blood. 1993. 82(12): 3580-3591.
    [31] Owen M. Marrow stromal stem cells. J Cell Sci Suppl. 1988. 10: 63-76.
    [32] Lu J, Moochhala S, Moore XL, et al. Adult bone marrow cells differentiate into neural phenotypes and improve functional recovery in rats following traumatic brain injury. Neurosci Lett. 2006. 398(1-2): 12-17.
    [33] Beresford JN, Bennett JH, Devlin C, Leboy PS, Owen ME. Evidence for an inverse relationship between the differentiation of adipocytic and osteogenic cells in rat marrow stromal cell cultures. J Cell Sci. 1992. 102 ( Pt 2): 341-351.
    [34] Tseng PY, Chen CJ, Sheu CC, Yu CW, Huang YS. Spontaneous differentiation of adult rat marrow stromal cells in a long-term culture. J Vet Med Sci. 2007. 69(2): 95-102.
    [35] Schwartz Z, Weesner T, van DS, et al. Ability of deproteinized cancellous bovine bone to induce new bone formation. J Periodontol. 2000. 71(8): 1258-1269.
    [36] Hidaka C, Goodrich LR, Chen CT, Warren RF, Crystal RG, Nixon AJ. Acceleration of cartilage repair by genetically modified chondrocytes over expressing bone morphogenetic protein-7. J Orthop Res. 2003. 21(4): 573-583.
    [37] Breitbart AS, Grande DA, Mason JM, Barcia M, James T, Grant RT. Gene-enhanced tissue engineering: applications for bone healing using cultured periosteal cells transduced retrovirally with the BMP-7 gene. AnnPlast Surg. 1999. 42(5): 488-495.
    [38] Giannobile WV, Ryan S, Shih MS, Su DL, Kaplan PL, Chan TC. Recombinant human osteogenic protein-1 (OP-1) stimulates periodontal wound healing in class III furcation defects. J Periodontol. 1998. 69(2): 129-137.
    [39] Ripamonti U, Crooks J, Petit JC, Rueger DC. Periodontal tissue regeneration by combined applications of recombinant human osteogenic protein-1 and bone morphogenetic protein-2. A pilot study in Chacma baboons (Papio ursinus). Eur J Oral Sci. 2001. 109(4): 241-248.
    [40]卢新政,张晓文,黄峻,马根山,侯麦花.大鼠骨髓基质细胞培养方法的改良.中国心血管杂志. 2004. 9(1): 48-51.
    [41] Urist MR. Bone: formation by autoinduction. Science. 1965. 150(698): 893-899.
    [42] Wozney JM. Overview of bone morphogenetic proteins. Spine (Phila Pa 1976). 2002. 27(16 Suppl 1): S2-8.
    [43] Hassell TM. Tissues and cells of the periodontium. Periodontol 2000. 1993. 3: 9-38.
    [44] Piche JE, Carnes DL Jr, Graves DT. Initial characterization of cells derived from human periodontia. J Dent Res. 1989. 68(5): 761-767.
    [45] Friedenstein AJ, Chailakhyan RK, Gerasimov UV. Bone marrow osteogenic stem cells: in vitro cultivation and transplantation in diffusion chambers. Cell Tissue Kinet. 1987. 20(3): 263-272.
    [46] Quintavalla J, Uziel-Fusi S, Yin J, et al. Fluorescently labeled mesenchymal stem cells (MSCs) maintain multilineage potential and can be detected following implantation into articular cartilage defects. Biomaterials. 2002. 23(1): 109-119.
    [47] McCulloch CA, Nemeth E, Lowenberg B, Melcher AH. Paravascular cells in endosteal spaces of alveolar bone contribute to periodontal ligament cell populations. Anat Rec. 1987. 219(3): 233-242.
    [48]李艳芬,赵欣,闫福华,骆凯,郭建斌,江俊.不同浓度骨髓基质细胞修复大鼠牙周组织缺损的实验研究.福建医科大学学报. 2010. 44(4): 249-252.
    [49]赵欣,闫福华,詹暶,李艳芬.不同接种浓度的骨髓基质细胞体外生物学活性的研究.组织工程与重建外科. 2008. 4(5): 246-249.
    [50] Prockop DJ. Marrow stromal cells as stem cells for nonhematopoietic tissues. Science. 1997. 276(5309): 71-4.
    [51]王蓓,汪维伟.间充质干细胞的研究进展.国外医学:外科学分册. 2005. 32(6): 459-462.
    [52]张芃,张浩,胡盛寿,陈立国,魏英杰.阳离子脂法介导质粒转染大鼠骨髓基质干细胞用于基因修饰的细胞移植治疗.中国医学科学院学报. 2005. 27(4): 504-508,i0004.
    [53]白晓蜂,田卫东,陈希哲,李志勇.人血管内皮细胞生长因子165基因转染大鼠骨髓基质细胞的实验研究.四川大学学报:医学版. 2005. 36(4): 468-470.
    [54] Seethala R. Fluorescence polarization competition immunoassay for tyrosine kinases. Methods. 2000. 22(1): 61-70.
    [55] Niyibizi C, Baltzer A, Lattermann C, et al. Potential role for gene therapy in the enhancement of fracture healing. Clin Orthop Relat Res. 1998. (355 Suppl): S148-53.
    [56] Chen YL, Chen PK, Jeng LB, et al. Periodontal regeneration using ex vivo autologous stem cells engineered to express the BMP-2 gene: an alternative to alveolaplasty. Gene Ther. 2008. 15(22): 1469-1477.
    [57]孙钦峰,朱雪梅,杨丕山,刘玉,杜芳.骨形成蛋白-2基因促进犬牙周组织再生的体内研究.上海口腔医学. 2007. 16(2): 211-214.
    [58]周巍,赵春晖,梅陵宣, Wei Z, Chun-hui Z, Ling-xuan M.骨保护素基因修饰联合细胞移植技术促进牙周组织再生的实验研究.华西口腔医学杂志. 2010. 28(3): 324-329.
    [59]李艳芬,闫福华,钟泉等.人骨形成蛋白-7基因转染犬骨髓基质细胞促进牙周组织再生的实验研究.中华医学杂志. 2010. 90(20): 1427-1430.
    [60] Krebsbach PH, Gu K, Franceschi RT, Rutherford RB. Gene therapy-directed osteogenesis: BMP-7-transduced human fibroblasts form bone in vivo. HumGene Ther. 2000. 11(8): 1201-1210.
    [61] Alden TD, Pittman DD, Beres EJ, et al. Percutaneous spinal fusion using bone morphogenetic protein-2 gene therapy. J Neurosurg. 1999. 90(1 Suppl): 109-114.
    [62] Anusaksathien O, Webb SA, Jin QM, Giannobile WV. Platelet-derived growth factor gene delivery stimulates ex vivo gingival repair. Tissue Eng. 2003. 9(4): 745-756.
    [63] Kawaguchi H, Hirachi A, Hasegawa N, et al. Enhancement of periodontal tissue regeneration by transplantation of bone marrow mesenchymal stem cells. J Periodontol. 2004. 75(9): 1281-1287.
    [64] Yamada Y, Ueda M, Hibi H, Baba S. A novel approach to periodontal tissue regeneration with mesenchymal stem cells and platelet-rich plasma using tissue engineering technology: A clinical case report. Int J Periodontics Restorative Dent. 2006. 26(4): 363-369.
    [65]李艳芬,闫福华,江一平,骆凯,赵欣.人骨形成蛋白-7真核表达质粒的构建及其在骨髓基质细胞的表达.福建医科大学学报. 2007. 41(1): 9-13.
    [66]唐尤超,王远勤,汤炜, You-chao T, Yuan-qin W, Wei T.基因修饰骨髓间充质干细胞复合珊瑚羟基磷灰石支架材料修复骨质疏松性下颌骨缺损.中国组织工程研究与临床康复. 2008. 12(14): 2601-2605.
    [67]唐尤超,汤炜,田卫东,陈希哲,李声伟.基因修饰的组织工程化骨修复骨质疏松症骨缺损的实验研究.中华口腔医学杂志. 2006. 41(7): 430-431.
    [68]曹颖光,王戎,宋珂等.转化生长因子-β1基因治疗对种植体周骨质疏松的影响.华西口腔医学杂志. 2007. 25(4): 335-338.
    [69]司徒镇强.细胞培养. 2007.西安.世界图书出版公司.
    [70]刘锡娟,丁慧荣,张宏, Xi-juan L, Hui-rong D, Hong Z.用DAPI和Hoechst33342染色法检测DNA的流式细胞方法探讨.北京大学学报(医学版). 2010. 42(4): 480-484.
    [71]吴岩,毕力夫.流式细胞计量术在临床医学中的应用.内蒙古医学院学报. 2003. 25(1): 55-60.
    [72]陈新龙,余明星,陈文山.烧伤创面成纤维细胞周期、羟脯氨酸和胶原比例动态变化.中华外科杂志. 2000. 38 (2): 148-150.
    [73]陈虹,姚航平,林军, Hong C, Hangping Y, Jun L.杜仲叶提取物对MC3T3-E1细胞增殖作用的实验研究.浙江医学. 2010. 32(11): 1654-1656.
    [74] Alden TD, Varady P, Kallmes DF, Jane JA Jr, Helm GA. Bone morphogenetic protein gene therapy. Spine (Phila Pa 1976). 2002. 27(16 Suppl 1): 87-93.
    [75] Sowa H, Kaji H, Hendy GN, et al. Menin is required for bone morphogenetic protein 2- and transforming growth factor beta-regulated osteoblastic differentiation through interaction with Smads and Runx2. J Biol Chem. 2004. 279(39): 40267-40275.
    [76] Yamaguchi A, Komori T, Suda T. Regulation of osteoblast differentiation mediated by bone morphogenetic proteins, hedgehogs, and Cbfa1. Endocr Rev. 2000. 21(4): 393-411.
    [77] Krebsbach PH, Gu K, Franceschi RT, Rutherford RB. Gene therapy-directed osteogenesis: BMP-7-transduced human fibroblasts form bone in vivo. Hum Gene Ther. 2000. 11(8): 1201-1210.
    [78] Belfrage O, Flivik G, Sundberg M, Kesteris U, Tagil M. Local treatment of cancellous bone grafts with BMP-7 and zoledronate increases both the bone formation rate and bone density. Acta Orthop. 2011. 82(2): 228-233.
    [79] Kitten AM, Lee JC, Olson MS. Osteogenic protein-1 enhances phenotypic expression in ROS 17/2.8 cells. Am J Physiol. 1995. 269(5 Pt 1): E918-926.
    [80] Sanz M, Giovannoli JL. Focus on furcation defects: guided tissue regeneration. Periodontol 2000. 2000. 22: 169-189.
    [81] Saito A, Hayakawa H, Ota K, Fujinami K, Nikaido M, Makiishi T. Treatment of periodontal defects with enamel matrix derivative: clinical evaluation at early healing stages. Bull Tokyo Dent Coll. 2010. 51(2): 85-93.
    [82] Hughes FJ, Ghuman M, Talal A. Periodontal regeneration: a challenge for the tissue engineer. Proc Inst Mech Eng H. 2010. 224(12): 1345-1358.
    [83] Inanc B, Elcin YM. Stem Cells in Tooth Tissue Regeneration-Challenges and Limitations. Stem Cell Rev. 2011 .
    [84] Langer R, Vacanti JP. Tissue engineering. Science. 1993. 260(5110): 920-6.
    [85] Pontikoglou C, Deschaseaux F, Sensebe L, Papadaki HA. Bone Marrow Mesenchymal Stem Cells: Biological Properties and Their Role in Hematopoiesis and Hematopoietic Stem Cell Transplantation. Stem Cell Rev. 2011 .
    [86] Pittenger MF, Mackay AM, Beck SC, et al. Multilineage potential of adult human mesenchymal stem cells. Science. 1999. 284(5411): 143-147.
    [87]贺慧霞,刘洪臣,王东胜,曹均凯,张海钟,鄂玲玲.牙周膜干细胞向脂肪细胞方向定向诱导分化实验.华西口腔医学杂志. 2010. 28(2): 203-207.
    [88] Giannobile WV, Ryan S, Shih MS, Su DL, Kaplan PL, Chan TC. Recombinant human osteogenic protein-1 (OP-1) stimulates periodontal wound healing in class III furcation defects. J Periodontol. 1998. 69(2): 129-137.
    [89] Prockop DJ. Marrow stromal cells as stem cells for nonhematopoietic tissues. Science. 1997. 276(5309): 71-74.
    [90] Jin QM, Takita H, Kohgo T, Atsumi K, Itoh H, Kuboki Y. Effects of geometry of hydroxyapatite as a cell substratum in BMP-induced ectopic bone formation. J Biomed Mater Res. 2000. 51(3): 491-499.
    [91] Freed LE, Vunjak-Novakovic G, Biron RJ, et al. Biodegradable polymer scaffolds for tissue engineering. Biotechnology (N Y). 1994. 12(7): 689-693.
    [92] Kim BS, Mooney DJ. Development of biocompatible synthetic extracellular matrices for tissue engineering. Trends Biotechnol. 1998. 16(5): 224-230.
    [93]王丽霞,赵寰,丁一, Li-xia W, Huan Z, Yi D.胶原材料生物学特征及其在牙周组织工程中的应用.中国组织工程研究与临床康复. 2008. 12(1): 121-124.
    [94] Vacanti CA, Vacanti JP. The science of tissue engineering. Orthop Clin North Am. 2000. 31(3): 351-356.
    [95] Lee CH, Singla A, Lee Y. Biomedical applications of collagen. Int J Pharm. 2001. 221(1-2): 1-22.
    [96]骆凯,闫福华,金岩,刘源,赵宇,王新文.组织工程方法构建复合培养细胞的引导组织再生膜.牙体牙髓牙周病学杂志. 2003. 13(3): 139-141.
    [97] Piazuelo E, Jimenez P, Lanas A, Garcia A, Esteva F, Sainz R. Platelet-derived growth factor and epidermal growth factor play a major role in human colonic fibroblast repair activities. Eur Surg Res. 2000. 32(3): 191-196.
    [98]欧龙,刘宏伟,王东胜,罗芸,马良,袁志萍.狗牙周缺损处移植自体骨髓干细胞的骨化实验观察.中华口腔医学杂志. 2002. 37(2): 132-134.
    [99]闫福华,刘崇武,周广东,崔磊,刘伟,曹谊林.骨髓基质细胞在三种可吸收生物膜上附着及增殖的比较.福建医科大学学报. 2002. 36(1): 10-12.
    [100]闫福华,江俊,李艳芬,赵欣,钟泉,骆凯. hBMP-7基因转染的骨髓基质细胞与BME-10X胶原膜复合物的体外构建.口腔医学研究. 2007. 23(6): 601-603.
    [101]李楠.激光扫描共聚焦显微术. 1997.北京.人民军医出版社.
    [102] Cochran DL, Wozney JM. Biological mediators for periodontal regeneration. Periodontol 2000. 1999. 19: 40-58.
    [103] King GN, King N, Cruchley AT, Wozney JM, Hughes FJ. Recombinant human bone morphogenetic protein-2 promotes wound healing in rat periodontal fenestration defects. J Dent Res. 1997. 76(8): 1460-1470.
    [104]刘万里,薛茜,曹明芹等.用SPSS实现完全随机设计多组比较秩和检验的多重比较.地方病通报. 2007. 22(2): 27-29.
    [105]张文彤,闫洁. SPSS统计分析基础教程. 2004.北京.高等教育出版社. 289-292.
    [106] Oz HS, Puleo DA. Animal models for periodontal disease. J Biomed Biotechnol. 2011. 2011: 754857.
    [107] Weinberg MA, Bral M. Laboratory animal models in periodontology. J Clin Periodontol. 1999. 26(6): 335-40.
    [108]张嘉,梅陵宣, Jia Z, Ling-xuan M.牙周病动物模型建立方法的研究进展.医学综述. 2008. 14(7): 1035-1037.
    [109] Huang KK, Shen C, Chiang CY, Hsieh YD, Fu E. Effects of bone morphogenetic protein-6 on periodontal wound healing in a fenestration defect of rats. J Periodontal Res. 2005. 40(1): 1-10.
    [110]赵欣.不同浓度骨髓基质细胞对牙周组织再生影响的实验研究,2009. 1-57.
    [111]李斌,张培建.大鼠肝移植模型中乙醚、氯胺酮麻醉的对比研究.山东医药. 2008. 48(19): 39-41.
    [112]刘冰,肖静,李红,刘章锁.氯胺酮联合安定在大鼠麻醉中的应用.郑州大学学报(医学版). 2003. 38(1): 81-82.
    [113] Wolff LF. Guided tissue regeneration in periodontal therapy. Northwest Dent. 2000. 79(6): 23-28, 40.
    [114] Wolff LF, Mullally B. New clinical materials and techniques in guided tissue regeneration. Int Dent J. 2000. 50(5): 235-244.
    [115] Nyman S, Lindhe J, Karring T, Rylander H. New attachment following surgical treatment of human periodontal disease. J Clin Periodontol. 1982. 9(4): 290-296.
    [116] Tempro PJ, Nalbandian J. Colonization of retrieved polytetrafluoroethylene membranes: morphological and microbiological observations. J Periodontol. 1993. 64(3): 162-168.
    [117] Goshima J, Goldberg VM, Caplan AI. The osteogenic potential of culture-expanded rat marrow mesenchymal cells assayed in vivo in calcium phosphate ceramic blocks. Clin Orthop Relat Res. 1991. (262): 298-311.
    [118] Ricci G, Rasperini G, Silvestri M, Cocconcelli PS. In vitro permeability evaluation and colonization of membranes for periodontal regeneration by Porphyromonas gingivalis. J Periodontol. 1996. 67(5): 490-496.
    [119] Bartold PM, McCulloch CA, Narayanan AS, Pitaru S. Tissue engineering: a new paradigm for periodontal regeneration based on molecular and cell biology. Periodontol 2000. 2000. 24: 253-269.
    [120] Langer R. Tissue engineering: a new field and its challenges. Pharm Res. 1997. 14(7): 840-841.
    [121] Langer RS, Vacanti JP. Tissue engineering: the challenges ahead. Sci Am. 1999. 280(4): 86-89.
    [122] Langer R. Tissue engineering. Mol Ther. 2000. 1(1): 12-15.
    [123]闫福华,郑碧琼,林敏魁,肖殷.组织工程用于修复慢性牙周组织缺损的动物实验研究.口腔医学研究. 2005. 21(6): 593-597.
    [124] Lang H, Schuler N, Nolden R. Attachment formation following replantation of cultured cells into periodontal defects--a study in minipigs. J Dent Res. 1998. 77(2): 393-405.
    [125] Li H, Yan F, Lei L, Li Y, Xiao Y. Application of autologous cryopreserved bone marrow mesenchymal stem cells for periodontal regeneration in dogs. Cells Tissues Organs. 2009. 190(2): 94-101.
    [126] Jiang J, Wu X, Lin M, Doan N, Xiao Y, Yan F. Application of autologous periosteal cells for the regeneration of class III furcation defects in Beagle dogs. Cytotechnology. 2010. 62(3): 235-243.
    [127]张蕴惠,郭淑娟.胶原膜引导牙周组织再生的研究Ⅰ.动物模型的建立及组织形态学观察.华西口腔医学杂志. 1993. 11(4): 273-276,T016.
    [128] Wu Y, Ren M, Yang R, et al. Reduced immunomodulation potential of bone marrow-derived mesenchymal stem cells induced CCR4+CCR6+ Th/Treg cell subset imbalance in ankylosing spondylitis. Arthritis Res Ther. 2011. 13(1): R29.
    [129] Tian H, Bharadwaj S, Liu Y, Ma PX, Atala A, Zhang Y. Differentiation of human bone marrow mesenchymal stem cells into bladder cells: potential for urological tissue engineering. Tissue Eng Part A. 2010. 16(5): 1769-1779.
    [130] Pittenger MF, Mackay AM, Beck SC, et al. Multilineage potential of adult human mesenchymal stem cells. Science. 1999. 284(5411): 143-147.
    [131] Kopen GC, Prockop DJ, Phinney DG. Marrow stromal cells migrate throughout forebrain and cerebellum, and they differentiate into astrocytes after injection into neonatal mouse brains. Proc Natl Acad Sci U S A. 1999. 96(19): 10711-10716.
    [132] Kramer PR, Nares S, Kramer SF, Grogan D, Kaiser M. Mesenchymal stem cells acquire characteristics of cells in the periodontal ligament in vitro. J Dent Res. 2004. 83(1): 27-34.
    [133] Wei N, Gong P, Liao D, et al. Auto-transplanted mesenchymal stromal cell fatein periodontal tissue of beagle dogs. Cytotherapy. 2010. 12(4): 514-521.
    [134] Mantesso A, Sharpe P. Dental stem cells for tooth regeneration and repair. Expert Opin Biol Ther. 2009. 9(9): 1143-1154.
    [135] Krebsbach PH, Robey PG. Dental and skeletal stem cells: potential cellular therapeutics for craniofacial regeneration. J Dent Educ. 2002. 66(6): 766-773.
    [136]王敏,翁雨来,胡晓洁等.组织工程技术修复犬牙槽骨缺损的实验研究.中华医学杂志. 2003. 83(15): 1339-1344.
    [137] Park JS, Chu JS, Tsou AD, et al. The effect of matrix stiffness on the differentiation of mesenchymal stem cells in response to TGF-beta. Biomaterials. 2011 .
    [138] Kim K, Dean D, Wallace J, Breithaupt R, Mikos AG, Fisher JP. The influence of stereolithographic scaffold architecture and composition on osteogenic signal expression with rat bone marrow stromal cells. Biomaterials. 2011 .
    [139] Ramoshebi LN, Matsaba TN, Teare J, Renton L, Patton J, Ripamonti U. Tissue engineering: TGF-beta superfamily members and delivery systems in bone regeneration. Expert Rev Mol Med. 2002. 4(20): 1-11.
    [140] Bartold PM, McCulloch CA, Narayanan AS, Pitaru S. Tissue engineering: a new paradigm for periodontal regeneration based on molecular and cell biology. Periodontol 2000. 2000. 24: 253-269.
    [141] Bartold PM, Clayden AM, Gao J, et al. The role of growth factors in periodontal and pulpal regeneration. J N Z Soc Periodontol. 1998. (83): 7-14.
    [142] Bonadio J, Smiley E, Patil P, Goldstein S. Localized, direct plasmid gene delivery in vivo: prolonged therapy results in reproducible tissue regeneration. Nat Med. 1999. 5(7): 753-759.
    [143] Pelled G, Ben-Arav A, Hock C, et al. Direct gene therapy for bone regeneration: gene delivery, animal models, and outcome measures. Tissue Eng Part B Rev. 2010. 16(1): 13-20.
    [144] King GN, Cochran DL. Factors that modulate the effects of bone morphogenetic protein-induced periodontal regeneration: a critical review. J Periodontol. 2002. 73(8): 925-936.
    [145] Dunn CA, Jin Q, Taba M Jr, Franceschi RT, Bruce RR, Giannobile WV. BMP gene delivery for alveolar bone engineering at dental implant defects. Mol Ther. 2005. 11(2): 294-299.
    [146]王敏,程政,姚天华,代泉,郭秀全.人骨形态发生蛋白2基因治疗大鼠牙槽骨缺损的实验研究.陕西医学杂志. 2010. 39(2): 131-133,139.
    [147]蒋连权,陈曦,蔡绿树等.人重组骨形成蛋白-7对人牙周膜成纤维细胞增殖及分化能力的影响.吉林大学学报(医学版). 2009. 35(4): 677-680,后插2.
    [148]张志兴,李艳芬,闫福华, Zhixing Z, Yanfen LI, Fuhua Y.转染人骨形成蛋白-7基因的骨髓基质细胞异位成骨实验研究.组织工程与重建外科杂志. 2009. 5(5): 264-266,279.
    [149]赵广民,孙天胜,李放,王浩,李小燕.腺病毒介导人BMP-7促进去势大鼠椎体骨形成.山西医科大学学报. 2005. 36(5): 543-546.
    [150] Jiang J, Wu X, Lin M, Doan N, Xiao Y, Yan F. Application of autologous periosteal cells for the regeneration of class III furcation defects in Beagle dogs. Cytotechnology. 2010. 62(3): 235-243.
    [151]欧龙,马良,王东胜等.自体骨髓干细胞移植狗牙周缺损处引导组织再生的实验观察.现代口腔医学杂志. 2005. 19(4): 390-393.
    [152] Liu HW, Yacobi R, Savion N, Narayanan AS, Pitaru S. A collagenous cementum-derived attachment protein is a marker for progenitors of the mineralized tissue-forming cell lineage of the periodontal ligament. J Bone Miner Res. 1997. 12(10): 1691-1699.
    [1]江汉,杜民权,黄薇,郭颖,台保军.湖北省人群牙周健康状况的抽样调查报告.口腔医学研究. 2007. 23(3): 338-340.
    [2]曹采方主编.牙周病学. 2000. 2.北京.人民卫生出版社.
    [3]黄相杰,毕晓英,姜红江.绝经后骨质疏松症治疗的研究进展.中国骨质疏松杂志. 2010. 16(8): 602-605.
    [4] Sultan N, Rao J. Association between periodontal disease and bone mineral density in postmenopausal women: a cross sectional study. Med Oral Patol Oral Cir Bucal. 2011 .
    [5] Jabbar S, Drury J, Fordham J, Datta HK, Francis RM, Tuck SP. Plasma vitamin D and cytokines in periodontal disease and postmenopausal osteoporosis. J Periodontal Res. 2011. 46(1): 97-104.
    [6] Al HR, Alchalabi H, Khader YS, Hazza'a AM, Odat Z, Johnson GK. Association between periodontal disease and osteoporosis in postmenopausal women in jordan. J Periodontol. 2010. 81(11): 1613-1621.
    [7] Osteoporosis prevention, diagnosis, and therapy. JAMA. 2001. 285(6): 785-95.
    [8] Assessment of fracture risk and its application to screening for postmenopausal osteoporosis. Report of a WHO Study Group. World Health Organ Tech Rep Ser. 1994. 843: 1-129.
    [9]郭世紴.罗先正.丘贵兴.骨质疏松基础与临床. 2001. 70-71.
    [10]卢化爱.绝经后骨质疏松发病率调查与预防.中国妇幼保健. 2007. 22(21): 3033-3034.
    [11]刘忠厚.骨质疏松学[M]. 1998.北京:科学出版社. 182-183.
    [12] Riggs BL, Khosla S, 3rd MLJ. Sex steroids and the construction and conservation of the adult skeleton. Endocr Rev. 2002. 23(3): 279-302.
    [13]骆凯,闫福华.雌激素与牙周病.国际口腔医学杂志. 2006. 33(6): 436-438.
    [14] Sultan N, Rao J. Association between periodontal disease and bone mineral density in postmenopausal women: a cross sectional study. Med Oral Patol107Oral Cir Bucal. 2011 .
    [15] Payne JB, Reinhardt RA, Nummikoski PV, Patil KD. Longitudinal alveolar bone loss in postmenopausal osteoporotic/osteopenic women. Osteoporos Int. 1999. 10(1): 34-40.
    [16] Al HR, Alchalabi H, Khader YS, Hazza'a AM, Odat Z, Johnson GK. Association between periodontal disease and osteoporosis in postmenopausal women in jordan. J Periodontol. 2010. 81(11): 1613-21.
    [17] Wactawski-Wende J. Periodontal diseases and osteoporosis: association and mechanisms. Ann Periodontol. 2001. 6(1): 197-208.
    [18] Tezal M, Wactawski-Wende J, Grossi SG, Ho AW, Dunford R, Genco RJ. The relationship between bone mineral density and periodontitis in postmenopausal women. J Periodontol. 2000. 71(9): 1492-8.
    [19] Horner K, Devlin H, Alsop CW, Hodgkinson IM, Adams JE. Mandibular bone mineral density as a predictor of skeletal osteoporosis. Br J Radiol. 1996. 69(827): 1019-25.
    [20] Wactawski-Wende J, Grossi SG, Trevisan M, et al. The role of osteopenia in oral bone loss and periodontal disease. J Periodontol. 1996. 67(10 Suppl): 1076-84.
    [21] Taguchi A, Suei Y, Ohtsuka M, et al. Relationship between self-reported periodontal status and skeletal bone mineral density in Japanese postmenopausal women. Menopause. 2005. 12(2): 144-8.
    [22]徐国超,秦念红,张蕴惠,文晓林,姜军.牙周炎患者与正常人腰椎和髋部骨密度值的比较.牙体牙髓牙周病学杂志. 2002. 12(11): 602-603.
    [23] Shen EC, Gau CH, Hsieh YD, Chang CY, Fu E. Periodontal status in post-menopausal osteoporosis: a preliminary clinical study in Taiwanese women. J Chin Med Assoc. 2004. 67(8): 389-93.
    [24] Mohammad AR, Hooper DA, Vermilyea SG, Mariotti A, Preshaw PM. An investigation of the relationship between systemic bone density and clinical periodontal status in post-menopausal Asian-American women. Int Dent J. 2003. 53(3): 121-125.
    [25] Yoshihara A, Seida Y, Hanada N, Miyazaki H. A longitudinal study of the relationship between periodontal disease and bone mineral density in community-dwelling older adults. J Clin Periodontol. 2004. 31(8): 680-684.
    [26] Saville PD. Changes in skeletal mass and fragility with castration in the rat; a model of osteoporosis. J Am Geriatr Soc. 1969. 17(2): 155-166.
    [27] Kuroda S, Mukohyama H, Kondo H, et al. Bone mineral density of the mandible in ovariectomized rats: analyses using dual energy X-ray absorptiometry and peripheral quantitative computed tomography. Oral Dis. 2003. 9(1): 24-8.
    [28] Elovic RP, Hipp JA, Hayes WC. Maxillary molar extraction causes increased bone loss in the mandible of ovariectomized rats. J Bone Miner Res. 1995. 10(7): 1087-1093.
    [29] Wronski TJ, Cintron M, Dann LM. Temporal relationship between bone loss and increased bone turnover in ovariectomized rats. Calcif Tissue Int. 1988. 43(3): 179-183.
    [30]骆凯,闫福华,陈凌,郑碧琼,陈玉玲.绝经后骨质疏松大鼠实验性牙周炎动物模型研究.口腔医学研究. 2006. 22(2): 130-132.
    [31] Tanaka M, Ejiri S, Toyooka E, Kohno S, Ozawa H. Effects of ovariectomy on trabecular structures of rat alveolar bone. J Periodontal Res. 2002. 37(2): 161-165.
    [32]李继俊.绝经后骨质疏松症的研究进展.现代妇产科进展. 2003. 12(2): 156-157.
    [33] Civitelli R, Pilgram TK, Dotson M, et al. Alveolar and postcranial bone density in postmenopausal women receiving hormone/estrogen replacement therapy: a randomized, double-blind, placebo-controlled trial. Arch Intern Med. 2002. 162(12): 1409-15.
    [34] Grossi SG. Effect of estrogen supplementation on periodontal disease. Compend Contin Educ Dent Suppl. 1998. (22): S30-6.
    [35] Hildebolt CF, Pilgram TK, Dotson M, et al. Estrogen and/or calcium plus vitamin D increase mandibular bone mass. J Periodontol. 2004. 75(6):811-816.
    [36] Hildebolt CF, Pilgram TK, Yokoyama-Crothers N, et al. The pattern of alveolar crest height change in healthy postmenopausal women after 3 years of hormone/estrogen replacement therapy. J Periodontol. 2002. 73(11): 1279-1284.
    [37] McDonnell DP. The molecular determinants of estrogen receptor pharmacology. Maturitas. 2004. 48 Suppl 1: S7-12.
    [38]矫杰,孟迅吾.雷诺昔芬的研究进展.国外医学(内分泌学分册). 2004. 24(4): 244-247.
    [39] Ettinger B, Black DM, Mitlak BH, et al. Reduction of vertebral fracture risk in postmenopausal women with osteoporosis treated with raloxifene: results from a 3-year randomized clinical trial. Multiple Outcomes of Raloxifene Evaluation (MORE) Investigators. JAMA. 1999. 282(7): 637-645.
    [40]骆凯,闫福华,陈凌,郑碧琼,陈玉玲,赵欣.雷洛昔芬防治骨质疏松大鼠牙周炎牙槽骨吸收的实验研究.实用口腔医学杂志. 2008. 24(4): 491-495.
    [41] El-Shinnawi UM, El-Tantawy SI. The effect of alendronate sodium on alveolar bone loss in periodontitis (clinical trial). J Int Acad Periodontol. 2003. 5(1): 5-10.
    [42] Neer RM, Arnaud CD, Zanchetta JR, et al. Effect of parathyroid hormone (1-34) on fractures and bone mineral density in postmenopausal women with osteoporosis. N Engl J Med. 2001. 344(19): 1434-41.
    [43] Duarte PM, Goncalves PF, Sallum AW, Sallum EA, Casati MZ, Humberto NF Jr. Effect of an estrogen-deficient state and its therapy on bone loss resulting from an experimental periodontitis in rats. J Periodontal Res. 2004. 39(2): 107-110.
    [44]骆凯,闫福华,陈凌等.雌激素及雷洛昔芬对骨质疏松大鼠牙周炎牙槽骨IL-1β表达的影响.福建医科大学学报. 2008. 42(2): 113-115.
    [45]段永宏,刘建, Yong-hong D, Jian L.选择性雌激素受体调节剂雷诺昔酚对去势后大鼠骨密度及股骨生物力学的影响.西南国防医药. 2005. 15(6): 593-596.
    [46] Xiong H, Peng B, Wei L, Zhang X, Wang L. Effect of an estrogen-deficient state and alendronate therapy on bone loss resulting from experimental periapical lesions in rats. J Endod. 2007. 33(11): 1304-8.
    [47] Duarte PM, de Assis DR, Casati MZ, Sallum AW, Sallum EA, Nociti FH Jr. Alendronate may protect against increased periodontitis-related bone loss in estrogen-deficient rats. J Periodontol. 2004. 75(9): 1196-1202.
    [48]王晓敏,杨宗萍,于世凤, Xiaomin W, Zongping Y, Shifeng YU.阿仑膦酸钠防治牙槽骨吸收的实验研究.中华口腔医学杂志. 2001. 36(3): 193-196.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700