用户名: 密码: 验证码:
深层气藏介质变形渗流机理及气藏工程应用研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
近年来,在我国西部发现的天然气气藏多数是埋藏较深的低渗透气藏、致密气藏和异常高压气藏,这些气藏在开发过程中存在应力敏感效应、气体滑脱效应和启动压力梯度效应,使气体在储层中的渗流不同于一般的常规气藏,存在明显的非达西渗流现象。本文以实验研究为基础,综合岩石力学、材料力学、渗流力学、气藏工程等多学科的理论和方法,对此类气藏的渗流机理进行了较为深入的研究。
     首先,进行了大量的介质变形实验和弹塑性变形实验,研究了岩心物性参数随有效覆压变化的规律。在此基础上,对深层低渗岩心的应力敏感机理进行了深入研究,揭示了不同应力阶段低渗岩心应力敏感的主要原因,并分析探讨了目前应力敏感评价的行业标准和理论研究中存在的不足,定义了新的应力敏感系数,采用了一个统一系数的二重乘幂式可以表达任意渗透率随有效覆压的变化关系,从而能够方便地计算储层任意渗透率在开发过程中的动态变化情况,为建立低渗气藏介质变形渗流模型奠定了基础。同时,通过实验系统地研究了影响深层低渗气藏应力敏感的各个因素。
     其次,通过实验研究了低渗岩心中气体的滑脱效应及启动压力梯度效应,根据所作的理论图版分析了它们对气藏生产的影响;在实验研究及理论研究的基础上,推导出气井在考虑应力敏感效应时稳定流和拟稳定流的产能公式,并根据应力敏感对产能的动态影响程度提出了气藏应力敏感评价标准;同时针对目前气藏渗透率划分条件不明确的情况,讨论并提出渗透率的划分标准,并按照应力敏感效应、气体滑脱效应以及启动压力梯度效应对气藏生产的影响程度,对气藏进行了新的分类。
     最后,在前面研究的基础上建立了考虑应力敏感、气体滑脱和启动压力梯度效应的非达西气、水两相渗流模型,编制了相应的三维两相气藏数值模拟软件,并进行了模拟计算。结果表明:气体滑脱效应和启动压力梯度效应对气藏生产的影响很小,而介质变形效应对气藏生产的影响较大,考虑渗透率变异和压缩系数变异时,气藏的稳产期变短,稳产期结束时的采出程度和最终采收率都降低,气井产量越高,这种影响越大,需要综合考虑经济因素和技术因素来确定最优气井产量,使采气速度、稳产时间和最终采收率达到最优化。
Currently, a plenty of low permeability/tight gas reservoirs with deep buried depth have been found in western China. Gas percolation in these reservoirs does not comply with the Darcy law, which is different from those of normal gas reservoirs. The reason is that gas production of these reservoirs are effected by stress sensitivity effect, gas slippage effect and starting gradient effect. Based on experimental methods, and combined with theories of rock mechanics, material mechanics, percolation mechanics and gas reservoir engineering, non-Darcy percolation mechanism and relative influence factors of low-permeability deformable gas reservoirs are studied.
     First, by a great deal of core deformation experiments, the effects of deformation on rock parameters such as porosity, compressibility, permeability are studied, and the deformation characteristics of low permeability cores are obtained. Based on these results, the mechanics of stress sensitivity of deep low permeability reservoirs are studied deeply, and the evaluation standard of stress sensitivity is analyzed. A new stress sensitive coefficient is defined, and then the relationship between permeability and effective stress can be expressed by a dual-power function. By this method, core permeability in reservoir condition can be calculated conveniently, which provides a basis to establish percolation model of low-permeability deformable gas reservoir. At the same time, various influence factors of stress sensitivity are studied by experiments.
     Second, by experimental methods, the gas slippage effect and starting pressure gradient effect on gas production in low permeability gas reservoir are studied. Productivity formulae of gas wells of steady state flow and pseudo-steady flow are deduced respectively. And according to the effect of stress sensitivity on gas productivity, an evaluation standard of stress sensitivity for gas reservoirs is given. Taking stress sensitivity, gas slippage and starting pressure gradient effect into account, gas reservoirs are categorized into high-medium permeability gas reservoir, low-permeability gas reservoir, extra-permeability gas reservoir and tight gas reservoir.
     Finally, based on experimental and theoretical research, considering the effect of stress sensitivity, gas slippage and starting pressure gradient, a non-Darcy gas-water percolation numerical model is established, and 3-D two phases simulator is developed. Gas reservoir simulation result shows that the effect of gas slippage and starting pressure gradient on gas production is slight; however, stress sensitivity brings great effect on gas production. When taking permeability variation and rock compressibility variation into account, the stable production period and recovery percent of reserves are both reduced. The higher the daily gas production, the more serious the impact on gas production. In order to obtain optimum rate of gas production, stable production period and ultimate recovery factor, both economic factors and technical factors should be considered when determine the gas well daily production.
     The research above is useful to understand the percolation characteristics of deep deformable gas reservoirs and is helpful to the reasonable development of such gas reservoirs.
引文
[1]罗平亚.油气田开发工程[M].北京:中国石化出版社,2003.1:285
    [2]李士伦,孙雷等.低渗致密气藏、凝析气藏开发难点与对策[J].新疆石油地质,2004,25(2):166~168
    [3]陈颙.地壳岩石的力学性能[M].北京:地震出版社,1988
    [4] Hall H.N., Compressibility of Reservoir Rocks [J]. JPT, Vol.5, No.1, 1953:16
    [5] Fatt I.Davis D.H., Reduction in Permeability with overburden Pressure [J]. JPT, Vol.4, No.12, 1952:34~41
    [6] Fatt I. , Pore Volume Compressibilities of Sandstone Reservoirs Rocks [J]. AAPG, Vol.42, No.8, August, 1958:1924~1957
    [7] S.C.Jones, Two-Point Determinations of Permeability and PV vs Net Confining Stress[C]. SPE15380: 235~241
    [8] Jose G..,Numerical Simulation of Coupled Fuid-flow/Geomechanical Behavior of Tight Gas Reservoirs with Stress Sensitive Permeability [C]. SPE 39055, 1997:1~15
    [9] M.Latchie A.S., Hemstick R.A., Joung L.W. , The effective compressibility of Reservoir Rock and Its Effect on Permeability [J]. JPT, Vol.10, No.6, 1952:49~51
    [10] A.T.戈尔布诺夫.异常油田开发[M].北京:石油工业出版社,1987.5
    [11]刘建军、刘先贵.有效压力对低渗透多孔介质孔隙度、渗透率的影响[J].地质力学学报,2001.3,7(1):41-44
    [12]阮敏,王连刚.低渗油田开发与压敏效应[J].石油学报,2002.5,23(3):73~76
    [13]张新红,秦积舜.低渗岩心物性参数与应力关系的试验研究[J].石油大学学报(自然科学版),2001.8,25(4):56~57;
    [14]秦积舜,张新红.变应力条件下低渗透储层近井地带渗流模型[J].石油钻采工艺,2001.10,23(5):41~44
    [15]秦积舜.变围压条件下低渗砂岩储层渗透率变化规律研究[J].西安石油学院学报,2002.7,17(4):28~31
    [16]王秀娟,赵永胜,文武等.低渗透储层应力敏感性与产能物性下限[J].石油与天然气地质,2003.6,24(3):162~165
    [17]朱中谦,王振彪,李汝勇等.异常高压气藏岩石变形特征及其对开发的影响[J].天然气地球科学,2003.2,14(1):60~64
    [18]孙龙德,宋文杰,江同文.克拉2气田储层应力敏感性及其对产能影响的实验研究[J].中国科学D辑,2004.34(增刊Ⅰ):134~142
    [19]张琰,崔迎春.砂砾性低渗透气藏应力敏感性的试验研究[J].石油钻采工艺,1999.12,21(6):1~6
    [20]崔迎春,张琰.低渗气层损害评价室内试验条件的研究[J].钻采工艺,2000.8,23(4):12~14
    [21]张琰,崔迎春.低渗气藏应力敏感性及评价方法的研究[J].现代地质,2001.12,25(4):453~457
    [22]张琰,崔迎春.低渗气藏主要损害机理及保护方法的研究[J].地质与开发,2000.10,36(5):76~78
    [23]范学平,徐向荣.地应力对岩心渗透率伤害实验及机理分析[J].石油勘探与开发,2002.4,29(2):117~119
    [24]向阳、向丹、杜文博.致密砂岩气藏应力敏感的全模拟试验研究[J].成都理工学院学报,2002.12,29(6):617~619
    [25]郝春山,李治平,杨满平等.变形介质的变形机理及物性特征研究[J].西南石油学院学报,2003.8,25(4):19~21
    [26] Terzaghi K., Theoretical Soil Mechanics. Wiley, New York, 1943
    [27] Biot M A,Willis D. G., The Elastic Coefficients of The Theory of Consolidation [J]. ASME J Appl Mech (1957) 24:594~601
    [28] Geertsma,J., The Effect of Fluid Pressure Decline on Volumetric Changes of Porous Rocks [J]. Trans. AIME (1957)210:331~340
    [29]李传亮.多孔介质应力关系方程[J].应用基础与工程科学学报,1998.6, 6(2):145~148
    [30]李传亮.多孔介质的有效应力及其应用研究[D].合肥:中国科技大学,2000
    [31]李传亮.多孔介质的双重有效应力[J].自然杂志,25(1):288~292
    [32]李培超,孔详言,李传亮.地下各种压力之间关系式的修正[J].岩石力学与工程学报,2002.11,21(10):1551~1553
    [33]陈勉,陈至达.多重孔隙介质的有效应力定律[J].应力数据和力学,1999.11,20(11):1121~1127
    [34] Y.B.Sudirman, Three-Dimensional Fully Coupled Flow:Consolidation Modeling Using Finite Element Method [C]. SPE 28755:149~155
    [35] M.Gutterrez, R.W.Lewis ,I.Master, Petroleum Reservoir Simulation Coupling Fluid Flow and Geomechanics [C]. SPE 72095,164~171
    [36] Jose G., Her-Yuan Chen, Fully Coupled Fluid-Flow/Geomechanics Simulation of Stress-Sensitive Reservoirs [C]. June 1997,SPE38023
    [37]路保平,张传进.岩石力学在油气开发中的应用前景分析[C].石油钻探技术,2000.2,28(11):7~9
    [38]葛家理.现代油藏渗流力学原理(上册)[M].石油工业出版社,2003.2:256~260
    [39]董平川,徐小荷.储层流固耦合的数学模型及其有限元方程[J].石油学报,1998,19(1):64~70
    [40]王自明,杜志敏.变温条件下弹塑性油藏中多相渗流的流固耦合数学模型与数值模拟[J].石油勘探与开发,2001.12,28(6):68~72
    [41]冉启全,李士伦.流固耦合油藏数值模拟中物性参数动态模型研究[J].石油勘探与开发,1997.6,24(3):61~65
    [42]范学平,李秀生,张士诚.砂岩油藏流固耦合数学模拟及实验研究[D].石油大学(北京)博士论文,2002.10
    [43]刘建军.裂缝性低渗油藏流固耦合理论及应用[D].中国科学院渗流流体力学研究所博士论文,2002.3
    [44] Vaziri H.H., Coupled fluid flow and stress analysis of oil sand subject to heating[J].JCPT, 1988(5): 84~91
    [45] Fung L.S.K., Reservoir Simulation with a Control-Volume Finite-Element Method [C]. SPE21224: 349~357
    [46] Tortike,W.S., A Framework for Multiphase Non-isothermal Fluid Flow in a Deforming Heavy Oil Reservoir [C]. SPE16030
    [47] Marte Gutierrez, Fully Coupled Analysis of Reservoir Compaction and Subsidence [C]. SPE 28900:339~347
    [48] Chen, H.-Y. Teufel, L.W., Lee, R.L., Coupled Fluid Flow and Geomechanics in Reservoir Study—I. Theory and governing equations [C]. SPE 30752, 1995:507~519
    [49] Klinkenberg, L.J., The Permeability of Porous Media to Liquids and Gases [J], API Drilling and Production Practices,1941:200-213
    [50] Jones,F.O. and Owens,W.W., A Laboratory Study of Low Permeability Gas Sands[C]. SPE7551.
    [51] Sampath,K. and Keighin,C.W., Factors Affecting Gas Slippage in Tight Sandstornes[C]. SPE9872
    [52] Rushing J.A., Newsham, K.E and Van Frassen, K.C., Measurement of the Two-Phase Gas Slippage Phenomenon and its Effect on Gas Relative Permeability in Tight Gas Sands[C]. SPE84297
    [53]陈代珣.渗流气体滑脱现象与渗透率变化的关系[J].力学学报,2002.1,34(1):96~100
    [54]姚约东,李相方,葛家理等.低渗气层中气体渗流克林贝尔效应的实验研究[J].天然气工业,2004.11,24(11):100~102
    [55]李铁军,李允.低渗透储层气体渗流数学模型及计算方法[J].天然气工业,2000,20(5),70~72.
    [56]钱治家.低渗透气藏渗流理论及其试井分析方法研究[D]:,西南石油学院博士论文,成都: 2002.6
    [57]王茜,张烈辉、钱治家等.考虑克林贝尔效应的低渗、特低渗气藏数学模型[J].天然气工业,2003.12,23(6):100~102
    [58]严文德,郭肖,贾英.考虑滑脱效应的低渗透气藏气-水两相渗流数值模拟器[J].新疆石油地质,2005.4,26(2):186~188
    [59]冯文光.天然气非达西低速不稳定渗流[J].天然气工业,1986,6(3):41~48
    [60]任晓娟,闫庆来,何秋轩.低渗气层气体的渗流实验研究[J].西安石油学院学报,1997,12(3):22~25
    [61]吴凡,孙黎娟,乔国安等.气体渗流特征及启动压力规律的研究[J].天然气工业,2001.2,21(1):82~84
    [62]林振宝,石济民,林岗等.快速自适应局部网加密方法在气藏数值模拟中的应用[J].天然气工业,1994.10,14(5):33~35
    [63]钟孚勋,张永生,杨雅和.数值模拟技术在气田开发中的应用研究[J].天然气工业,1995.6,15(3):95~96
    [64]何晓东.应用数值模拟技术认识气藏地质特征[J].天然气工业,2002,22(增刊):98~101
    [65]郑洪印.底水气藏气井动态模拟研究[J].新疆石油地质,1991.6,12(3):223~228
    [66]张箭,李华昌,刘成川.新场气田低渗致密沙二气藏数值模拟研究[J].天然气工业,2002.6,22(3):58~61
    [67]刘义成,舒锦,廖仕孟.裂缝水窜数值模拟在气藏提高采收率中的应用研究[J].天然气工业,2002,22(增刊):80-83
    [68] N.R.Warpinski , L.W.Teufel.Determination of the Effective Stress Law for Permeability and Determination in Low-Permeability Rock [C]. SPE20572,1992
    [69]刘听成.岩石力学有关名词解释[M].北京:煤炭工业出版社,1986:56~59
    [70]冯增昭.沉积岩石学[M] .北京:石油工业出版社,1993:104~199
    [71]耶格JC,库克NGW.岩石力学基础[M].北京:科学出版社,1981:271~272
    [72]吴志均,何顺利.低渗砂岩气藏地质特征和开发对策探讨[J].钻采工艺,2004.8,27(4):103~106
    [73]郑荣臣,魏俊之.异常高压气藏岩石压缩系数对开采特征的影响[J].大庆石油地质与开发,2002.8,21(4):39~40
    [74]刘向君,罗平亚.岩石力学与石油工程[M].北京:石油工业出版社,2004.10:67
    [75]蔡美峰.岩石力学与工程[M].北京:科学出版社,2002
    [76] F.O.Jones, W.W.Owens., A Laboratory Study of Low-Permeability Gas Sands.SPE7551,1980
    [77]杨满平.油气储层多孔介质的变形理论及应用研究[D].西南石油学院博士论文,2004.6
    [78]宋付权.变形介质低渗油藏的产能分析[J].特种油气藏,2002.8,9(4):33~35
    [79]杨满平.低渗透变形介质油藏合理生产压差研究[J].油气地质与采收率,2004.10, 11(5): 41~43
    [80]张居增,李健,苏坚等.一个简易的变形介质气藏数值模拟方法[J].天然气地球科学,2005.4,16(2):221~223
    [81]王鸣华.气藏工程[M].石油工业出版社,1997.12:54~55
    [82]罗天雨,曹文江.陈燕章.异常高压油藏渗透率变化系数的求取方法[J].钻采工艺,2004.10,27(5):51~53
    [83]王江,王玉英.异常高压特低渗透油藏储层压力敏感系性研究[J].大庆石油地质与开发,2003.10,22(5):28~31
    [84] M.Y. Zhang, A.K., Ambastha. New Insights in Pressure-Transient Analysis for Stress-Sensitive Resrvoirs[C]. SPE28420,1994
    [85] Nur,A. ,Yilmaz,O. Pore pressure Fronts in Fractured Rock Systems. Department of Geophysics, Stanford University, Stanford, CA(1985).
    [86]兰林,康毅力,陈一健等.储层应力敏感性评价实验方法与评价指标探讨[J].钻井液与完井液,2005.5,22(5):1~4
    [87] Juris Vairogs and C.L.Hearn., Effect of Rock Stress on Gas Production From Low-Permeability Reservoirs [C].SPE3001,1971
    [88] H.S.Ali, M.A.Al-Marhacn., The Effect of Overburden Pressure on Relative Permeability [C].SPE15730,1987
    [89]吴凡,孙黎娟等.孔隙度、渗透率与净覆压的规律研究和应用[J].西南石油学学报,1999.11,21(4):23~25
    [90]何更生.油层物理[M].北京:s石油工业出版社,1994.11:293
    [91]罗瑞兰,程林松,彭建春.油气储层应力敏感性与启动压力梯度的关系[J].西南石油学院学报,2005.6,27(3):20~22
    [92]李忠兴,韩洪宝,程林松.特低渗油藏启动压力梯度新的求解方法及应用[J].石油勘探与开发,2004.6,31(3):107~109
    [93]李传亮.低渗透储层不存在强应力敏感[J].石油钻采工艺,2005.8,27(4):61-63
    [94]孙良田.油层物理实验[M].北京:石油工业出版社,1992-10:80-81
    [95]李传亮.岩石压缩系数与孔隙度的关系[J].中国海上油气(地质),2003,17(5):355-358
    [96]杨满平.气藏含束缚水储层岩石应力敏感性实验研究[J].天然气地球科学,2004.6,15(3):227~229
    [97]王维君.高温、高压、高产、超深凝析气井[J].油气井测试,1996.6;5(3):68~75
    [98]罗瑞兰,程林松,彭建春等.异常高压超深凝析气井生产动态异常分析及对策[J].钻采工艺,2005.10,28(5):38-41
    [99]刘均荣,秦积舜.温度对岩石渗透率影响的实验研究[J].石油大学学报,2001.8,25(4):51~53
    [100] Gobran,B.D., Brigham, W.E., Absolute Permeability as a Function of Confining Pressure, Pore Pressure and Temperature, Paper SPE 10156 presented at the 56th Annual Fall Technical Conference and Exhibition of the SPE of AIME held in San Antonio, TX, October5-7,1981
    [101] Turgay Eetekin and G.R.King., Dynamic Gas Slippage—A Unique Pual-Mechanism Approach to the Flow Gas Slippage in Tight Formation[C], SPE12045,1983
    [102] K.Sampath and C.Willian Keighin., Factor Affecting Gas Slippage in Tight Sandstones of Cretaceous Age in the Uinta Basin [C],SPE9872,1982
    [103]李允,陈军,张烈辉.一个新的低渗气藏开发数值模拟模型[J].天然气工业,2004.8,24(8):65-68
    [104]吴英,程林松,宁正福.低渗气藏克林肯贝尔常数和非达西系数确定新方法[J].天然气工业,2005.5,25(5):78-80
    [105]洪世铎.油藏物理基础[M].北京:石油工业出版社,1995.7:73
    [106]张博全,王岫云.油(气)层物理学[M].武汉:中国地质大学出版社,1989.12:51
    [107]秦积舜,李爱芬.油层物理学[M].东营:石油大学出版社,2001.8:105-108
    [108]杨胜来,魏俊之.油层物理学[M].北京:石油工业出版社,2004
    [109]冯文光.非达西低速渗流的研究现状与展望[J].石油勘探与开发,1986(4):
    [110]黄延章.低渗透油藏非线性渗流特征[J].特种油气藏,1997,4(1):9-14
    [111]李道品,罗迪强.低渗透油田开发的特殊规律――低渗透油田开发系列论文之一[J].断块油气田,1997,1(4):30-35
    [112]邓英尔,阎庆来,马宝歧.界面分子力作用与渗透率的关系及其对渗流的影响[J].石油勘探与开发,1998,25(2):46-49
    [113]杨继盛.采气工艺基础.石油工业出版社[M].1992.12:53-55

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700