用户名: 密码: 验证码:
生物活性骨修复材料的构建与生物学响应研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
创伤、肿瘤、感染等因素造成骨组织缺损和破坏困扰和影响人类健康。研制具有调控骨组织相关细胞行为和组织再生过程的生物活性材料成为生物材料领域的热点。本研究从仿生人体骨组织结构与细胞外基质的机制出发,从材料组成、结构优化以及生物因子装载等角度构建新型具有高活性的骨修复材料,并从细胞生物学与体内动物实验等方面较系统地研究材料的组成、结构、生长因子及其之间的协同对细胞行为和组织形成过程的影响规律,并对过程的机理进行了初步的探索。
     磷酸镁/磷酸钙骨水泥与成骨相关细胞的相互作用研究——镁是骨代谢过程中的重要微量元素。本研究以Ca(H2P04)2和MgO为反应物并掺入磷酸钙骨水泥,控制Mg/P摩尔比例在5、10和20%,分别称为5MCPC.10MCPC和20MCPC.以MG63成骨细胞为模型,体外培养实验结果表明,三种试样均具有良好的生物相容性。外源性的镁以及掺镁骨水泥浸提液的镁对成骨细胞的粘附效率无显著影响。但将细胞直接培养于掺镁骨水泥表面后其粘附效率得到了很大提高。随镁含量的升高掺镁骨水泥的表面粗糙度逐渐减低,细胞骨架却在5MCPC和10MCPC铺展最好。整合素Integrinα5表达在5MCPC和10MCPC表面明显上调,而Integrinα1、α2、β1的表达却没有正影响。溶液中的镁离子在粘附过程是次要的,而材料表面的镁直接参与细胞粘附整合素的信号通路。进一步选用5MCPC研究其对血管内皮细胞增殖与血管发生因子表达的影响发现:内皮细胞在5MCPC表面铺展更好,培养3天后增殖较CPC表面具有显著性差异。5MCPC表面的细胞的血管发生因子表达量有明显上调,其一氧化氮分泌量也有明显提高。这些结果表明较低剂量的镁元素掺入CPC是一种简单而有效的方法以提高成骨细胞粘附及成骨血管发生几率,有利于加速植入材料与新生组织之间生物稳定界面的快速形成以加快骨修复进程。
     不同含钙量纳米介孔硅基干凝胶对成骨细胞的响应——制备了不同氧化钙含量的介孔硅基干凝胶(0、5、10、15%,命名为m-SXCO、m-SXC5、m-SXC10、m-SXC15)以MG63成骨细胞为模型,体外培养实验结果发现:干凝胶对成骨细胞形态无明显影响。细胞在m-SXC10增殖速率最高。细胞NO表达量随干凝胶中钙含量增高而增高。碱性磷酸酶活性和前列腺素2均在m-SXC5组表达最高。M-SXC5组胶原Ⅰ和骨钙素的基因表达得到了上调。培养7天的n-SXC10细胞外信号调节激酶的磷酸化程度最高。结果表明适量的钙在介孔硅基干凝胶中起到了对成骨细胞活性的重要的调节作用,可作为骨修复领域的更优异的药物控释载体。
     不同比表面积纳米介孔硅基干凝胶与成骨细胞相互作用研究——比表面积是介孔硅基材料的重要参数,而迄今鲜有关于其对成骨细胞响应的报道。实验制备了3种不同比表面积的干凝胶,结果发现,随表面积的增高蛋白吸附量增加,而表面硅羟基含量却降低。表面磷灰石的生成速率随表面积增高而加快。大比表面积干凝胶有利于成骨细胞增殖。基因表达及流式细胞蛋白检测均表明细胞整合素Integrin a5在大比表面积干凝胶上得到了明显上调。这些结果表明增加干凝胶的比表面积能够通过吸附血清蛋白和加速磷灰石层形成速率从而提高其表面细胞亲和力。调节比表面积也成为一种有效的介孔硅基材料的设计手段,为骨修复和药物控释领域更优异的组织响应能力提供更多的选择。
     壳聚糖磺酸化修饰及其与骨形态发生蛋白-2的作用机理研究——BMP-2作为有效的生长因子而广泛用于骨修复研究,大剂量使用的潜在副作用限制了其临床的广泛应用。肝素等具有调节BMP-2活性的功能。而磺化壳聚糖类对BMP-2的影响尚未见报道。我们制备了多种不同磺化壳聚糖,以C2C12细胞为模型,实验证明6-O磺化壳聚糖对促进BMP-2活性起到关键作用,而2-N位只起到辅助作用。低浓度的2-N,6-O磺化壳聚糖(26SCS)对BMP-2诱导的碱性磷酸酶活性、矿化形成以及成骨基因表达均有明显促进效果。增加链长和提高磺化度能够进一步提高其活性。26SCS表现出比肝素更好的促进BMP-2能力。体内动物异位成骨实验同样证明了这一现象。这些结果证明26SCS调节BMP-2的信号通路有望作为BMP-2的协同因子。
     硅酸钙/磷酸钙骨水泥大孔支架与骨形态发生蛋白-2的成骨协同作用研究——将硅酸钙引入到磷酸钙骨水泥体系中制备了复合大孔支架并负载骨形态发生蛋白(BMP-2),考察二者之间的协同作用。复合支架的蛋白吸附量远高于CPC支架,其体外降解速率也远高于CPC支架。复合支架释放出大量的硅、钙、磷离子。以MG63为细胞模型,间接培养和直接培养实验均表明负载BMP-2的复合支架具有最佳的成骨分化效果。通过micro-CT和组织切片对体内动物实验结果进行分析也得到了同样的结论。本章的结果表明硅酸钙复合磷酸钙大孔骨水泥支架与BMP-2之间存在着明显的协同作用,有望成为优异的骨修复治疗材料。
The damage and defect on bone tissue resulting from traumas, tumours and infections has been an important medical project affecting human health. Nowadays, it's a hot topic to develop novel biomaterials with the capabilities modulating cell behaviors and tissue regeneration. Considering the structure and extracellular matrix of the natural bone, several materials with high bioactivity for bone repair were fabricated, and the interactions between the materials and cells/tissues, the potential mechanism and applications were investigated.
     Magnesium phosphate/calcium phosphate cement and interactions with osteo-related cells——Trace element magnesium is reported to be essential in bone biological process. In the present study, the influences of magnesium in calcium phosphate cement (CPC) on osteoblast initial adhesion and vasculation were explored. Incorporation of magnesium into CPC was performed using Ca(H2PCO4)2 and MgO as reactants. Magnesium-calcium phosphate cement (MCPC) was developed by controlling Mg/P ratio (5,10, and 20%) and denoted as 5MCPC,10MCPC and 20MCPC, respectively. Using MG63 as in vitro model, these cements showed excellent biocompatibility. The exogenous magnesium in culture medium or ionic dissolution from cement had negligibly positive impacts on the initial cellular adhesion. However, adhesion efficiency was significantly enhanced when osteoblasts were cultured on MCPCs surface directly, especially on 5MCPC. Despite surface roughness of MCPCs decreased as compared with CPC, cell attachments were evidently enhanced on 5MCPC and 10MCPC as proved by phalloidin-cytoskeleton staining. Gene expression of integrin a5 was significantly up-regulated on 5MCPC and 10MCPC, while integrin al, a2 andβ1 expressions were not positively influenced. Magnesium existing forms seem to play different roles on osteoblast adhesion:ionic Mg2+ is subsidiary in osteoblast adhesion process. But magnesium on cement surface was directly involved as a cell-inducing factor via integrinα5 signaling pathway. The present study indicated that low amount of magnesium incorporation into calcium phosphate cement was a feasible and effective way to improve osteoblast adhesion and to accelerate stable bio-interface formation for enhancing bone regeneration in orthopaedic and trauma surgery.
     Mesoporous silica xerogels with different calcium contents and responses on osteoblasts——Mesoporous silica xerogels with various amount of calcium oxide (0,5,10 and 15%, named m-SXCO, m-SXC5, m-SXC10 and m-SXC15, respectively) were synthesized by template sol-gel methods. Cell morphology was not affected by m-SXCs indicating good biocompatibility. Furthermore, cell proliferation ratio on the m-SXCs increased over time, among which m-SXC10 was highest. NO production obviously rose with the increase of Ca content in m-SXCs. ALP activity and PGE2 level on m-SXC5 significantly improved compared with m-SXCO while decreased with the increase of Ca content for m-SXC10 and m-SXC15. The collagen I and osteocalcin mRNA expression on m-SXC5 were up-regulated, while decreased on m-SXC15 evidently. The phosphorylation level of ERK 1/2 for the m-SXC10 was highest after 7 days. In conclusion, calcium in m-SXCs plays an important role in osteoblast activity, which indicates mesoporous silica xeroel containing appropriate calcium could stimulate osteoblast proliferation, differentiation, gene expression via the activation of ERK 1/2 signaling pathway, and shows great prospects in bone regeneration field using as a drug controlled release filler.
     Mesoporous silica xerogerl with different specific surface area and responses on osteoblasts——Specific surface area is a critical parameter of mesoporous silica-based biomaterials, however, little is known about its effects on osteoblast responses in vitro. In the present study, mesoporous silica xerogels (MSXs) with different surface area (401,647 and 810 m2/g, respectively) were synthesized by a sol-gel process. Surface silanol contents decreased with the increase of surface area with which protein adsorption capability positively correlated. And the apatite-like surface seemed to form faster on MSXs with higher surface area determined by XRD analysis. Using MG63 osteoblast-like cells as models, it was found that cell proliferations were promoted on MSXs with higher surface area, based on the premise that the effects of Si released from materials on osteoblast viability were excluded by real-time Transwell(?) assay. RT-PCR results indicated cell adhesion-related integrin subunits a5 were up-regulated by higher surface area at day 1, which was further confirmed by flow cytometry analysis. The data suggest that increasing SSA of MSXs could promote surface cellular affinity by adsorbing serum proteins and accelerating apatite-like layer formation, which results in promoted osteoblastic proliferation via integrin subunit a5 at initial adhesion stage. Regulating SSA, an effective approach in designing mesoporous silica-based materials, provides an alternative method to obtain desirable tissue-response in bone regeneration and drug delivery system.
     Modifying chitosan with sulfate group and its interaction with bone morphogenetic protein-2——Bone morphogenetic protein-2 (BMP-2) has been widely used as an effective growth factor in bone tissue engineering. However, large amounts of BMP-2 required to induce new bone formation would result in potential side-effects, which limits its clinical application. Sulfated polysaccharides, such as native heparin have been found to modulate BMP-2 bioactivity. Whereas the direct role of chitosan modified with sulfate group on BMP-2 signaling has not been reported till now. Several sulfated chitosans with different positions were synthesized by regioselective reactions firstly. Using C2C12 myoblast cells as in vitro models, the enhanced bioactivity of BMP-2 was attributed primarily to the stimulation from 6-O-sulfated chitosan (6SCS), while 2-N-sulfate was subsidiary group with less activation. Low dose of 2-N,6-O-sulfated chitosan (26SCS) showed significant enhancement on the alkaline phosphatase (ALP) activity and the mineralization formation induced by BMP-2, as well as the expression of ALP and Osteocalcin mRNA. Moreover, increased chain-length and further sulfation on 26SCS also resulted in a higher ALP activity. Dose-dependent effects on BMP-2 bioactivity were observed in both sulfated chitosan and heparin. Compared with native heparin,26SCS showed much stronger simultaneous effects on the BMP-2 bioactivity at low dose. Furthermore, simultaneous administration of BMP-2 and 26SCS in vivo dose-dependently induced larger amounts of ectopic bone formation compared with BMP-2 alone. These findings clearly indicate that 26SCS is a more potent enhancer for BMP-2 bioactivity to induce osteoblastic differentiation in vitro and in vivo by promoting BMP-2 signaling pathway, suggesting that 26SCS could be used as the synergistic factor of BMP-2 for bone regeneration.
     The synergistic effects of calcium silicate/calcium phosphate cement scaffolds and bone morphogenetic protein-2——Calcium silicate was incorporated into calcium phosphate cement to fabricate marcoporous scaffolds and load bone morphogenetic protein-2 (BMP-2), the possible synergistic effects were investigated. The protein absorption capability of composite scaffolds was much higher than that of CPC. Faster degradation rate was observed in composite scaffolds, which also released larger amounts of silicon, calcium and phosphate ions. Using MG63 cells as model, the indirect and direct cluture experiments demonstrated composite scaffolds in the presence of BMP-2 induced highest alkaline phosphatase activity. Same conclusion was also brought by Micro-CT and histological sections analysis on in vivo studies. These results showed that calcium silicate incorporated macroporous scaffolds have synergistic enhancing effects with BMP-2 on bone regeneration, which could be potential therapy in future.
引文
1. Jang JH, Castano O, Kim HW. Electrospun materials as potential platforms for bone tissue engineering. Adv Drug Deliv Rev 2009;61(12):1065-1083.
    2. Skerry TM, Bitensky L, Chayen J, Lanyon LE. Early Strain-Related Changes in Enzyme-Activity in Osteocytes Following Bone Loading Invivo. J Bone Miner Res 1989;4(5):783-788.
    3. Gentleman E, Polak JM. Historic and current strategies in bone tissue engineering:do we have a hope in Hench? J Mater Sci Mater Med 2006;17(11):1029-1035.
    4. Hench LL, Polak JM. Third-generation biomedical materials. Science 2002;295(5557):1014-1017.
    5. Langer R, Vacanti JP. Tissue engineering. Science 1993;260(5110):920-926.
    6. Warnke PH, Douglas T, Wollny P, Sherry E, Steiner M, Galonska S, et al. Rapid Prototyping:Porous Titanium Alloy Scaffolds Produced by Selective Laser Melting for Bone Tissue Engineering. Tissue Eng C 2009;15(2):115-124.
    7. Hutapea P. Magnetostrictive Alloy Actuator for a Bone Transport Device. Smasis2008: Proceedings of the Asme Conference on Smart Materials, Adaptive Structures and Intelligent Systems-2008, Vol 12009:789-794.
    8. Hong YS, Yang K, Zhang GD, Huang JJ, Hao YQ, Ai HJ. The role of bone induction of a biodegradable magnesium alloy. Acta Metall Sin 2008;44(9):1035-1041.
    9. Bretcanu O, Chen Q, Misra SK, Roy I, Verne E, Brovarone CV, et al. Optimisation of bioglass (R) based scaffolds for bone tissue engineering. Tissue Eng 2007;13(7):1737-1737.
    10. Predoi D, Barsan M, Andronescu E, Vatasescu-Balcan RA, Costache M. Hydroxyapatite-iron oxide bioceramic prepared using nano-size powders. J Optoelectron Adv Mater 2007;9(11):3609-3613.
    11. Kretlow JD, Mikos AG. Review:Mineralization of synthetic polymer scaffolds for bone tissue engineering. Tissue Eng 2007;13(5):927-938.
    12. Kim K, Fisher JP. Nanoparticle technology in bone tissue engineering. J Drug Target 2007;15(4):241-252.
    13. Brown WE, Chow LC. A New Calcium-Phosphate Setting Cement. J Dent Res 1983;62:672-672.
    14. Hayashi C, Kinoshita A, Oda S, Mizutani K, Shirakata Y, Ishikawa I. Injectable calcium phosphate bone cement provides favorable space and a scaffold for periodontal regeneration in dogs. J Periodontol 2006;77(6):940-946.
    15. Matsumine A, Kusuzaki K, Matsubara T, Okamura A, Okuyama N, Miyazaki S, et al. Calcium phosphate cement in musculoskeletal tumor surgery. J Surg Oncol 2006;93(3):212-220.
    16. Liverneaux P, Khallouk R. Calcium phosphate cement in wrist arthrodesis:three cases. J Orthop Sci 2006;11(3):289-293.
    17. Bohner M, Gbureck U, Barralet JE. Technological issues for the development of more efficient calcium phosphate bone cements:A critical assessment. Biomaterials 2005;26(33):6423-6429.
    18. Guo H, Su JC, Wei J, Kong H, Liu CS. Biocompatibility and osteogenicity of degradable Ca-deficient hydroxyapatite scaffolds from calcium phosphate cement for bone tissue engineering. Acta Biomater 2009;5(1):268-278.
    19. Saris NEL, Mervaala E, Karppanen H, Khawaja JA, Lewenstam A. Magnesium-An update on physiological, clinical and analytical aspects. Clin Chim Acta 2000;294(1-2):1-26.
    20. KanzakiN, OnumaK, TrebouxG, TsutsumiS, ItoA. Inhibitory effect of magnesium and zinc on crystallization kinetics of hydroxyapatite(0001) face. J Phys Chem B 2000; 104:4189-4194.
    21. SuchanekW, ByrappaK, ShukP, RimanR, JanasV. Mechanochemical-hydrothermal synthsis of calcium phosphate powders with coupled magnesium and carbonate substitution. J Solid State Chem 2004; 177:793-799.
    22. Yamasaki Y, Yoshida Y, Okazaki M, Shimazu A, Uchida T, Kubo T, et al. Synthesis of functionally graded MgCO3 apatite accelerating osteoblast adhesion. J Biomed Mater Res 2002;62(1):99-105.
    23. Yamasaki Y, Yoshida Y, Okazaki M, Shimazu A, Kubo T, Akagawa Y, et al. Action of FGMgCO3Ap-collagen composite in promoting bone formation. Biomaterials 2003;24(27):4913-4920.
    24. Wu F, Wei J, Guo H, Chen FP, Hong H, Liu CS. Self-setting bioactive calcium-magnesium phosphate cement with high strength and degradability for bone regeneration. Acta Biomater 2008;4(6):1873-1884.
    25. Jia J, Zhou H, Wei J, Jiang X, Hua H, Chen F, et al. Development of magnesium calcium phosphate biocement for bone regeneration. J R Soc Interface;7(49):1171-1180.
    26. Bermudez O, Boltong MG, Driessens FCM, Planell JA. Development of Some Calcium-Phosphate Cements from Combinations of Alpha-Tcp, Mcpm and Cao. J Mater Sci Mater Med 1994;5(3):160-163.
    27. Hench LL. Bioceramics and the origin of life. J Biomed Mater Res 1989;23(7):685-703.
    28. Xynos ID, Edgar AJ, Buttery LD, Hench LL, Polak JM. Ionic products of bioactive glass dissolution increase proliferation of human osteoblasts and induce insulin-like growth factor Ⅱ mRNA expression and protein synthesis. Biochem Biophys Res Commun 2000;276(2):461-465.
    29. Xynos ID, Hukkanen MV, Batten JJ, Buttery LD, Hench LL, Polak JM. Bioglass 45S5 stimulates osteoblast turnover and enhances bone formation In vitro:implications and applications for bone tissue engineering. Calcif Tissue Int 2000;67(4):321-329.
    30. Kim KJ, Jeon YJ, Lee JH, Ahn ST, Lee SH, Cho DW, et al. The Effect of Silicon Ion on Proliferation and Osteogenic Differentiation of Human ADSCs. Tissue Eng Regen Med 2010;7(2):171-177.
    31. Constantz BR, Ison IC, Fulmer MT, Poser RD, Smith ST, Vanwagoner M, et al. Skeletal Repair by in-Situ Formation of the Mineral Phase of Bone. Science 1995;267(5205):1796-1799.
    32. Chen CC, Ho CC, Chen CHD, Wang WC, Ding SJ. In Vitro Bioactivity and Biocompatibility of Dicalcium Silicate Cements for Endodontic Use. J Endodont 2009;35(11):1554-1557.
    33. Ding SJ, Shie MY, Wang CY. Novel fast-setting calcium silicate bone cements with high bioactivity and enhanced osteogenesis in vitro. J Mater Chem 2009; 19(8):1183-1190.
    34. Chen CC, Lai MH, Wang WC, Ding SJ. Properties of anti-washout-type calcium silicate bone cements containing gelatin. J Mater Sci Mater Med 2010;21 (4):1057-1068.
    35. Wei J, Heo SJ, Li CS, Kim DH, Kim SE, Hyun YT, et al. Preparation and characterization of bioactive calcium silicate and poly(epsilon-caprolactone) nanocomposite for bone tissue regeneration. J Biomed Mater Res A 2009;90A(3):702-712.
    36. Sprio S, Tampieri A, Celotti G, Landi E. Development of hydroxyapatite/calcium silicate composites addressed to the design of load-bearing bone scaffolds. J Mech Behav Biomed Mater 2009;2(2):147-155.
    37. Sun JY, Wei L, Liu XY, Li JY, Li BE, Wang GC, et al. Influences of ionic dissolution products of dicalcium silicate coating on osteoblastic proliferation, differentiation and gene expression. Acta Biomater 2009;5(4):1284-1293.
    38. Zhao QH, Qian JC, Zhou HJ, Yuan YA, Mao YM, Liu CS. In vitro osteoblast-like and endothelial cells' response to calcium silicate/calcium phosphate cement. Biomed Mater 2010;5(3).
    39. Lutolf MP, Gilbert PM, Blau HM. Designing materials to direct stem-cell fate. Nature 2009;462(7272):433-441.
    40. Engler AJ, Sen S, Sweeney HL, Discher DE. Matrix elasticity directs stem cell lineage specification. Cell 2006;126(4):677-689.
    41. Bodhak S, Bose S, Bandyopadhyay A. Role of surface charge and wettability on early stage mineralization and bone cell-materials interactions of polarized hydroxyapatite. Acta Biomater 2009;5(6):2178-2188.
    42. Anselme K, Bigerelle M. Topography effects of pure titanium substrates on human osteoblast long-term adhesion. Acta Biomater 2005; 1(2):211-222.
    43. Engel E, Del Valle S, Aparicio C, Altankov G, Asin L, Planell JA, et al. Discerning the role of topography and ion exchange in cell response of bioactive tissue engineering scaffolds. Tissue Eng A 2008;14(8):1341-1351.
    44. Papenburg BJ, Liu J, Higuera GA, Barradas AM, de Boer J, van Blitterswijk CA, et al. Development and analysis of multi-layer scaffolds for tissue engineering. Biomaterials 2009;30(31):6228-6239.
    45. Dunn JC, Chan WY, Cristini V, Kim JS, Lowengrub J, Singh S, et al. Analysis of cell growth in three-dimensional scaffolds. Tissue Eng 2006;12(4):705-716.
    46. McBeath R, Pirone DM, Nelson CM, Bhadriraju K, Chen CS. Cell shape, cytoskeletal tension, and RhoA regulate stem cell lineage commitment. Dev Cell 2004;6(4):483-495.
    47. Kortesuo P, Ahola M, Karlsson S, Kangasniemi I, Kiesvaara J, Yli-Urpo A. Sol-gel-processed sintered silica xerogel as a carrier in controlled drug delivery. J Biomed Mater Res 1999;44(2):162-167.
    48. Kortesuo P, Ahola M, Karlsson S, Kangasniemi I, Yli-Urpo A, Kiesvaara J. Silica xerogel as an implantable carrier for controlled drug delivery--evaluation of drug distribution and tissue effects after implantation. Biomaterials 2000;21(2):193-198.
    49. Czarnobaj K. Preparation and Characterization of Silica Xerogels as Carriers for Drugs. Drug Deliv 2008;15(8):485-492.
    50. Vallet-Regi M, Balas F, Arcos D. Mesoporous materials for drug delivery. Angew Chem Int Edit 2007;46(40):7548-7558.
    51. Ahola M, Kortesuo P, Kangasniemi I, Kiesvaara J, Yli-Urpo A. Silica xerogel carrier material for controlled release of toremifene citrate. Int J Pharm 2000; 195(1-2):219-227.
    52. Ahola MS, Sailynoja ES, Raitavuo MH. Vaahtio MM, Salonen JI, Yli-Urpo AU. In vitro release of heparin from silica xerogels. Biomaterials 2001;22(15):2163-2170.
    53. Roveri N, Morpurgo M, Palazzo B, Parma B, Vivi L. Silica xerogels as a delivery system for the controlled release of different molecular weight heparins. Anal Bioanal Chem 2005;381(3):601-606.
    54. Radin S, Falaize S, Lee MH, Ducheyne P. In vitro bioactivity and degradation behavior of silica xerogels intended as controlled release materials. Biomaterials 2002;23(15):3113-3122.
    55. Lai W, Garino J, Ducheyne P. Silicon excretion from bioactive glass implanted in rabbit bone. Biomaterials 2002;23(1):213-217.
    56. Lai CY, Trewyn BG, Jeftinija DM, Jeftinija K, Xu S, Jeftinija S, et al. A mesoporous silica nanosphere-based carrier system with chemically removable CdS nanoparticle caps for stimuli-responsive controlled release of neurotransmitters and drug molecules. J Am Chem Soc 2003;125(15):4451-4459.
    57. Radin S, El-Bassyouni G, Vresilovic EJ, Schepers E, Ducheyne P. In vivo tissue response to resorbable silica xerogels as control led-release materials. Biomaterials 2005;26(9):1043-1052.
    58. Radin S, Ducheyne P. Controlled release of vancomycin from thin sol-gel films on titanium alloy fracture plate material. Biomaterials 2007;28(9):1721-1729.
    59. Radin S, Ducheyne P, Kamplain T, Tan BH. Silica sol-gel for the controlled release of antibiotics. I. Synthesis, characterization, and in vitro release. J Biomed Mater Res 2001;57(2):313-320.
    60. Xue JM, Tan CH, Lukito D. Biodegradable polymer-silica xerogel composite microspheres for controlled release of gentamicin. J Biomed Mater Res B Appl Biomater 2006;78(2):417-422.
    61. Czarnobaj K, Lukasiak J. In vitro release of cisplatin from sol-gel processed organically modified silica xerogels. J Mater Sci Mater Med 2007; 18(10):2041-2044.
    62. Prokopowicz M, Przyjazny A. Synthesis of sol-gel mesoporous silica materials providing a slow release of doxorubicin. J Microencapsul 2007;24(7):682-701.
    63. Prokopowicz M. In-vitro controlled release of doxorubicin from silica xerogels. J Pharm Pharmacol 2007;59(10):1365-1373.
    64. Nicoll SB, Radin S, Santos EM, Tuan RS, Ducheyne P. In vitro release kinetics of biologically active transforming growth factor-beta 1 from a novel porous glass carrier. Biomaterials 1997;18(12):853-859.
    65. Lee EJ, Shin DS, Kim HE, Kim HW, Koh YH, Jang JH. Membrane of hybrid chitosan-silica xerogel for guided bone regeneration. Biomaterials 2009;30(5):743-750.
    66. Santos EM, Radin S, Shenker BJ, Shapiro IM, Ducheyne P. Si-Ca-P xerogels and bone morphogenetic protein act synergistically on rat stromal marrow cell differentiation in vitro. J Biomed Mater Res 1998;41(1):87-94.
    67. Urist MR. Bone-Formation by Autoinduction. Science 1965;150(3698):893.
    68. Croteau S, Rauch F, Silvestri A, Hamdy RC. Bone morphogenetic proteins in orthopedics: from basic science to clinical practice. Orthopedics 1999;22(7):686-695.
    69. Israel DI, Nove J, Kerns KM, Moutsatsos IK, Kaufman RJ. Expression and characterization of bone morphogenetic protein-2 in Chinese hamster ovary cells. Growth Factors 1992;7(2):139-150.
    70. Bustos-Valenzuela JC, Halcsik E, Bassi EJ, Demasi MA, Granjeiro JM, Sogayar MC. Expression, Purification, Bioactivity, and Partial Characterization of a Recombinant Human Bone Morphogenetic Protein-7 Produced in Human 293T Cells. Mol Biotechnol 2010;46(2):118-126.
    71. Celeste AJ, Iannazzi JA, Taylor RC, Hewick RM, Rosen V, Wang EA, et al. Identification of Transforming Growth-Factor-Beta Family Members Present in Bone-Inductive Protein Purified from Bovine Bone. Proc Natl Acad Sci USA 1990;87(24):9843-9847.
    72. Elvin JA, Yan CN, Matzuk MM. Oocyte-expressed TGF-beta superfamily members in female fertility. Mol Cell Endocrinol 2000;159(1-2):1-5.
    73. Wozney JM, Rosen V, Celeste AJ, Mitsock LM, Whitters MJ, Kriz RW, et al. Novel regulators of bone formation:molecular clones and activities. Science 1988;242(4885):1528-1534.
    74. Stone CA. A molecular approach to bone regeneration. Brit J Plast Surg 1997;50(5):369-373.
    75. Jennissen HP, Chatzinikolaidou M, Rumpf HM. Long-term controlled release of bone morphogenetic protein 2 (BMP-2) from hydrophobic hydrocarbon-coated metallic surfaces for accelerated and improved osteointegration of implants. Mol Biol Cell 2001;12:392a-393a.
    76. Chang PC, Liu BY, Liu CM, Chou HH, Ho MH, Liu HC, et al. Bone tissue engineering withnovel rhBMP2-PLLA composite scaffolds. J Biomed Mater Res A 2007;81A(4):771-780.
    77. Yokota S, Uchida T, Kokubo S, Aoyama K, Fukushima S, Nozaki K, et al. Release of recombinant human bone morphogenetic protein 2 from a newly developed carrier. Int J Pharm 2003;251(1-2):57-66.
    78. Shi SS, Cheng XR, Wang JW, Zhang W, Peng L, Zhang YF. RhBMP-2 Microspheres-Loaded Chitosan/Collagen Scaffold Enhanced Osseointegration:An Experiment in Dog. J Biomater Appl 2009;23(4):331-346.
    79. Cartmell S. Controlled Release Scaffolds for Bone Tissue Engineering. J Pharm Sci 2009;98(2):430-441.
    80. Ji Y, Xu GP, Yan JL, Pan SH. Transplanted Bone Morphogenetic Protein/Poly(lactic-co-glycolic Acid) Delayed-release Microcysts Combined with Rat Micromorselized Bone and Collagen for Bone Tissue Engineering. J Int Med Res 2009;37(4):1075-1087.
    81. Takada T, Katagiri T, Ifuku M, Morimura N, Kobayashi M, Hasegawa K, et al. Sulfated polysaccharides enhance the biological activities of bone morphogenetic proteins. J Biol Chem 2003;278(44):43229-43235.
    82. Fisher MC, Li YC, Seghatoleslami MR, Dealy CN, Kosher RA. Heparan sulfate proteoglycans including syndecan-3 modulate BMP activity during limb cartilage differentiation. Matrix Biol 2006;25(1):27-39.
    83. Mulloy B, Linhardt RJ. Order out of complexity-protein structures that interact with heparin. Curr Opin Struc Biol 2001;11 (5):623-628.
    84. Folkman J, Shing Y. Angiogenesis. J Biol Chem 1992;267(16):10931-10934.
    85. Svahn CM, Weber M, Mattsson C, Neiger K, Palm M. Inhibition of Angiogenesis by Heparin Fragments in the Presence of Hydrocortisone. Carbohyd Polym 1992;18(1):9-16.
    86. Irie A, Habuchi H, Kimata K, Sanai Y. Heparan sulfate is required for bone morphogenetic protein-7 signaling. Biochem Biophys Res Commun 2003;308(4):858-865.
    87. Kim SE, Jeon O, Lee JB, Bae MS, Chun HJ. Moon SH, et al. Enhancement of ectopic bone formation by bone morphogenetic protein-2 delivery using heparin-conjugated PLGA nanoparticles with transplantation of bone marrow-derived mesenchymal stem cells. J Biomed Sci 2008:15(6):771-777.
    88. Kodama T, Goto T, Miyazaki T, Takahashi T. Bone Formation on Apatite-Coated Titanium Incorporated with Bone Morphogenetic Protein and Heparin. Int J Oral Maxillofac Implants 2008;23(6):1013-1019.
    89. Sader MS, Legeros RZ, Soares GA. Human osteoblasts adhesion and proliferation on magnesium-substituted tricalcium phosphate dense tablets. J Mater Sci Mater Med 2009;20(2):521-527.
    90. Tampieri A, Celotti G, Landi E. From biomimetic apatites to biologically inspired composites. Anal Bioanal Chem 2005;381(3):568-576.
    91. Witte F, Feyerabend F, Maier P, Fischer J, Stormer M, Blawert C, et al. Biodegradable magnesium-hydroxyapatite metal matrix composites. Biomaterials 2007;28(13):2163-2174.
    92. Ryu HS, Hong KS, Lee JK, Kim DJ, Lee JH, Chang BS, et al. Magnesia-doped HA/beta-TCP ceramics and evaluation of their biocompatibility. Biomaterials 2004;25(3):393-401.
    93. Paul W, Sharma CP. Effect of calcium, zinc and magnesium on the attachment and spreading of osteoblast like cells onto ceramic matrices. J Mater Sci Mater Med 2007;18(5):699-703.
    94. Landi E, Logroscino G, Proietti L, Tampieri A, Sandri M, Sprio S. Biomimetic Mg-substituted hydroxyapatite:from synthesis to in vivo behaviour. J Mater Sci Mater Med 2008;19(1):239-247.
    95. Bigi A, Foresti E, Gregorini R, Ripamonti A, Roveri N, Shah JS. The role of magnesium on the structure of biological apatites. Calcif Tissue Int 1992;50(5):439-444.
    96. Hort N, Huang Y, Fechner D, Stormer M, Blawert C, Witte F, et al. Magnesium alloys as implant materials-Principles of property design for Mg-RE alloys. Acta Biomater 2010;6(5):1714-1725.
    97. Pina S, Olhero SM, Gheduzzi S, Miles AW, Ferreira JM. Influence of setting liquid composition and liquid-to-powder ratio on properties of a Mg-substituted calcium phosphate cement. Acta Biomater 2009;5(4):1233-1240.
    98. Zreiqat H, Howlett CR, Zannettino A, Evans P, Schulze-Tanzil G, Knabe C, et al. Mechanisms of magnesium-stimulated adhesion of osteoblastic cells to commonly used orthopaedic implants. J Biomed Mater Res 2002;62(2):175-184.
    99. Gahmberg CG, Fagerholm SC, Nurmi SM, Chavakis T, Marchesan S, Gronholm M. Regulation of integrin activity and signalling. Biochim Biophys Acta 2009; 1790(6):431-444.
    100. Triantafilou K, Takada Y, Triantafilou M. Mechanisms of integrin-mediated virus attachment and internalization process. Crit Rev Immunol 2001;21(4):311-322.
    101. Longhurst CM, Jennings LK. Integrin-mediated signal transduction. Cell Mol Life Sci 1998;54(6):514-526.
    102. Aplin AE, Howe A, Alahari SK, Juliano RL. Signal transduction and signal modulation by cell adhesion receptors:the role of integrins, cadherins, immunoglobulin-cell adhesion molecules, and selectins. Pharmacol Rev 1998;50(2):197-263.
    103. Damsky CH. Extracellular matrix-integrin interactions in osteoblast function and tissue remodeling. Bone 1999;25(1):95-96.
    104. Burguera EF, Guitian F, Chow LC. A water setting tetracalcium phosphate-dicalcium phosphate dihydrate cement. J Biomed Mater Res A 2004;71(2):275-282.
    105. Liu C, Shao H, Chen F, Zheng H. Rheological properties of concentrated aqueous injectable calcium phosphate cement slurry. Biomaterials 2006;27(29):5003-5013.
    106. Sealy PI, Nguyen C, Tucci M, Benghuzzi H, Cleary JD. Delivery of antifungal agents using bioactive and nonbioactive bone cements. Ann Pharmacother 2009;43(10):1606-1615.
    107. Heinemann S, Heinemann C, Bernhardt R, Reinstorf A, Nies B, Meyer M, et al. Bioactive silica-collagen composite xerogels modified by calcium phosphate phases with adjustable mechanical properties for bone replacement. Acta Biomater 2009;5(6):1979-1990.
    108. Lind-Hansen T, Nielsen PT, Petruskevicius J, Endelt B, Nielsen KB, Hvid I, et al. Calcium phosphate cement enhances primary stability of open-wedge high-tibial osteotomies. Knee Surg Sports Traumatol Arthrosc 2009;17(12):1425-1432.
    109. Lilley KJ, Gbureck U, Knowles JC, Farrar DF, Barralet JE. Cement from magnesium substituted hydroxyapatite. J Mater Sci Mater Med 2005;16(5):455-460.
    110. TenHuisen KS, Brown PW. Effects of magnesium on the formation of calcium-deficient hydroxyapatite from CaHPO4.2H2O and Ca4(PO4)2O. J Biomed Mater Res 1997;36(3):306-314.
    111. Red-Horse K, Crawford Y, Shojaei F, Ferrara N. Endothelium-microenvironment interactions in the developing embryo and in the adult. Dev Cell 2007;12(2):181-194.
    112. Brandi ML, Collin-Osdoby P. Vascular biology and the skeleton. J Bone Miner Res 2006;21(2):183-192.
    113. Maier JA, Bernardini D, Rayssiguier Y, Mazur A. High concentrations of magnesium modulate vascular endothelial cell behaviour in vitro. Biochim Biophys Acta 2004;1689(1):6-12.
    114. Yang XF, Chen Y, Yang F, He FM, Zhao SF. Enhanced initial adhesion of osteoblast-like cells on an anatase-structured titania surface formed by H2O2/HCl solution and heat treatment. Dent Mater 2009;25(4):473-480.
    115. Aita H, Hori N, Takeuchi M, Suzuki T, Yamada M, Anpo M, et al. The effect of ultraviolet functionalization of titanium on integration with bone. Biomaterials 2009;30(6):1015-1025.
    116. Julien M, Khairoun I, LeGeros RZ, Delplace S, Pilet P, Weiss P, et al. Physico-chemical-mechanical and in vitro biological properties of calcium phosphate cements with doped amorphous calcium phosphates. Biomaterials 2007;28(6):956-965.
    117. Okumura A, Goto M, Goto T, Yoshinari M, Masuko S, Katsuki T, et al. Substrate affects the initial attachment and subsequent behavior of human osteoblastic cells (Saos-2). Biomaterials 2001;22(16):2263-2271.
    118. Linez-Bataillon P, Monchau F, Bigerelle M, Hildebrand HF. In vitro MC3T3 osteoblast adhesion with respect to surface roughness of Ti6A14V substrates. Biomol Eng 2002;19(2-6):133-141.
    119. Lincks J, Boyan BD, Blanchard CR, Lohmann CH, Liu Y, Cochran DL, et al. Response of MG63 osteoblast-like cells to titanium and titanium alloy is dependent on surface roughness and composition. Biomaterials 1998; 19(23):2219-2232.
    120. Faghihi S, Azari F, Zhilyaev AP, Szpunar JA, Vali H, Tabrizian M. Cellular and molecular interactions between MC3T3-E1 pre-osteoblasts and nanostructured titanium produced by high-pressure torsion. Biomaterials 2007;28(27):3887-3895.
    121. Yuasa T, Miyamoto Y, Ishikawa K, Takechi M, Momota Y, Tatehara S, et al. Effects of apatite cements on proliferation and differentiation of human osteoblasts in vitro. Biomaterials 2004:25(7-8):1159-1166.
    122. Arnaout MA. Goodman SL. Xiong JP. Coming to grips with integrin binding to ligands. Curr Opin Cell Biol 2002;14(5):641-651.
    123. Barczyk M, Carracedo S, Gullberg D. Integrins. Cell Tissue Res 2010;339(1):269-280.
    124. Sinha RK, Tuan RS. Regulation of human osteoblast integrin expression by orthopedic implant materials. Bone 1996; 18(5):451-457.
    125. Raz P, Lohmann CH, Turner J, Wang L, Poythress N, Blanchard C, et al. lalpha,25(OH)2D3 regulation of integrin expression is substrate dependent. J Biomed Mater Res A 2004;71(2):217-225.
    126. Rude RK, Gruber HE. Magnesium deficiency and osteoporosis:animal and human observations. J Nutr Biochem 2004;15(12):710-716.
    127. Ryan LM, Cheung HS, LeGeros RZ, Kurup IV, Toth J, Westfall PR, et al. Cellular responses to whitlockite. Calcif Tissue Int 1999;65(5):374-377.
    128. Cassell OC, Hofer SO, Morrison WA, Knight KR. Vascularisation of tissue-engineered grafts:the regulation of angiogenesis in reconstructive surgery and in disease states. Brit J Plast Surg 2002;55(8):603-610.
    129. Nomi M, Atala A, Coppi PD, Soker S. Principals of neovascularization for tissue engineering. Mol Aspects Med 2002;23(6):463-483.
    130. Koike N, Fukumura D, Gralla O, Au P, Schechner JS, Jain RK. Tissue engineering: creation of long-lasting blood vessels. Nature 2004;428(6979):138-139.
    131. Santos MI, Reis RL. Vascularization in bone tissue engineering:physiology, current strategies, major hurdles and future challenges. Macromol Biosci; 10(1):12-27.
    132. Maier JA, Malpuech-Brugere C, Zimowska W, Rayssiguier Y, Mazur A. Low magnesium promotes endothelial cell dysfunction:implications for atherosclerosis, inflammation and thrombosis. Biochim Biophys Acta 2004; 1689(1):13-21.
    133. Hackett SF, Friedman Z, Campochiaro PA. Cyclic 3',5'-adenosine monophosphate modulates vascular endothelial cell migration in vitro. Cell Biol Int Rep 1987;11(4):279-287.
    134. Hong BZ, Kang HS, So JN, Kim HN, Park SA, Kim SJ, et al. Vascular endothelial growth factor increases the intracellular magnesium. Biochem Biophys Res Commun 2006;347(2):496-501.
    135. Costa-Pinto AR, Correlo VM, Sol PC, Bhattacharya M, Charbord P, Delorme B, et al. Osteogenic differentiation of human bone marrow mesenchymal stem cells seeded on melt based chitosan scaffolds for bone tissue engineering applications. Biomacromolecules 2009;10(8):2067-2073.
    136. Giannoudis PV, Dinopoulos H, Tsiridis E. Bone substitutes:an update. Injury 2005;36 Suppl 3:S20-27.
    137. Jager M, Fischer J, Dohrn W, Li X, Ayers DC, Czibere A, et al. Dexamethasone modulates BMP-2 effects on mesenchymal stem cells in vitro. J Orthop Res 2008;26(11):1440-1448.
    138. Lefebvre L, Gremillard L, Chevalier J, Zenati R, Bernache-Assolant D. Sintering behaviour of 45S5 bioactive glass. Acta Biomater 2008;4(6):1894-1903.
    139. Koller G, Cook RJ, Thompson ID, Watson TF, Di Silvio L. Surface modification of titanium implants using bioactive glasses with air abrasion technologies. J Mater Sci Mater Med 2007;18(12):2291-2296.
    140. Czarnobaj K, Czarnobaj J. Sol-gel processed porous silica carriers for the controlled release of diclofenac diethylamine. J Biomed Mater Res B Appl Biomater 2008;87(1):114-120.
    141. Prokopowicz M. Correlation between physicochemical properties of doxorubicin-loaded silica/polydimethylsiloxane xerogel and in vitro release of drug. Acta Biomater 2009;5(1):193-207.
    142. Li XS, Liu CS, Yuan Y, Wang LJ, Wang QY. Preparation and hemostatic properties of mesoporous silica-based xerogels. J Inorg Mater 2008;23(2):327-331.
    143. Hoinkis E, Rohl-Kuhn B. Application of percolation theory to the drainage of liquid nitrogen from mesoporous silica xerogel Gelsil 50. Langmuir 2005;21(16):7366-7372.
    144. Sepulveda P, Jones JR, Hench LL. In vitro dissolution of melt-derived 45S5 and sol-gel derived 58S bioactive glasses. J Biomed Mater Res 2002;61(2):301-311.
    145. Silver IA, Deas J, Erecinska M. Interactions of bioactive glasses with osteoblasts in vitro: effects of 45S5 Bioglass, and 58S and 77S bioactive glasses on metabolism, intracellular ion concentrations and cell viability. Biomaterials 2001;22(2):175-185.
    146. De Benedittis A. Mattioli-Belmonte M, Krajewski A, Fini M, Ravaglioli A, Giardino R, et al. In vitro and in vivo assessment of bone-implant interface:a comparative study. Int J Artif Organs 1999;22(7):516-521.
    147. Riancho JA, Salas E, Zarrabeitia MT, Olmos JM, Amado JA, Fernandez-Luna JL, et al. Expression and functional role of nitric oxide synthase in osteoblast-like cells. J Bone Miner Res 1995;10(3):439-446.
    148. Lossdorfer S, Schwartz Z, Lohmann CH, Greenspan DC, Ranly DM, Boyan BD. Osteoblast response to bioactive glasses in vitro correlates with inorganic phosphate content. Biomaterials 2004;25(13):2547-2555.
    149. Quarles LD, Hartle JE,2nd, Siddhanti SR, Guo R, Hinson TK. A distinct cation-sensing mechanism in MC3T3-E1 osteoblasts functionally related to the calcium receptor. J Bone Miner Res 1997;12(3):393-402.
    150. Lopez-Alvarez M, Solla EL, Gonzalez P, Serra J, Leon B, Marques AP, et al. Silicon-hydroxyapatite bioactive coatings (Si-HA) from diatomaceous earth and silica. Study of adhesion and proliferation of osteoblast-like cells. J Mater Sci Mater Med 2009;20(5):1131-1136.
    151. Wang J, de Boer J, de Groot K. Proliferation and differentiation of osteoblast-like MC3T3-E1 cells on biomimetically and electrolytically deposited calcium phosphate coatings. J Biomed Mater Res A 2009;90(3):664-670.
    152. Bernhardt A, Lode A, Boxberger S, Pompe W, Gelinsky M. Mineralised collagen--an artificial, extracellular bone matrix--improves osteogenic differentiation of bone marrow stromal cells. J Mater Sci Mater Med 2008;19(1):269-275.
    153. MacPherson H, Noble BS, Ralston SH. Expression and functional role of nitric oxide synthase isoforms in human osteoblast-like cells. Bone 1999;24(3):179-185.
    154. Hukkanen M, Hughes FJ, Buttery LD, Gross SS, Evans TJ, Seddon S, et al. Cytokine-stimulated expression of inducible nitric oxide synthase by mouse, rat, and human osteoblast-like cells and its functional role in osteoblast metabolic activity. Endocrinology 1995;136(12):5445-5453.
    155. Conconi MT, Tommasini M, Baiguera S, De Coppi P, Parnigotto PP, Nussdorfer GG. Effects of prostaglandins El and E2 on the growth and differentiation of osteoblast-like cells cultured in vitro. Int J Mol Med 2002; 10(4):451-456.
    156. Tan YF, Hong SF, Wang XL, Lu J, Wang H, Zhang XD. Regulation of bone-related genes expression by bone-like apatite in MC3T3-E1 cells. J Mater Sci Mater Med 2007;18(11):2237-2241.
    157. Zarubin T, Han J. Activation and signaling of the p38 MAP kinase pathway. Cell Res 2005;15(1):11-18.
    158. Huang Z, Cheng SL, Slatopolsky E. Sustained activation of the extracellular signal-regulated kinase pathway is required for extracellular calcium stimulation of human osteoblast proliferation. J Biol Chem 2001;276(24):21351-21358.
    159. Lam V, Kalesnikoff J, Lee CW, Hernandez-Hansen V, Wilson BS, Oliver JM, et al. IgE alone stimulates mast cell adhesion to fibronectin via pathways similar to those used by IgE+ antigen but distinct from those used by Steel factor. Blood 2003; 102(4):1405-1413.
    160. Walsh MF, Thamilselvan V, Grotelueschen R, Farhana L, Basson M. Absence of adhesion triggers differential FAK and SAPKp38 signals in SW620 human colon cancer cells that may inhibit adhesiveness and lead to cell death. Cell Physiol Biochem 2003;13(3):135-146.
    161. Aughenbaugh W, Radin S, Ducheyne P. Silica sol-gel for the controlled release of antibiotics. Ⅱ. The effect of synthesis parameters on the in vitro release kinetics of vanomycin. J Biomed Mater Res 2001;57(3):321-326.
    162. Condie R, Bose S, Bandyopadhyay A. Bone cell-materials interaction on Si microchannels with bioinert coatings. Acta Biomater 2007;3(4):523-530.
    163. Wang XZ, Li WH, Zhu GS, Qiu SL, Zhao DY, Zhong B. Effects of ammonia/silica molar ratio on the synthesis and structure of bimodal mesopore silica xerogel. Microporous Mesoporous Mat 2004;71(1-3):87-97.
    164. Ek S, Root A, Peussa M, Niinisto L. Determination of the hydroxyl group content in Silica by thermogravimetry and a comparison with H-1 MAS NMR results.2nd International Symposium on Calorimetry and Thermal Effects in Catalysis; 2000 Jul 05-07; Lyon, France:Elsevier Science Bv; 2000. p.201-212.
    165. Lee KH, Rhee SH. The mechanical properties and bioactivity of poly(methyl methacrylate)/SiO(2)-CaO nanocomposite. Biomaterials 2009;30(20):3444-3449.
    166. Tognarini I, Sorace S, Zonefrati R, Galli G, Gozzini A, Carbonell Sala S, et al. In vitro differentiation of human mesenchymal stem cells on Ti6A14V surfaces. Biomaterials 2008;29(7):809-824.
    167. Alves CM, Yang Y, Carnes DL, Ong JL, Sylvia VL, Dean DD, et al. Modulating bone cells response onto starch-based biomaterials by surface plasma treatment and protein adsorption. Biomaterials 2007;28(2):307-315.
    168. Schwartz Z, Olivares-Navarrete R, Wieland M, Cochran DL, Boyan BD. Mechanisms regulating increased production of osteoprotegerin by osteoblasts cultured on microstructured titanium surfaces. Biomaterials 2009;30(20):3390-3396.
    169. Balas F, Manzano M, Horcajada P, Vallet-Regi M. Confinement and controlled release of bisphosphonates on ordered mesoporous silica-based materials. J Am Chem Soc 2006;128(25):8116-8117.
    170. Vohra S, Hennessy KM, Sawyer AA, Zhuo Y, Bellis SL. Comparison of mesenchymal stem cell and osteosarcoma cell adhesion to hydroxyapatite. J Mater Sci Mater Med 2008;19(12):3567-3574.
    171. Kokubo T, Takadama H. How useful is SBF in predicting in vivo bone bioactivity? Biomaterials 2006;27(15):2907-2915.
    172. Mkhonto D, de Leeuw NH. The effect of surface silanol groups on the deposition of apatite onto silica surfaces:a computer simulation study. J Mater Sci Mater Med 2008;19(1):203-216.
    173. Rose SF, Lewis AL, Hanlon GW, Lloyd AW. Biological responses to cationically charged phosphorylcholine-based materials in vitro. Biomaterials 2004;25(21):5125-5135.
    174. Reffitt DM, Ogston N, Jugdaohsingh R, Cheung HF, Evans BA, Thompson RP, et al. Orthosilicic acid stimulates collagen type 1 synthesis and osteoblastic differentiation in human osteoblast-like cells in vitro. Bone 2003;32(2):127-135.
    175. Heino J. The collagen receptor integrins have distinct ligand recognition and signaling functions. Matrix Biol 2000;19(4):319-323.
    176. Yang RS, Lin WL, Chen YZ, Tang CH, Huang TH, Lu BY, et al. Regulation by ultrasound treatment on the integrin expression and differentiation of osteoblasts. Bone 2005;36(2):276-283.
    177. Moursi AM, Globus RK, Damsky CH. Interactions between integrin receptors and fibronectin are required for calvarial osteoblast differentiation in vitro. J Cell Sci 1997;110 (Pt 18):2187-2196.
    178. Lee MH, Ducheyne P, Lynch L, Boettiger D, Composto RJ. Effect of biomaterial surface properties on fibronectin-alpha5betal integrin interaction and cellular attachment. Biomaterials 2006;27(9):1907-1916.
    179. Gazzerro E, Canalis E. Bone morphogenetic proteins and their antagonists. Rev Endocr Metab Disord 2006;7(1-2):51-65.
    180. Chen D, Zhao M, Mundy GR. Bone morphogenetic proteins. Growth Factors 2004;22(4):233-241.
    181. Wang EA, Rosen V, D'Alessandro JS, Bauduy M, Cordes P, Harada T, et al. Recombinant human bone morphogenetic protein induces bone formation. Proc Natl Acad Sci U S A 1990;87(6):2220-2224.
    182. Yasko AW, Lane JM, Fellinger EJ, Rosen V, Wozney JM, Wang EA. The healing of segmental bone defects, induced by recombinant human bone morphogenetic protein (rhBMP-2). A radiographic, histological, and biomechanical study in rats. J Bone Joint Surg Am 1992;74(5):659-670.
    183. Zhao B, Katagiri T, Toyoda H, Takada T, Yanai T, Fukuda T, et al. Heparin potentiates the in vivo ectopic bone formation induced by bone morphogenetic protein-2. J Biol Chem 2006;281(32):23246-23253.
    184. Hosseinkhani H, Hosseinkhani M, Khademhosseini A, Kobayashi H. Bone regeneration through controlled release of bone morphogenetic protein-2 from 3-D tissue engineered nano-scaffold. J Control Release 2007; 117(3):380-386.
    185. Kanatani M, Sugimoto T, Kaji H, Kobayashi T, Nishiyama K, Fukase M, et al. Stimulatory effect of bone morphogenetic protein-2 on osteoclast-like cell formation and bone-resorbing activity. J Bone Miner Res 1995; 10(11):1681-1690.
    186. Kaneko H, Arakawa T, Mano H, Kaneda T, Ogasawara A, Nakagawa M, et al. Direct stimulation of osteoclastic bone resorption by bone morphogenetic protein (BMP)-2 and expression of BMP receptors in mature osteoclasts. Bone 2000;27(4):479-486.
    187. Yabe T, Samuels I, Schwartz JP. Bone morphogenetic proteins BMP-6 and BMP-7 have differential effects on survival and neurite outgrowth of cerebellar granule cell neurons. J Neurosci Res 2002;68(2):161-168.
    188. Yanagisawa M, Takizawa T, Ochiai W, Uemura A, Nakashima K. Taga T. Fate alteration of neuroepithelial cells from neurogenesis to astrocytogenesis by bone morphogenetic proteins. Neurosci Res 2001;41 (4):391-396.
    189. Jeon O, Song SJ, Kang SW, Putnam AJ, Kim BS. Enhancement of ectopic bone formation by bone morphogenetic protein-2 released from a heparin-conjugated poly(L-lactic-co-glycolic acid) scaffold. Biomaterials 2007;28(17):2763-2771.
    190. Lin H, Zhao Y, Sun W, Chen B, Zhang J, Zhao W, et al. The effect of crosslinking heparin to demineralized bone matrix on mechanical strength and specific binding to human bone morphogenetic protein-2. Biomaterials 2008;29(9):1189-1197.
    191. Kato M, Toyoda H, Namikawa T, Hoshino M, Terai H, Miyamoto S, et al. Optimized use of a biodegradable polymer as a carrier material for the local delivery of recombinant human bone morphogenetic protein-2 (rhBMP-2). Biomaterials 2006;27(9):2035-2041.
    192. Chen FM, Zhao YM, Sun HH, Jin T, Wang QT, Zhou W, et al. Novel glycidyl methacrylated dextran (Dex-GMA)/gelatin hydrogel scaffolds containing microspheres loaded with bone morphogenetic proteins:formulation and characteristics. J Control Release 2007;118(1):65-77.
    193. Jiao X, Billings PC, O'Connell MP, Kaplan FS, Shore EM, Glaser DL. Heparan sulfate proteoglycans (HSPGs) modulate BMP2 osteogenic bioactivity in C2C12 cells. J Biol Chem 2007;282(2):1080-1086.
    194. Manton KJ, Leong DF, Cool SM, Nurcombe V. Disruption of heparan and chondroitin sulfate signaling enhances mesenchymal stem cell-derived osteogenic differentiation via bone morphogenetic protein signaling pathways. Stem Cells 2007;25(11):2845-2854.
    195. Kanzaki S, Takahashi T, Kanno T, Ariyoshi W, Shinmyouzu K, Tujisawa T, et al. Heparin inhibits BMP-2 osteogenic bioactivity by binding to both BMP-2 and BMP receptor. J Cell Physiol 2008;216(3):844-850.
    196. Street JT, McGrath M, O'Regan K, Wakai A, McGuinness A, Redmond HP. Thromboprophylaxis using a low molecular weight heparin delays fracture repair. Clin Orthop Relat Res 2000(381):278-289.
    197. Griffith GC, Nichols G, Jr., Asher JD, Flanagan B. Heparin Osteoporosis. JAMA 1965;193:91-94.
    198. Miller WE, DeWolfe VG. Osteoporosis resulting from heparin therapy. Report of a case. Cleve Clin Q 1966;33(1):31-34.
    199. Nelson-Piercy C. Heparin-induced osteoporosis. Scand J Rheumatol Suppl 1998;107:68-71.
    200. Vikhoreva G, Bannikova G, Stolbushkina P, Panov A, Drozd N, Makarov V, et al. Preparation and anticoagulant activity of a low-molecular-weight sulfated chitosan. Carbohydr Polym 2005;62(4):327-332.
    201. Nishimura SI, Kai H, Shinada K, Yoshida T, Tokura S, Kurita K, et al. Regioselective syntheses of sulfated polysaccharides:specific anti-HIV-1 activity of novel chitin sulfates. Carbohydr Res 1998;306(3):427-433.
    202. Holme KR, Perlin AS. Chitosan N-sulfate. A water-soluble polyelectrolyte. Carbohydr Res 1997;302(1-2):7-12.
    203. Katagiri T, Yamaguchi A, Komaki M, Abe E, Takahashi N, Ikeda T, et al. Bone morphogenetic protein-2 converts the differentiation pathway of C2C12 myoblasts into the osteoblast lineage. J Cell Biol 1994; 127(6 Pt 1):1755-1766.
    204. Lee MH, Javed A, Kim HJ, Shin HI, Gutierrez S, Choi JY, et al. Transient upregulation of CBFA1 in response to bone morphogenetic protein-2 and transforming growth factor betal in C2C12 myogenic cells coincides with suppression of the myogenic phenotype but is not sufficient for osteoblast differentiation. J Cell Biochem 1999;73(1):114-125.
    205. Roth JA, Kim BG, Lin WL, Cho MI. Melatonin promotes osteoblast differentiation and bone formation. J Biol Chem 1999;274(31):22041-22047.
    206. Ruppert R, Hoffmann E, Sebald W. Human bone morphogenetic protein 2 contains a heparin-binding site which modifies its biological activity. Eur J Biochem 1996;237(1):295-302.
    207.Scheufler C, Sebald W, Hulsmeyer M. Crystal structure of human bone morphogenetic protein-2 at 2.7 A resolution. J Mol Biol 1999;287(1):103-115.
    208. Hausser HJ, Brenner RE. Low doses and high doses of heparin have different effects on osteoblast-like Saos-2 cells in vitro. J Cell Biochem 2004;91(5):1062-1073.
    209. Yoshikawa H, Rettig WJ, Takaoka K, Alderman E, Rup B, Rosen V, et al. Expression of bone morphogenetic proteins in human osteosarcoma. Immunohistochemical detection with monoclonal antibody. Cancer 1994;73(1):85-91.
    210. Zimmerman LB, De Jesus-Escobar JM, Harland RM. The Spemann organizer signal noggin binds and inactivates bone morphogenetic protein 4. Cell 1996;86(4):599-606.
    211. Zhou Y, Liu HX, Mistretta CM. Bone morphogenetic proteins and noggin:inhibiting and inducing fungiform taste papilla development. Dev Biol 2006;297(1):198-213.
    212. Zhu W, Kim J, Cheng C, Rawlins BA, Boachie-Adjei O, Crystal RG, et al. Noggin regulation of bone morphogenetic protein (BMP) 2/7 heterodimer activity in vitro. Bone 2006;39(1):61-71.
    213. Paine-Saunders S, Viviano BL, Economides AN, Saunders S. Heparan sulfate proteoglycans retain Noggin at the cell surface:a potential mechanism for shaping bone morphogenetic protein gradients. J Biol Chem 2002;277(3):2089-2096.
    214. Viviano BL, Paine-Saunders S, Gasiunas N, Gallagher J, Saunders S. Domain-specific modification of heparan sulfate by Qsulf1 modulates the binding of the bone morphogenetic protein antagonist Noggin. J Biol Chem 2004;279(7):5604-5611.
    215. Billings PC, Fiori JL, Bentwood JL, O'Connell MP, Jiao X, Nussbaum B, et al. Dysregulated BMP signaling and enhanced osteogenic differentiation of connective tissue progenitor cells from patients with fibrodysplasia ossificans progressiva (FOP). J Bone Miner Res 2008;23(3):305-313.
    216. O'Connell MP, Billings PC, Fiori JL, Deirmengian G, Roach HI, Shore EM, et al. HSPG modulation of BMP signaling in fibrodysplasia ossificans progressiva cells. J Cell Biochem 2007;102(6):1493-1503.
    217. Feldman GJ, Billings PC, Patel RV, Caron RJ, Guenther C, Kingsley DM, et al. Over-expression of BMP4 and BMP5 in a child with axial skeletal malformations and heterotopic ossification:a new syndrome. Am J Med Genet A 2007;143(7):699-706.
    218. Liu CS, Huang Y, Chen JG. The physicochemical properties of the solidification of calcium phosphate cement. J Biomed Mater Res B Appl Biomater 2004;69B(1):73-78.
    219. Liu CS, Shao HF, Chen FY, Zheng HY. Effects of the granularity of raw materials on the hydration and hardening process of calcium phosphate cement. Biomaterials 2003;24(23):4103-4113.
    220. Carlisle EM. Silicon. A Possible Factor in Bone Calcification. Science 1970;167(3916):279. 221. Schwarz K, Milne DB. Growth-Promoting Effects of Silicon in Rats. Nature 1972;239(5371):333.
    222. Wu CT, Ramaswamy Y Soeparto A, Zreiqat H. Incorporation of titanium into calcium silicate improved their chemical stability and biological properties. J Biomed Mater Res A 2008;86A(2):402-410.
    223. Liu XY, Morra M, Carpi A, Li B. Bioactive calcium silicate ceramics and coatings. Biomed Pharmacother 2008;62(8):526-529.
    224. Dufrane D, Delloye C, Mckay IJ, De Aza PN, De Aza S, Schneider YJ, et al. Indirect cytotoxicity evaluation of pseudowollastonite. J Mater Sci Mater Med 2003;14(l):33-38.
    225. Guo H, Wei J, Yuan Y, Liu CS. Development of calcium silicate/calcium phosphate cement for bone regeneration. Biomed Mater 2007;2(3):S153-S159.
    226. Miyazono K, Kamiya Y, Morikawa M. Bone morphogenetic protein receptors and signal transduction. J Biochem 2010;147(1):35-51.
    227. Yang WZ, Zhou DL, Yin GF, Yin SY, Zheng CQ. Hydraulic characteristic and osteoinduction capacity of calcium phosphate/BMP bioactive bone cement. J Inorg Mater 2005;20(5):1174-1180.
    228. Zhu WM, Wang DP, Zhang XJ, Lu W, Han Y, Ou YK, et al. Experimental Study of Nano-Hydroxyapatite/Recombinant Human Bone Morphogenetic Protein-2 Composite Artificial Bone. Artif Cells Blood Substit Biotechnol 2010;38(3):150-156.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700