用户名: 密码: 验证码:
鱼类卵黄蛋白原的免疫功能研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
卵黄蛋白原(Vitellogenin, Vg)是卵生脊椎动物和非脊椎动物卵黄蛋白的前体,它是受雌性激素调控的一种大分子的糖磷脂蛋白。Vg为人们所熟知的主要功能是为胚胎和幼体生长发育提供主要的营养物质。然而,新近一些研究表明Vg参与多个生理过程,具有多种功能。例如,Zhang等人(2005)和Shi等人(2006)分别证明玫瑰无须鲃和文昌鱼Vg具有抗菌和凝血功能,说明其参与免疫反应。然而,关于Vg参与免疫作用的机理完全不了解。本论文主要研究了Vg的免疫作用机理。
     本论文第一部分首先从六线鱼(Hexagrammos otakii)中纯化得到了Vg并对其进行了鉴定。通过DEAE-23离子交换柱层析和Sephadex G-200凝胶过滤柱层析首次从经17β-雌二醇(E2)诱导的六线鱼体内纯化得到了Vg,并通过二级质谱对其进行了鉴定;native-PAGE显示Vg分子量约为450 kDa;native-PAGE后的凝胶经特异性染色证明六线鱼Vg也是一种富含糖、脂、磷的蛋白。
     本论文第二部分通过实验证明了Vg是一种典型的模式识别受体,并且具有调理素功能,能够促进巨噬细胞的噬菌作用。将异硫氰酸荧光素(FITC)标记的Vg与各种菌孵育后荧光显微镜观察发现Vg可以分别与E. coli,S. aureus和P. pastoris结合;另外通过酶联免疫吸附实验(ELISA)证明Vg可以与病原相关分子模式(PAMPs)脂多糖(LPS)、脂磷壁酸(LTA)、肽聚糖(PGN)、β-1,3-葡聚糖(β-1,3-glucan)和海带多糖(laminarin)等发生特异性结合,并且结合呈现浓度依赖性。上述结果表明Vg是一种多价的模式识别受体。我们还研究了Vg对巨噬细胞噬菌作用的影响。实验表明Vg可以明显促进巨噬细胞对细菌的吞噬。硬骨鱼的头肾在功能和结构上被认为与哺乳动物的骨髓相当,其含有大量的巨噬细胞。我们利用Percoll密度梯度离心法分离得到六线鱼头肾巨噬细胞,通过吞噬实验统计两个参数——吞噬能力(PA)和吞噬指数(PI)评价巨噬细胞的噬菌水平。结果发现,与对照相比,经Vg处理的实验组的PA和PI都有显著性高(p<0.05),说明Vg能够促进巨噬细胞的噬菌作用;另外还发现FITC标记的Vg可以与巨噬细胞表面特异性结合。上述结果表面Vg可能具有类似调理素的功能。
     本论文第三部分主要对Vg的杀菌机制和Vg发挥杀菌作用的活性部位进行了研究。实验表明Vg是通过分别与革兰氏阴性菌细胞壁上的LPS和革兰氏阳性菌细胞壁上的LTA结合来发挥对E. coli和S. aureus的杀菌功能,并且发现Vg分子肽链的完整性以及糖基化对于Vg发挥杀菌作用是必需的。抗菌蛋白的抗菌机制有多种,大多数蛋白是通过与细菌细胞膜作用,而也有一些蛋白是通过与细菌细胞壁上的特定成分结合直接破坏细胞壁引起细菌溶胀破裂。为阐明Vg的杀菌机制,首先我们通过扫描电镜技术和细菌/原生质体裂解实验发现Vg能够引起E. coli和S. aureus的裂解,但不能引起无细胞壁的原生质体的裂解,说明Vg通过破坏细菌细胞壁来发挥对E. coli和S. aureus的杀菌作用,而并非以细胞膜为靶部位;其次通过抑菌圈实验发现LPS和LTA可以分别抑制Vg对E. coli和S. aureus的杀菌作用,这与LPS和LTA能与Vg结合结果相一致。因此上述结果可以说明Vg是通过与细菌细胞壁上的LPS或LTA结合来发挥杀菌作用的。
     另外本部分对Vg发挥杀菌作用的活性部位进行了研究。蛋白质的翻译后加工和修饰对其功能作用至关重要。为鉴定Vg分子发挥杀菌作用的活性部位,我们首先对Vg分别进行了肽链破坏、氧化糖基、去磷酸化以及去脂等处理,将上述处理的Vg分别进行抑菌圈实验,结果显示Vg脱脂和去磷酸化对其抑菌作用没有影响,而降解其肽链和氧化糖基却使Vg抑菌活性丧失。这说明Vg分子的糖蛋白部分在抑菌作用中发挥重要作用;另外发现Vg对E. coli的抑菌作用可以被D-甘露糖抑制,对S. aureus的抑菌作用可以被N-乙酰-D-氨基葡萄糖和D-海藻糖抑制,说明Vg可能具有类凝集素的活性。
     总之,本论文通过体外实验首次发现六线鱼Vg可以作为一种模式识别受体与多种PAMPs结合;首次报道了Vg具有调理素活性,可以促进巨噬细胞的噬菌作用;首次阐明了Vg是通过与细菌细胞壁上的LPS或LTA结合来发挥杀菌作用的;首次阐明了Vg分子肽链的完整性和糖基化与其杀菌活性的密切关系。
Vitellogenin (Vg) is the egg yolk protein precursor in non-mammalian vertebrates and invertebrates. It is a high molecular mass phospholipoglycoprotein response to estrogen stimulation. Vg is known as its nutritional role to provide developing embryos and larvae nutrients. Many reports proved that Vg has evolved pleiotropic functions in many physiological processes. Vg has recently been demonstrated to possess both hemagglutinating and antibacterial activities in the protochordate amphioxus (Branchiostoma belcheri) as well as the bony fish rosy barb (Puntius conchonius). However, the mode of action by which Vg is involved in anti-infectious response remains unknown. The main objective of this study is to demonstrate the underlying mechanisms by which Vg is involved in anti-infectious response.
     First, fish Hexagrammos otakii (H. otakii) Vg was purified and characterized. A 17β-estradiol induced protein was purified by DEAE-23 anion exchange chromatography and Sephadex G-200 gel filtration chromatography from 17β-estradiol-injected intraperitoneally fish plasma. The purified protein was identified as Vg by MALDI TOF/TOF MS analysis. H. otakii Vg appeared to exist as a homogenous trimer of approximately 450 kDa in native-PAGE. Vg was proved as a phospholipoglycoprotein by staining using Sudan black B, periodic acid/Schiff reagent, and methyl green.
     Second, to test if Vg can bind to microbes, FITC-labeled Vg was incubated with Gram-negative bacterium Escherichia coli (E. coli), Gram-positive bacterium Staphylococcus aureus (S. aureus) and fungus Pichia pastoris (P. pastoris). It is found that Vg is able to bind both E. coli and S. aureus as well as P. pastoris. To better understand the mechanisms of binding activity, an enzyme-linked immunosorbent assay (ELISA) was carried out to investigate what molecules on the microbial surfaces are recognized by Vg, and it is found that Vg had a significantly stronger affinity to the immobilized ligands including LPS from Gram-negative bacteria, LTA from Gram-positive bacteria, PGN from both Gram-positive and Gram-negative bacteria,β-1, 3-glucan from fungi and laminarin from brown algae concentration-dependently than to BSA, the serum proteins (SPs) and total muscle proteins (TMPs) extracted from H. otakii itself. These results indicated that Vg was a multivalent pattern recognition receptor. In addition, we addressed the effects of Vg on the phagocytosis of H. otakii macrophages. It is demonstrated that Vg can promote macrophage phagocytosis. The head kidney of teleostean fish is considered to be the functional and structural homologue of mammalian bone marrow. H. otakii head kidney macrophages were isolated by discontinuous gradient centrigugation. Then phagocytosis assays were performed and two parameters phagocytic ability (PA) and phagocytic index (PI) were used to test the effects of Vg on phagocytosis. Compared with the microbes pre-incubated with BSA and PBS alone, those pre-incubated with Vg were readily phagocytosed by the macrophages. The PA and PI values of the macrophages phagocytosing Vg-treated E. coli, S. aureus and P. pastoris were significantly higher than those of cells phagocytosing BSA-treated and untreated microbes (p<0.05). These denoted that Vg was able to promote the macrophage phagocytosis. Furthermore, it is found that FITC-labeled Vg is able to bind to the surface of macrophages specifically. These results indicate that Vg maybe act as an opsonin.
     Finally, the way by which Vg plays antibacterial activities and its active components which are essential for the execution of immune activities were studied in this part. It is demonstrated that fish Vg is capable of killing E. coli and S. aureus whole cells via interaction with LPS and LTA existing in the bacterial cell walls, rather than targeting plasma membranes,and the integrity of the polypeptide chain and the carbohydrate residues of Vg are indispensible for its antibacterial activity. Antimicrobial proteins and peptides exert their bactericidal effects by several different pathways. Most proteins exert their antibacterial effects by interacting with and destabilizing the microbial cell membrane, but some proteins were demonstrated to kill the bacteria by damaging cell wall directly via interacting with components of cell walls. It is demonstrated by SEM and bacterial cell and protoplast lysis assays that Vg is able to cause lysis of both E. coli and S. aureus whole cells rather than their cell wall-lacking protoplasts. To test the effects of LPS, LTA and PGN on the antibacterial activities of Vg, these chemicals were preincubated with the protein, then antagonism assays were performed on a petri dish. It is found that the antibacterial activity of Vg against E.coli is able to be inhibited by LPS from E.coli, agreeing with the binding of LPS to Vg, and the antibacterial activity against S. aureus is able to be inhibited by LTA from S. aureus, according with the binding of LTA to Vg. It is believable that Vg acts as a direct microbial killing protein via interaction with LPS and LTA.
     The components of Vg active in bacteriostasis were indentified in this part. Post-translational processing and modifications of proteins are often important for their biological function. To identify the components of Vg active in bacteriostasis, the protein was degraded by trypsin, oxidated by NaIO4, delipidated by either and dephosphorylated by AP, and antibacterial assays were performed on a petri dish. It is found that neither delipidation nor dephosphorylation of Vg had any influence on its antibacterial activities, but degradation of polypeptide chain and oxidation of carbohydrate residues significantly reduced its antibacterial activities. These show that the glycoprotein component of Vg plays a crucial role in inhibiting the bacterial growth. This is further supported by the fact that the antibacial activities of Vg are inhibited by the sugars like D-mannose, GluNAc and D-fucose, suggesting that Vg functions like lectins.
     In summary, the present study demonstrates for the first time that Vg from fish H. otakii can act as a multivalent pattern recognition receptor binding to several PAMPs, and functions as an opsonin that can enhance macrophage phagocytosis; It is also demonstrated for the first time that Vg is capable of killing E. coli and S. aureus whole cells via interaction with LPS and LTA existing in the bacterial cell walls, and it highlights the correlation between the polypeptide integrity and glycosylation of Vg and its bactericidal activities.
引文
[1] Shicui Zhang, Yaning Sun, Qiuxiang Pang, Xiaodong Shi. Hemagglutinating and antibacterial activities of vitellogenin. Fish & Shellfish Immunology. 2005, 19: 93~95
    [2] Xiaodong Shi, Shicui Zhang, Qiuxiang Pang. Vitellogenin is a novel player in defense reactions. Fish & Shellfish Immunology xx, 2006, 1~4
    [3] Xiao-Qiang Yu, Michael R. Kanost. Manduca sexta lipopolysaccharide-specific immulectin-2 protect slarvae from bacterial infection. Developmental and Comparative Immunology, 2003, 27: 189~196
    [4] Yu XQ, Kanost MR Immulectin-2, a pattern recognition receptor that stimulates hemocyte encapsulation and melanization in the tobacco hornworm, Manduca sexta. Dev Comp Immunol, 2004, 28 (9): 891~900
    [5] Utarabhand, P., Bunlipatanon, P., Plasma vitellogenin of grouper (Epinephelus malabaricus): isolation and properties. Comp. Biochem. Physiol, 1996, 115C: 101~110
    [6] Pan M L, Bell W J, Telfer W H. Vitellogenic blood protein syntheis by insect fat body. Science, 1969, 165: 393~394
    [7]周庆祥,江桂斌.卵黄蛋白原的分离测定及其在环境内分泌干扰物质筛选中的应用.化学进展,2003,15(1):67~73
    [8] Wiley, H.S., Wallace, R.A. The structure of vitellogenin. Multiple vitellogenins in xenopus laevis give rise to multiple forms of the yolk proteins. J. Biol. Chem, 1981, 256: 8626~8634
    [9] Klass, M.R., Wolf, N. Tissue-specific synthesis of yolk proteins in Caenorhabditis elegans. Develop. Biol, 1979, 69: 329~335
    [10] Sharrock, W.J. Cleavage of two yolk proteins from a precursor in Caenorhabditis elegans. J. Mol. Biol, 1984, 174: 419~431
    [11] Chesnel F., Joly, J., Boujard, D., et al. Purification, dosage and cyclic variations of vitellogenin in the oviparous amphibian. Comp.Biochem.Physiol, 1990, 96B: 129~136
    [12] Verrinder, A.M., Voort, FR., Braham, R. Comparative study of three different forms of both native and subunit vitellogenin identified in quail plasma. Comp. Biochem. Physiol, 1981, 2: 2271~2279
    [13] Wallace, R.A., Studies on amphibian yolk. IX Xenopus vitellogenin. Biochem.Biophys. Acta, 1970, 215: 2271~2279
    [14] Banaszak, L, Sharrock, W., Timmmin. P., Structure and function of lipoprotein: lipovitellin. Annu. Rev. Biophysics. Chem, 1991, 20: 221~246
    [15] Wallace RA, Hoch KL, Carnevali O. Placement of small lipovitellin subunits within the vitellogenin precursor in Xenopus laevis. J..Mol. Biol, 1990, 213: 407~409
    [16] Vanhet, F.D., Samallo, J., Ophuis, J.B., et al. Nucleotide swquence of a chicken vitellogenin gene and deprived amino acid sequence of the encoded yolk precursor protein. J.Mol.Biol,1987, 196: 245~260
    [17] Gerber-Huber, S., Nardelli, D., Haefliger, J., et al. Comparison of organization and fine structure of a chicken and a Xenopus laevis vitellogenin gene. J.Biol.Chem, 1987, 262: 15377~15385
    [18] Brown, Carne, A.N.,Chambers, G. Purification, partial characterization and peptide sequence of vitellogenin from a reptile, the Tuatata (Sphenodon punctatus). Comp. Biochem. Physiol, 1997, 117b: 159~168
    [19] Bidwell, C.A., Carsion, D.M. Characterization of vitellogenin from white sturgeon. Acipenser transmontanus. J. Mol. Evol, 1995, 41: 104~112
    [20] Sharrock, W.J., Rosenwasser, T.A., Gould, J., et al. Sequence of lamprey vitellogenin. Implications for the lipovitellin crystal structure. J. Mol. Biol, 1992, 226: 903~907
    [21] Bergink EW, Wallace RA. Precursor product relationship between amphibian vitellogenin, and the yolk proteins , lipovitellin and phosvitin. J. Bio. Chem, 1974, 249: 2897~2903
    [22] Deeley, R.G., Mullinix, K.P., Wetekam, W. Vitellogenin synthesis in the avian liver. J. Biol. Chem, 1975, 250: 9060~9066
    [23] Yamaruma, J.I., Adachi T, Aoki N, Nakajima H, Nakamura R, Matsuda T. Precursor-product relationship between chicken vitellogenin and the yolk proteins: The 40kDa yolk plasma glycoprotein is derived from the C-terminal cysteine-rich domain of vitellogenin II. Biochem. Biophys. Acta, 1995, 1244: 384~394
    [24] Wang, SY., Smith DE., Williams D.L. Purification of avian vitellogeninⅢ: Comparasion with vitellogeninⅠandⅡ. Biochemistry, 1983, 22: 6206~6212
    [25] Ryffel, F.U.,Wahli, W., Weber, R. Quantitation of vitellogenin messenger RNA in the liver of male Xenopus during primary and secondary stimulation by estrogen. Cell, 1977, 11: 213~221
    [26] Wahli, W., Wyler, T., et al. Size, complexity and abundance of specific poly(A)-containing RNA of liver from Xenpus induced to vitellogenin synthesis by estrogen. Eur. J. Biochem, 1978, 66: 457~465
    [27] Denisen, N. Comparison of organization and fine structure of a chicken and a Xenopus laevis. Vitellogenin gene .J. Biochem, 1987, 262: 15377~15385
    [28] Baerga, S.C., Morals, M.H. Vitellogenin diversity in tropical lizards (Anolis pulchelus): indentification and partial characterization. Comp. Biochem. Physiol, 1991, 100: 347~359
    [29] Bast, R.E., Gibson, A.R. Characterization of reptilian vitellogenin: subunit composition and molecular weights of vitellogenin from the colurid snake thamnophis sirtalis. Comp. Biochem. Physiol, 1985, 80B: 409~418
    [30] Wallace, R.A., The vertebrate ovary: Comparative Biology and evolution (Jones, R.E.,ed). New York: Plenum Press, 1978. 469~502
    [31] Wallace, R.A., The vertebrate ovary: Comparative Biology and evolution (Jones, R.E.,ed). New York: Plenum Press, 1978. 469~502
    [32] Ho, S.M. Studies on reptilian yolk: Chrysemys vitellogenin and phosvition. Comp. Biochem. Physiol, 1980, 65B: 139~144
    [33] Lisa, K. Vitellogenin induction in painted turtle, as a biomarker of exposure to environmental levels of estradiol. Aquatic Toxicology, 2001, 55: 49~60
    [34] Janeiro-Cinquini, T.R.F., Ribolla, P.E.M., Capurro, M.L., Winter, C.E. Vitellogenin and yolk protein processing in Bothrops jararaca (Wied), a tropical venomous snake. Comp.Biochem.Physiol, 1999, 122B, 189~198
    [35] Gavaud, J. Vitellogenesis in the lizard Lacerta vivipara Jacquin: Purification and characterization of plasma vitellogenin. Gen. Comp. Endocrinol. 1986, 63: 1~10
    [36] Morales, M.H., Pagan, S.M., Gomez, Y. Immunodissection of yolk lipovitellin (LV1) demonstrates the existence of different Lv1-domains and suggests a complex family of vitellogenin genes in the lizard (Anolis pulchellus). Comp. Biochem. Physiol, 2002, 131B: 339~348
    [37] Hara, A., Hirai, H. Comparative studies on immunochemical properties of female-specific serum protein and yolk proteins in rainbow trout( Salmo gairdneri). Comp. Biochem. Physio, 1978, 48B: 389~399
    [38] Hiramatsu, N., Hara, A. Relationship between vitellogenin and its related egg yolk proteins in Sakhalin Taimen (Hucho perryi). Comp. Biochem. Physiol, 1996, 115A: 243~251
    [39] Bon, E., Barbe, U. Plasma vitellogein levels during the annual reproductive cycle of the female rainbow trout (Oncorhynchus mykiss): establishment and validation of an ELISA. Comp. Biochem. Physiol, 1997, 117B: 75~84
    [40] Copeland, P.A. Vitellogenin levels in male and female rainbow trout at various stages the reproductive cycle. Comp. Biochem. Physiol, 1986, 83: 487~493
    [41] Norberg B. Atlantic halibut vitellogenin : Induction, isolation, and partial characterization. Fish. Physiol. Biochem, 1995, 14: 1~13
    [42] Roubal, W.T., Lomax, D.P., Maryjean, L., Lyndal, L.J. Purification and partial characterization of English Sole (Pleuronectes vetulus ) vitellogenin. Comp. Biochem. Physiol, 1997, 118B: 613~622
    [43] Copeland, P.A., Thomas, P. The measurement of plasma vitellogenin levels in a marine teleost, the spotted seatrout (Cynoscion nebulosus) by homologous radioimmunoassay. Comp. Biochem. Physiol, 1988, 91B: 17~23
    [44] Le Guellec K, Lawless K, Valotaire Y, Kress M, Tenniswood M. Vitellogenin gene expression in male rainbow trout (Salmo gairdneri). Gen Comp Endocrinol, 1988 Sep, 71(3): 359~71
    [45] So, Y.P., Idler, D.R., Hwang, S.J. Plasma vitellogenin in landlocked Atlantic salmon (Salmo salar Ouaninche): isolation, homologous radioimmunoassay and immunological cross-reactivity with vitellogein from other teleosts. Comp. Biocheem. Physiol, 1985, 81B: 63~71
    [46] Wiley, H.S., Wallace, R.A. The structure of vitellogenin. Multiple vitellogenins in xenopuslaevis give rise to multiple forms of the yolk proteins. J. Biol. Chem, 1981, 256: 8626~8634
    [47] Baker ME. Is vitellogenin an ancestor of apolipoprotein B-100 of human low-density lipoprotein and human lipoprotein lipase? Biochem J, 1988 Nov 1, 255(3): 1057~1060
    [48] Utarabhand, P., Bunlipatanon, P. Plasma vitellogenin of grouper (Epinephelus malabaricus): isolation and properties. Comp. Biochem. Physiol, 1996, 115C: 101~110
    [49] Roubal, W.T., Lomax, D.P., Maryjean, L., Lyndal, L.J. Purification and partial characterization of English Sole (Pleuronectes vetulus ) vitellogenin. Comp. Biochem. Physiol, 1997, 118B: 613~622
    [50] Shimizu, M., Fujiwara, Y., Fukada, H., Hara, A. Purification an identification of a second form of vitellogenin from ascites of Medaka (Oryzias latipes ) treated with estrogen. J. Exp. Zool, 2002, 293: 726~735
    [51] Fenske, M., Aerle R.V., Brack, S., Tyler, C.R., Segner, H., 2001. Devlopment and validation of a homoologlous zebrafish (Danio rerio Hamilton-Buchanan) vitellogenin enzyme-liked immunosorbent assay (ELISA) and its application for studies on estrogenic chemicals, Comp. Biochem. Physiol, 129C: 217~232
    [52] Holbech, H., Andersen, L., Petersen, G.I., Korsgaard, B., Pedersen, K.L., Bjerregaard, P. Development of an ELISA for vitellogenin in whole body homogenate of zebrafish (Danio rerio). Comp. Biochem. Physiol, 2001, 130C: 119~131
    [53] Yu JYL., Dickhoff, WW., Swanson P, Gorbman, A. Vitellogenesis and its hormonal regulation in the pacific hagfish, Eptatretus stouti L. Gen. Comp. Endocrinol, 1981,43: 492~502
    [54] Mewes, K.R. et al. Vitellogenin from female and estradiol-stimulated male river Lampreys (Lampetra fluviatilis L). J .Exp. Zool, 2002, 292: 52~72
    [55] Bose, SG., Raikhel, A.S. Mosquito vitellogenin subunits originate from a common precursor. Biochem. Biophys. Res. Comm, 1988, 155: 436~442
    [56] Sappington, T.W. , Raikhel, A.S. Molecular characterization of insect vitellogenins and vitellogenin receptors. Insect. Biochem. Mol, 1998, 28: 277~300
    [57] Kim, H.P., Lee, S.D. Purification and characterization of vitellin-2 from the ovary of American cockroach Periplaneta americana. Comp. Biochem. Physiol, 1994, 108B: 135~145
    [58] Takadera, K., Yamashita, M., Hatakeyama, M., Oishi, K., Similarities in vitellin antigenicity and vitellogenin mRNA nucleotide sequence among sawflies. J. Insect. Physiol, 1996, 42: 417~422
    [59] Raikhel, A.S., Dhadialla, T.S. Accumulation of yolk proteins in insect oocytes. Annu.Rev. Entomol, 1992, 37: 217~251
    [60] Sappington, T.W. , Raikhel, A.S. Molecular characterization of insect vitellogenins and vitellogenin receptors. Insect. Biochem. Mol, 1998, 28: 277~300
    [61] Barr, P.J. Mammalian subtilisins: the long~sought dibasic processing endoprotease. Cell, 1991, 66: 1~3
    [62] Brakch, N., Rholam, M., Bousetta, H. Role ofβ~turn in proteolytic processing of peptide hormone precursors at dibasic sites. Biochemistry, 1993, 32: 4925~4930
    [63] Winter CE, Penha C, Blumenthal T. Comparison of a vitellogenin gene between two distantly related rhabditid nematode species. Mol Biol Evol, 1996 May; 13(5): 674~84
    [64] Chang, C.F., Jeng, S.R.. Isolation and characterization of the female-specific protein in mature female hemolymph of the prawn. Comp. Biochem. Physiol, 1995, 112B: 257~263
    [65] Pateraki, L.E., Stratakis, E. Characterization of vitellogenin and vitellin from land crab Potamon potamios: identification of a precursor polypeptide in the molecular. J. Exp. Zool, 1997, 279: 597~608
    [66] Pateraki, L.E., Stratakis, E. Synthesis and organization of vitellogenin and vitellin molecular from the land crab Potamon potamios Comp. Biochem. Physiol, 2000, 125B: 53~61
    [67] Okuno, A., Yang, W.J., et al. Deduced primary structure of vitellogenin in the giant freshwater prawn, Macrobrachium rosenbergii, and yolk processing during ovarian maturation. J. Exp. Zool, 2002, 292: 417~429
    [68] Tsang, W.S., Quackenbush, L.S., Chow, BK.C., Tiu, S.HK. Organization of the shrimp vitellogenin gene: evidence of multiple genes and tissue specific expression by the ovary and hepatopancreas. Gene, 2003, 303: 99~109
    [69] Watts, M., Pankhurst, N.W., Pryce, A., Sun, B., Vitellogenin isolation, purification and antigenic cross-reactivity in three teleost species. Comp. Biochem. Physiol, 2003, 134B: 467~476
    [70]张红卫,王子仁,张士璀.发育生物学.北京:高等教育出版社,2001.22~24
    [71] Anderson, E. Comparative aspect of the ultrastructure of the female gamete. Int. Rev. Cyt, 1974, 4: 1~70
    [72] Baert, J.L., Santiere, P. Purification an characterization of oocyte vitellin from Perimersis cultrifera. Eur. J. Biochem, 1984, 142: 527~532
    [73] Suzuki, T., Hara, A. Purification and immunolocalization of vitellin-like protein from the Pacific oyster Crassostrea gigas. Marine Biology, 1992, 113: 239~245
    [74] Beams HW, Kessel RG. Electron microscope studies on developing crayfish oocytes with special reference to the origin of yolk. J Cell Biol, 1963 Sep, 18: 621~49
    [75] Chan, S. Possible roles of 20-hydroxycdysone in the control of ovary maturation in the white shrimp Penaeus vannamei. Comp.Biochem.Physiol, 1995, 112C: 51~59
    [76] Sharrock, W.J. Yolk proteins of Caenorhabditis elegans. Develop. Biol, 1983, 96: 182~188
    [77] Raikhel, A.S. Monoclonal antibodies as probes for processing of the mosquito yolk protein: a high resolution immuno localization of secretary and accumulative pathways. Tissue Cell, 1987, 19: 515~523
    [78] Giorgi, F. Differential vitellin polypeptide processing in insect embryos. Micron, 1999, 30: 579~596
    [79] Raikhel, A.S., Dhadialla, T.S. Accumulation of yolk proteins in insect oocytes. Annu.Rev. Entomol, 1992, 37: 217~251
    [80] Ferenz, H.J. Yolk protein accumulation in Locusta migratoria oocytes. Int. .J. Insect Morphol. Embryol, 1991, 22: 295~314
    [81] Sappington, T.W., Kokoza, V.A., Cho, W.~L., Raikhel, A.S. Molecular characterization of the mosquito vitellogenin receptor reveals unexpected high homology to the Drosophila yolk protein receptor. Proc. Natl. Acad. Sci. USA, 1996,93: 8934~8939
    [82] Sappington, T.W. and Raikhel, A.S. Receptor-mediated endocytosis of yolk proteins by insect oocytes. in: Ohnishi E., Sonobe H. and Takahashi S. Y. (Eds.). Recent Advances in Insect Biochemistry and Molecular Biology. Nagoya, Japan: Nagoya University Press, 1995. 235~257
    [83] Sappington, T.W., Kokoza, V.A., Cho, W.~L., Raikhel, A.S. Molecular characterization of the mosquito vitellogenin receptor reveals unexpected high homology to the Drosophila yolk protein receptor. Proc. Natl. Acad. Sci. USA, 1996,93: 8934~8939
    [84] Raikhel, A.S., Dhadialla, T.S. Accumulation of yolk proteins in insect oocytes. Annu.Rev. Entomol, 1992, 37: 217~251
    [85] Snigirevskaya, E.S., Hays, A.R., Raikhel, A.S. Secretory and internalization pathways of mosquito yolk protein precursors. Cell Tiss. Res, 1997a , 290: 129~142
    [86] Yano, I., Chinzei, Y. Ovary is the site of vitellogenin synthesis in Kuruma prawn, Penaeus japonicus. Comp. Biochem. Physiol, 1987, 86: 213~218
    [87] Dumont JN. Oogenesis in Xenopus laevis (Daudin). VI. The route of injected tracer transport in the follicle and developing oocyte. J Exp Zool. 1978 May;204(2):193~217
    [88] Lazier, C.B., Mommsen, T.P. Hepatic estrogen receptors and plasma estrogen binding activity in the Atlantic salmon. Gen. Comp. Endocrinol, 1985, 57: 234~245
    [89] Hara A, Yamauchi K, Hirai H. Studies on female~specific serum protein and egg yolk protein in Japanese eel (Anguilla japonica). Comp. Biochem. Physiol, 1980, Vol 65B: 315~320
    [90] Pacoli, C.Q., Grizzle J.M., Bradley J.T. Seasonal levels of serum vitellogein and oocyte growth in the channel fish Ictalurus punctatus. Aquaculture, 1990, 90: 353~367
    [91] Goodwin, A.E., Grizzle, J.M., Bradley, J.T., Estridge, B.h. Monoclonal antibody~based immunoassay of vitellogenin in the blood of male channel catfish (Ictalurus punctatus). Comp. Biochem.Physiol, 1992, 101B: 441~446
    [92] Louise, G.P., Cheek, A.O., Denslow, N.D., Heppell, S.A., Mclachlan, J.A., LeBlanc, G.A., Sullivan, C.V. Fathead minnow (Pimephales promelas) vitellogenin: purification characterization and quantitative immunoassay for the detection of estrogenic compounds. Comp. Biochem. Physiol, 1999, 123C: 113~125
    [93] Erickson. B. Screening and testing for endocrine disrupters. Anal Chem, 1998 Aug 1, 70(15): 528A~532A
    [94] Akihiro, T., Byung H.K. Effects of estradiol-17βtreatment on in vitro and vivo synthesis oftwo distinct vitellogenin in tilapia. Com. Biochem. Physiol, 2001, 129A: 641~651
    [95] Celius, T., Matthews, J.B., Giesy, J.P., Zacharewski, T.R. Quantification of rainbow trout(Oncorhynchus mykiss) zona radiata and vitellogenin mRNA levels using real-time PCR after in vivo treatment with estradiol-17βorα-zearalenol. J. Steroid. Biochem. Mol, 2000, 75: 109~119
    [96] Hemmer, M. et al. Vitellogenin mRNA regulation and plasma clearance in male sheepshead minnows, (Cyprinodon variegates) after cessation of exposure to 17β-estrodiol and p-nonylphenol. Aquatic. Toxicology, 2002, 58: 99~112
    [97] Wahli W, Wyler T, Weber R, Ryffel GU. Size, complexity and abundance of a specific poly(A)~containing RNA of liver from male Xenopus induced to vitellogenin synthesis by estrogen. Eur J Biochem, 1976 Jul 15, 66(3): 457~465
    [98] Ryffel, F.U.,Wahli, W., Weber, R. Quantitation of vitellogenin messenger RNA in the liver of male Xenopus during primary and secondary stimulation by estrogen. Cell, 1977, 11: 213~221
    [99] Chinzei, Y. Vitellogenin titer in haemolymph of locusta migratoris in normal adults, after ovariectomy and in reponse to methoprene. J. Insect Physiol, 1985, 31: 441~445
    [100] Tata JR. The expression of the vitellogenin gene. Cell, 1976 Sep, 9(1): 1~14
    [101] Bailey RE. The effect of estradiol on serum calcium, phosphorus, and protein of goldfish. J. Exp. Zool, 1957 Dec, 136(3): 455~469
    [102] Idler, D.R. et al. Gonadotropin stimulation of estrogen and yolk precursor synthesis in juvenile rainbow trout. Gen.Comp.Endol, 1980, 41: 384~391
    [103] Turner RT, Dickhoff WW, Gorbman A. Estrogen binding to hepatic nuclei of Pacific hagfish, Eptatretus stouti. Gen Comp Endocrinol, 1981 Sep, 45(1): 26~29
    [104] De Vlaming, V.L., Fitzgerald R., Delahunty G. et al. Dynamics of oocyte development and related changes in serum estrodiol-17B, yolk precursor and lipid levels in the teleostean fish, Leptocottus armatus. Com. Biochem. Physiol, 1984, 77A: 599~610
    [105] Pakdel, F., LeGac, P., Le Goff and Valotaire, Y. Full length sequence and in vitro expression of rainbow trout estrogen receptor cDNA. Mol. Cell. Endocrinol, 1990, 71: 195~204
    [106] Tora, L., et al. The human estrogen receptor has two independent nonacidic transcription activation functions. Cell, 1989, 59: 477~487
    [107] Beato, M. Transcriptional control by nucleus receptors. FASEB J, 1991, 5: 2044~2051
    [108] Pakdel, F. Feon, S.,Le Gac, F. et al. In vivo estrogen induction of hepatic estrogen receptor mRNA and correlation with vitellogenin mRNA in rainbow trout. Mol. Cell. Endocrinol, 1991, 75: 205~212
    [109] Korsgaard, B., Mommsen, T.P., Saunders, R.L. The effect of temperature on the vitellogenic response in Atlantic salmon post-smots. Gen. Comp. Endocrino, 1986, 62: 193~201
    [110] Mader, S., Chambon, P., White, J.H. Defining a minimal estrogen receptor DNA binding domain. Nucl. Acids. Res, 1993, 21: 1125~1132
    [111] Loomis, A.K., Thomas P. Effects of estrogens and xenoestrogens on androgen production by Atlantic croaker testes in vitro: evidence for a non~genomic action mediated by an estrogen membrane receptor. Biol. Reprod, 2000, 62: 995~1004
    [112] O’Malley, B.W., Schrader, W.T., Mani, S. et al. An alternative ligand~independent pathway for activation of steroid receptors. Rec. Prog. Horm. Res, 1995, 50: 333~347
    [113] Paech, K., Webb, P., Kuiper, G.G.J.M. et al. Differential ligand activation of estrogen receptors ERαand ERβat AP1 sites. Science, 1997, 277: 1508~1510
    [114] Denslow, N.D., Lee, H.S., Bowman, C.J. et al. Multiple responses in gene expression in fish treated with estrogen. Comp. Biochem. Physiol, 2001, 129B, 277~282
    [115] Denslow, N.D., Chow, M.M., Folmar, L.C., et al. Development of antibodies to teleost vitellogenins. Potential biomarkers for environmental estrogens. In: Bengston, D.A., Henshel. D.S. (Eds). Environmental Toxicology and Risk Assessment , STP 1306, 5. 1996, American Society for Testing and Materials, Philadelphia, PA, 23~36
    [116] Flouriot, G., Pakdel, F., Ducouret, B., et al. Differential regulation of two genes implicated in fish reproduction: vitellogenin estrogen rceptor genes. Mol. Reprod. Dev, 1997, 48: 317~323
    [117] Flouriot, G., Pakdel, F., et al. Transcriptional and post~transcriptional regulation of rainbow trout estrogen receptor and vitellogenin gene expression. Mol. Cell. Endocrinol, 1996, 124: 173~183
    [118] Bowman, C.J., Kroll, K.J., Hemmer, M.J., et al. Estrogen~induced vitellogenin mRNA and protein in sheepshead minnow. Gen. Comp. Endocrinol, 2000, 120: 300~313
    [119] Folmar, L.C., Hemmer, M. et al. Comparative estrogencity of estradiol , ethynyl estradiol and diethylstilbestrol: an in vivo, male sheepshead minnow, vitellogenin bioassay. Aquat. Toxicol, 2000, 49: 77~88
    [120] Hyllner,S.J. et al. Formation of the vitelline envelope precedes the active uptake of vitellogenin during oocyte development in the rainbow trout , Oncorhynchus mykiss. Mol. Reprod. Dev, 1994, 39: 166~175
    [121] Arukwe, A., Knudsen, F.R., Goksoyr, A. Fish zona radiate protein: a sensitive biomarker for environment estrogens. Environ. Health. Perspect, 1997, 105: 418~422
    [122] Flouriot, G., et al. Transcriptional regulation of expression of the rainbow trout albumin gene by estrogen. J. Mol. Endocrinol, 2000, 167: 33~41
    [123] May, F.E.,Knowland, J. Estrogen receptor levels and vitellogein synthesis during development of Xenopus laevis. Nature, 1981, 292: 853~855
    [124] Riegel, A.T., Aitken, S.C. et al. Differential induction of hepatic estrogen. Receptor and vitellogenin gene translation in Xenpus laevis. Endocrinology, 1987, 120: 1283~1290
    [125] Sumpter, J.P. Environmental control of fish reproduction: a different perspective. Fish Physiol. Biochem. 1997, 17: 25~31
    [126] Arcand-Hoy, L.D. and W.H. Benson. Fish reproduction: an ecologically relevant indicator of endocrine disruption. Environ. Toxicol. Chem. 1998, 17: 49~57
    [127] Giesy, J.P. and E.M. Synder. Xenobiotic modulation of endocrine function in fish. In: Principles and Processes for Evaluating Endocrine Disruption in Wildlife, edited by R.J. Kendall, R.L. Dickerson, J.P. Giesy and W.A. Suk, Florida, SETAC Press. 1998, 3: 155~237
    [128] Kime, D.E. Endocrine Disruption in Fish, Boston, Kluwer Academic Publishers. 1998, 416.
    [129] Pait, A.S. and J.O. Nelson. Endocrine Disruption in Fish: An Assessment of Recent Research and Results, NOAA Technical Memo. NOS NCCOS CCMA 149, Silver Spring, MD, NOAA, NOS, Center for Coastal Monitoring and Assessment. 2002, 55
    [130] Arukwe, A. and A. Goks?yr. Eggshell and egg yolk proteins in fish: hepatic proteins for the next generation: oogenetic, population, and evolutionary implications of endocrine disruption. Comp. Hepatol. 2003, 2: 1~21
    [131] Allen, Y., P. Matthiessen, A.P. Scott, S. Haworth, S. Feist and J.E. Thain. The extent of oestrogenic contamination in the UK estuarine and marine environments– further surveys of flounder. Sci. Total Environ. 1999,233: 5~20, a.
    [132] Allen, Y., A. Scott, P. Matthiessen, S. Haworth, J. Thain and S. Feist. Survery of estrogenic activity in United Kingdom estuarine and coastal waters and its effects on gonadal development of the flounder Platichthys flesus. Environ. Toxicol. Chem. 1999, 18: 1791~1800, b.
    [133] Harries, J.E., D.A. Sheahan, S. Jobling, P. Matthiessen, P. Neall, J.P. Sumpter, T. Tylor and N. Zaman. Estrogenic activity in five United Kingdom rivers detected by measurement of vitellogenesis in caged male trout. Environ. Toxicol. Chem. 1997, 16: 534~542
    [134] Hashimoto, S., H. Bessho, A. Hara, M. Nakamura, T. Iguchi and K. Fujita. Elevated serum vitellogenin levels and gonadal abnormalities in wild male flounder (Pleuronectes yokohamae) from Tokyo Bay, Japan. Mar. Environ. Res. 2000, 49: 37~53
    [135] Palmer, B.D. and K.W. Selcer. Vitellogenin as a biomarker for xenobiotic estrogens: a review. In: Environmental Toxicology and Risk Assessment: Biomarkers and Risk Assessment, ASTM STP 1306, Vol. 5, edited by D.A. Bengtson and D.S. Henshel, 1996, 3~21
    [136] Tyler, C.R., B. van der Eerden, S. Jobling, G. Panter and J.P. Sumpter. Measurement of vitellogenin, a biomarker for exposure to estrogenic chemicals, in a wide variety of cyprinid fish. J. Comp. Physiol. 1996, 166B: 418~426
    [137] Kime, D.E., J.P. Nash and A.P. Scott. Vitellogenesis as a biomarker of reproductive disruption by xenobiotics. Aquaculture. 1999, 177: 345~352
    [138] Pelissero, C., G. Flouriot, J.L. Foucher, B. Bennetau, J. Dunogues, F. Le Gac and J.P. Sumpter. Vitellogenin synthesis in cultured hepatocytes; an in vitro test for the estrogenic potency of chemicals. J. Steroid Biochem. Mol. Biol. 1993, 44: 263~272
    [139] Jobling, S. and J.P. Sumpter. Detergent components in sewage effluent are weakly oestrogenic to fish: an in vitro study using rainbow trout (Oncorhynchus mykiss) hepatocytes. Aquat. Toxicol. 1993, 27: 361~372
    [140] Jobling, S., N. Beresford, M. Nolan, T. Rodgers-Gray, G. Brighty, J. Sumpter and C. Tyler. Altered sexual maturation and gamete production in wild roach (Rutilus rutilus) living in rivers that receive treated sewage effluents. Biol. Reprod. 2002, 66: 272~281
    [141] Purdom, C.E., P.A. Hardiman, V.J. Bye, N.C. Eno, C.R. Tyler and J.P. Sumpter. Estrogenic effects of effluents from sewage treatment works. Chem. Ecol. 1994, 8: 275~285
    [142] Jobling, S., M. Nolan, C.R. Tyler, G. Brighty and J.P. Sumpter. Widespread sexual disruption in wild fish. Environ. Sci. Technol. 1998, 32: 2498~2506
    [143] Jobling, S. and J.P. Sumpter. Detergent components in sewage effluent are weakly oestrogenic to fish: an in vitro study using rainbow trout (Oncorhynchus mykiss) hepatocytes. Aquat. Toxicol. 1993, 27: 361~372
    [144] Desbrow, C., J. Routledge, G.C. Brighty, J.P. Sumpter and M. Waldock. Identification of estrogenic chemicals in STW effluent. 1. Chemical fractionation and in vitro biological screening. Environ. Sci. Technol. 1998, 32: 1549~1558
    [145] Routledge, E.J., D. Sheahan, C. Desbrow, G.C. Brightly, M. Waldock and J.P. Sumpter. Identification of estrogenic chemicals in STW effluent. 2. In vivo responses in trout and roach. Environ. Sci. Technol. 1998, 32: 1559–1565
    [146]顾建华.酶联免疫吸附方法检测卵黄蛋白原在研究环境雌激素中的应用.生命科学仪器. 2006, 4: 12~14
    [147] Gratwohl EK, Kellenberger E, Lorand L, Noll H. Storage, ultrastructural targeting and function of toposomes and hyalin in sea urchin embryogenesis. Mech Dev, 1991 Feb, 33(2): 127~138
    [148] Reimer, C., Crawford, B. Identification and partial characterization of yolk and cortical granule proteins in eggs and embryos of the starfish, Pisaster ochraceus. Developmental Biology, 1995, 167: 439~457
    [149] Shyu A.B., Raff, R.A. et al. Expression of the vitellogenin gene in female and male sea urchin. Proc. Natl. Acad.Sci. USA, 1986, 83: 3865~3869
    [150] Unuma, T., Suzuki T. et al. A protein identical to the yolk protein is stored in the testis in male red sea urchin Pseudocentrotus depressus. Biol. Bull, 1998, 194: 92~97
    [151] Matsubara, T., Ohkubo, N., Andoh, T., Sullivan, C.V., Hara, A. Two forms of vitellogenin, yielding two distinct lipovitellins, play different roles during oocyte maturation and early development of barfin flounder, Verasper moseri, a marine teleost that Spawns pelagic eggs. Developmental Biology, 1999, 213: 18~32
    [152] Goulas A, Triplett EL, Taborsky G. Isolation and characterization of a vitellogenin cDNA from rainbow trout (Oncorhynchus mykiss) and the complete sequence of a phosvitin coding segment. DNA Cell Biol, 1996 Jul, 15(7): 605~616
    [153] Dhadialla, T.S., Hays, A.R., Raikhel, A.S. Characterization of the solubilized mosquito vitellogenin receptor. Insect Biochem. Mol. Biol, 1992, 22, 803~816
    [154] Roubal, W.T., Lomax, D.P., Maryjean, L., Lyndal, L.J. Purification and partial characterization of English Sole (Pleuronectes vetulus ) vitellogenin. Comp. Biochem.Physiol, 1997, 118B: 613~622
    [155] Baert, J.L., Santiere, P. Purification an characterization of oocyte vitellin from Perimersis cultrifera. Eur. J. Biochem, 1984, 142: 527~532
    [156] Baert, JL., Britel, M. Yolk protein in leech: identification and characterization of vitellin and vitellogenin. Eur.J. Biochem, 1991, 201: 191~198
    [157] Norberg B., Haux, C. Induction, isolation and a characterization of the lipid content of plasma vitellogenin from two Salmo species: rainbow trout and sea trout . Comp. Biochem. Physiol, 1985, 81B: 869~876
    [158] Babin, P. J. Binding of thyroxine and 3, 5, 3 -triodothyrine to trout plasma lipoproteins. Am. J. Physiol, 1992, 262: 712~720
    [159] Azuma, M., Irie, T., Seki, T. Retinals and reiols induced by estrogen in the blood plasma of Xenopus laevis, J. Exp. Biol, 1993, 178: 89~96
    [160] Ando, S. Hantano, M. Distribution of carotenoids in the eggs from four species of samonid. Com.Biochem. Physiol, 1991, 99B: 341~344
    [161] MacLachlan, I., Nimpt, J. et al. Anian riboflavin binding protein binds to lipoprotein receptors in association with vitellogenin. J. Biol. Chem, 1994, 269: 24127~24132
    [162] Montorzi, M., Falchuk, K.H.,Vallee, B.L. Xenopus laevis vitellogenin is a zinc protein. Biochem. Biophys. Res. Commun, 1994, 200: 1407~1413
    [163] Montorzi, M., Falchuk, K.H.,Vallee, B.L. Vitellogenin and lipovitellin: zinc proteins of Xenopus laevis oocytes. Biochem, 1995, 34: 10851~10858
    [164] Brooks, J.M. The major yolk protein in sea urchins is a transferring-like, iron binding protein. Dev. Biol, 2002 , 245(1): 1~12
    [165] Ghosh, P., Thomas, P. Binding of metals to red drum vitellogenin and incorporation into oocytes. Marine. Enviromental. Research, 1995, 39: 165~168
    [166] Spieth, J.M., Nettleton, E., et al. Vitellogenin motifs conserved in nematodes and vertebrates. J. Mol. Evol, 1991, 32: 429~438
    [167] Komatsu, M., Ando, S. A novel LDL with large amounts of phospholipid found in the egg yolk of crustacea sand crayfish ibacus ciliatus: its function as vitellogenin~degrading proteinase. Biochem.Biophys.Commun, 1992, 186: 498~502
    [168] Komatsu, M.; Hayashi, S. Proteinase activity of vitellogenin from crustacean sand crayfish Ibacus ciliatus as a latent from Fisheries. Science, 1994, 60: 753~757
    [169] Komatsu, M., Matsumoto, W. Hayashi. Hayashi, S. Protease activity appeared after trypsin treatment of the purified vitellogenin from eel Anguilla japomica. Comp.Biochem. Physiol, 1996, 113B: 561~571
    [170] Doolittle, R.F., Riley, M. Biochem. Biophys. Res. Commun, 1990, 167: 16~19
    [171] Raikhel AS, Kokoza VA, Zhu J, Martin D, Wang SF, Li C, Sun G, Ahmed A, Dittmer N, Attardo G. Molecular biology of mosquito vitellogenesis: from basic studies to genetic engineering of antipathogen immunity. Insect Biochem Mol Biol, 2002 Oct, 32(10):1275~1286
    [172]张士璀,孙旭彤,李红岩.卵黄蛋白原研究进展.海洋科学,2002,26(7):32~35
    [173] Baker M. E. Invertebrate vitellogenin is homologous to human von Willebrand factor. Biochem, 1988, Vol, 256(3):1059~1061
    [174] S?derh?ll K. Defence reactions in a crustacean. Dev Comp Immunol, 1997, 21: 137
    [175] C. Mindy Nelson, Kate E. Ihle, M. Kim Fondrk, Robert E. Page Jr., Gro V. Amdam. The Gene vitellogenin Has Multiple Coordinating Effects on Social Organization. PLoS Biol, 2007 Mar, 5(3): e62
    [176] Seehuus SC, Norberg K, Gimsa U, Krekling T, Amdam GV. Reproductive protein protects sterile honey bee workers from oxidative stress. Proc Natl Acad Sci USA, 2006, 103: 962~967
    [177] Nakamura A, Yasuda K, Adachi H, Sakurai Y, Ishii N, et al. Vitellogenin-6 is a major carbonylated protein in aged nematode, Caenorhabditis elegans. Biochem Biophys Res Comm, 1999, 264: 580~583
    [178] Ando S, Yanagida K. Susceptibility to oxidation of copper-induced plasma lipoproteins from Japanese eel: Protective effect of vitellogenin on the oxidation of very low density lipoprotein. Comp Biochem Physiol, 1999, C 123: 1~7.
    [179] Uhlenhuth, P. and T. Kodama. Studien u¨ber die Geschlechtsdifferenzierung. Kokka Igakkai Zassi, 1914, 324~335: 385~405 or Nippon Eiseigaku-Zasshi, 10: 13~34
    [180] Laskowski, M. U¨ber das vorkommen des serumvitellins im blute der wirebeltiere. Biochem. Z, 1936, 284: 318~3321
    [181] Roepke, R.R. and J.S. Hughes. Phosphorus partition in the blood of laying hens. J. Biol. Chem, 1935, 108: 79~83
    [182] Bailey, R.E. The effect of estradiol on serum calcium, phosphorus, and protein of goldfish. J. Exp. Zool, 1957, 136: 455~469
    [183] Ho, C.W. and W.E. Vanstone. Effect of estradiol monobenzoate on some serum constituents of maturing sockeye salmon (Oncorhynchus nerka). J. Fish. Res. Board Can, 1961, 18: 859~864
    [184] Urist, M.R. and A.O. Schjeide. The partition of calcium and protein in the blood of oviparous vertebrates during estrus. J. Gen. Physiol, 1961, 44: 743~756
    [185] Utter, F.M. and G.J. Ridgeway. A serologically detected serum factor associated with maturity in the English sole, Parophrys vetulus and Pacific halibut, Hippoglossus stenolepis. US Fish Wildl. Serv. Fish. Bull, 1967, 66: 47~48
    [186] Vanstone, W.E. and F.C.W. Ho. Plasma proteins of coho salmon, Oncorhynchus kisutch, as separated by zone electrophoresis. J. Fish. Res. Board Can, 1961, 18: 393~399
    [187] Krauel, K.K. and G.J. Ridgway. Immunoelectrophoretic studies of red salmon (Oncorhynchus nerka)serum. Int. Arch. Allergy, 1963, 23: 246~253
    [188] Amirante, G.A. Immunochemical studies on rainbow trout lipovitellin. Acta Embryol.Morphol. Exp.(Suppl.), 1972, 373~383
    [189] Aida, K., P.V. Ngan and T. Hibiya. Physiological studies of gonadal maturation of fishes. I. Sexual differences in composition of plasma protein of ayu in relation to gonadal maturation. Bull. Jpn. Soc. Sci. Fish, 1973, 39: 1107~1115
    [190] Hara, A. and H. Hirai. Iron-binding activity of female-specific serum proteins of rainbow trout (Salmogairdneri) and chum salmon (Oncorhynchus keta). Biochim. Biophys. Acta, 1976, 437: 549~557
    [191] Emmersen, B.K. and I.M. Petersen. Natural occurrence and experimental induction by estradiol-17b, of a lipophosphoprotein (vitellogenin) in flounder (Platichthys flesus, L.). Comp. Biochem. Physiol, 1976, 54B: 443~446
    [192] Hara, A. and H. Hirai. Comparative studies on immunochemical properties of female-specific serum protein and egg yolk proteins in rainbow trout (Salmo gairdneri). Comp. Biochem. Physiol, 1978, 59B: 339~343
    [193] Wallace, R.A. Vitellogenesis and oocyte growth in non-mammalian vertebrates. In: L.W. Browder. Developmental Biology 1. New York: Plenum Press, 1985. 127~177
    [194] Mommsen, T.P. and P.J. Walsh. Vitellogenesis and oocyte assembly. In: W.S. Hoar, D.J. Randall and A.P. Farrell. Fish Physiology, Vol. XIA. San Diego, CA: Academic Press, 1988. 347~406
    [195] Specker, J.L. and C.V. Sullivan. Vitellogenesis in fishes: status and perspectives. In: K.G. Davey, R.E. Peter and S.S. Tobe. Perspectives in Comparative Endocrinology. Ottawa: National Research Council, 1994. 304~315
    [196] Babin, P. J. Binding of thyroxine and 3, 5, 3 -triodothyrine to trout plasma lipoproteins. Am. J. Physiol, 1992, 262: 712~720
    [197] Avarre, J.C., Lubzens, E., Babin, P.J. Apolipocrustacein, formerly vitellogenin, is the major egg yolk precursor protein in decapod crustaceans and is homologous to insect apolipophorin II/I and vertebrate apolipoprotein B. BMC Evol. Biol, 2007, 7: 3
    [198] Hiramatsu N., Cheek A.O., Sullivan C.V., Matsubara T. and Hara A. Vitellogenesis and endocrine disruption. Biochemistry and Molecular Biology of Fishes, 2005, 6: 431~471
    [199] Campbell C M,Idler D R.Characterization of an estradiol-induced protein from rainbow trout as vitel·logenin by the cross reactivity to ovarian yolk fractions. Biol Reprod, 1980, 22:605~617
    [200] Norberg B. Atlantic halibut(Hippoglossus hippoglossus)vitellogenin: Induction, isolation, and partial characterization. Fish Physiol. Biochem, 1995, 14: 1~13
    [201] Byrne B M, Gruber M, Ab G. The evolution of egg yolk protein. Prog Biophys Mol Biol, 1989, 53: 33~69
    [202] Fischer A, Schmitz K. Preparation properties and composition of Nereis vitellin, the yolk protein of the annelid, Nereis virens. Diferentiation, 1981, 19: 103~108
    [203] Barre P J. Mammalian subtilisins: the long-sought dibasic processing endoprotease. Cell, 1991, 66: 1~3
    [204] Meusy J J. Vitellogenin, the extraovarian precursor of the protein in Crustacea: A review. Reprod Nutr Dev, 1980, 20: 1~21
    [205] Rees S. W. , Olive P. . Photoperiodic changes influence the incorporation of vitellin yolk protein by oocytes of the semelparous polychaete Nereis ( Neanthes) Viren. Comp. Bioch. Physiol. Part A, 1999, 123: 213~220
    [206] Tanánt A, Atkinson S, Atkinson M. Estrone and estradiot-17βaoncentmtion in tissue of the scleractinian coral, Montipora verrucosa. Comp Biochem Physio, Part A, 1999, 122: 85~93
    [207] Tsutsui, N., Kawazoe, I., Ohira, T., Jasmani, S., Yang, W.-J., Wilder, M.N.,Aida, K.. Molecular characterization of a cDNA encoding vitellogenin and its expression in the hepatopancreas and ovary during vitellogenesis in the kuruma prawn, Penaeus japonicus. Zool. Sci. , 2000 17, 651~660
    [208] Tseng, D.-Y., Chen, Y.-N., Liu, K.-F., Kou, G.-H., Lo, C.-F., Kuo, C.-M., 2002.Hepatopancreas and ovary are sites of vitellogenin synthesis as determined from partial cDNA encoding of vitellogenin in the marine shrimp, Penaeus vannamei. Invertebr. Reprod. Dev, 42, 137~143
    [209] Raviv, S., Parnes, S., Segall, C., Davis, C., Sagi, A. Complete sequence of Litopenaeus vannamei (Crustacea: Decapod) vitellogenin cDNA and its expression in endocrinologically induced sub-adult females. Gen. Comp.Endocrinol, 2006, 145: 39~50
    [210] Avarre, J.-C., Michelis, R., Tietz, A., Lubzens, E. Relationship between vitellogenin and vitellin in a marine shrimp (Penaeus semisulcatus) and molecular characterization of vitellogenin complementary DNAs. Biol. Reprod, 2003, 69: 355~364
    [211] Tiu, S.H.K., Hui, J.H.L., Mak, A.S.C., He, J.-G., Chan, S.-M. Equal contribution of hepatopancreas and ovary to the production of vitellogenin (PmVg1) transcripts in the tiger shrimp, Penaeus monodon. Aquaculture, 2006, 254: 666~674
    [212] Phiriyangkul, P., Utarabhand, P. Molecular characterization of a cDNA encoding vitellogenin in the banana shrimp, Penaeus (Litopenaeus) merguiensis and sites of vitellogenin mRNA expression. Mol. Reprod. Dev, 2006, 73: 410~423
    [213] Zmora, N., Trant, J., Chan, S.-M., Chung, J.S. Vitellogenin and its messenger RNA during ovarian development in the female blue crab, Callinectes sapidus: gene expression, synthesis, transport, and cleavage. Biol.Reprod, 2007, 77: 138~146
    [214] Tsutsui, N., Saido-Sakanaka, H., Yang, W.-J., Jayasankar, V., Jasmani, S., Okuno, A., Ohira, T., Okumura, T., Aida, K.,Wilder, M.N. Molecular characterization of a cDNA encoding vitellogenin in the coonstriped shrimp, Pandalus hypsinotus and site of vitellogenin mRNA expression. J. Exp.Zoo, 2004, 301: 802~814
    [215] Okumura, T., Nikaido, H., Yoshida, K., Kotaniguchi, M., Tsuno, Y., Seto, Y., Watanabe, T. Changes in gonadal development, androgenic gland cell structure, and hemolymph vitellogenin levels during male phase and sex change in laboratory-maintained protandirc shrimp, Pandalus hypsinotus (Crustacea: Caridea: Pandalidae). Mar. Biol, 2005, 148: 347~361
    [216] Balinsky B I, Devis R J. Origin and diferentiation of cytoplasmic structures in the oocytesof Xenopus laevis Acta Embry. Moth, Exp, 1963, 6: 5~108
    [217] Nakamura, K., S. Yonezawa and N. Yoshizaki. Vitellogenesis-related ovary cathepsin D from Xenopus laevis: purification and properties in comparison with liver cathepsin D. Comp. Biochem. Physiol, 1996, 113B: 835~840
    [218] Retzek, H., E. Steyrer, E.J. Sanders, J. Nimpf and W.J. Schneider. Molecular cloning and functional characterization of chicken cathepsin D, a key enzyme for yolk formation. DNA Cell Biol, 1992, 11: 661~672
    [219] Sire, M.F., P.J. Babin and J.M. Vernier. Involvement of the lysosomal system in yolk protein deposit and degradation during vitellogenesis and embryonic development in trout. J. Exp. Zool, 1994, 269: 69~83
    [220] Hiramatsu, N. and A. Hara. Specific proteolysis of vitellogenin to egg yolk proteins in white spotted-charr Salvelinus leucomaenis. Nippon Suisan Gakkaishi, 1997, 63: 701~708
    [221] Carnevali, O., R. Carletta, A. Cambi, A. Vita and N. Bromage. Yolk formation and degradation during oocyte maturation in seabream, Sparus aurata: involvement of two lysosomal proteinases. Biol. Reprod, 1999, 60: 140~146
    [222] Hiramatsu, N., N. Ichikawa, H. Fukada, T. Fujita, C.V. Sullivan and A. Hara. Identification and characterization of proteases involved in specific proteolysis of vitellogenin and yolk proteins in salmonids. J. Exp. Zool, 2002, 292: 11~25
    [223] Amant, D.R., Carson, D. D., Decker, G. L., Welply, J.K., Lennarz, W.J. Characterization of yolk platelets isolation from developing embryos of Arbacia punctulata. Dev. Biol, 1986, 113, 342~355
    [224] Arukwe A, Goks?yr A. Eggshell and egg yolk proteins in fish: hepatic proteins for the next generation: oogenetic, population, and evolutionary implications of endocrine disruption. Comp Hepatol, 2003, 2~4
    [225] Tyler CR, Sumpter JP. Oocyte growth and development in teleost. Rev Fish Biol Fisheries, 1996, 6: 287~318
    [226] Sun, X.T., Zhang, S.C. Purification and characterization of a putative vitellogenin from the ovary of amphioxus (Branchiostoma belcheri tsingtaunese). Comp. Biochem. Physiol, 2001, 129B: 121~127
    [227] Bradford MM. A rapid and sensitive method for the quantitation of microgram quantities of protein utilising the principle of protein dye binding. Anal Biochem, 1976, 72: 248~254
    [228] Davis,R. Disc electrophoresis-Ⅱ. Method and application to human serum proteins. Ann. NY Acad. Sci, 1964, 121: 404~427
    [229]汪家政,范明.蛋白质技术手册.北京:科学出版社,2000. 77~122
    [230] Fairbanks, G., Steck, TL, Wallice D.F.H. Electrophoroetic analysis of the major polypeptide of the human erythrocyte membrane. Biochem, J, 1971, 10: 2606~2617
    [231] De Vlaming VL, Vodicnik, MJ, Bauer G, et al. Estradiol-17? effects on lipid and on the induction of a yolk precursor in goldfish, Carasssius auratus. Life. Sci, 1977, 20: 1945~1952
    [232]杨安钢,毛积芳,药立波.生物化学与分子生物学实验技术.北京:高等教育出版社,2001. 40~42
    [233] Cutting, J.A., Roth,T.F. Staining of phosphoproteins on acrylamide gel electropherograms. Anal. Biochem, 1973, 54: 386~394
    [234] Fukada, H., Fujiwara, Y., Takayuki, T., Hiramatsu, N., Sullivan, C.V., Hara, A. Carp (Cyprinus carpio) vitellogenin: purification and development of a simultaneous chemiluminescent immunoassay. Comp. Biochem. Physiol, 2003, 134A: 615~623
    [235] Shi, G.Q., Shao, J., Jiang, G. et al. Membrane chromatographic method for the rapid purification of vitellogein from fish plasma. J. Chromatography B, 2003, 785: 361~368
    [236]夏其昌.蛋白质化学研究技术与进展.北京:科学出版社,1997. 18~38
    [237]沈同,王镜岩.生物化学上册.北京:高等教育出版社,1990. 39~68
    [238] Sun, X.T., Zhang, S.C. Purification and characterization of a putative vitellogenin from the ovary of amphioxus (Branchiostoma belcheri tsingtaunese). Comp. Biochem. Physiol, 2001, 129B: 121~127
    [239] Birgitta Norberg. Atlantic halibut (Hippoglossus hippoglossus) vitellogenin:induction, isolation and partial characterization. Fish Physiology and Biochemistry, 1995, 14: 1~13
    [240] Pelissero, C., G. Flouriot, J.L. Foucher, B. Bennetau, J. Dunogues, F. Le Gac and J.P. Sumpter. Vitellogenin synthesis in cultured hepatocytes: an in vitro test for the estrogenic potency of chemicals. J. Steroid Biochem. Mol. Biol, 1993, 44: 263~272
    [241] T. Rouhani Rankouhia, ?, J.T. Sandersona, I. van Holsteijna, P. van Kootenb, A.T.C. Bosveldc,1, M. Van den Berga Effects of environmental and natural estrogens on vitellogenin production in hepatocytes of the brown frog (Rana temporaria) Aquatic Toxicology, 2005, 71: 97~101
    [242] Pait, A.S. and J.O. Nelson. Endocrine Disruption in Fish: An Assessment of Recent Research and Results, NOAA Technical Memo. NOS NCCOS CCMA 149, Silver Spring, MD, NOAA, NOS, Center for Coastal Monitoring and Assessment, 2002, 55
    [243] Ohkubo, N., K. Mochida, S. Adachi, A. Hara, K. Hotta, Y. Nakamura and T. Matsubara. Development of enzyme~linked immunosorbent assays (ELISAs) for two forms of vitellogenin in Japanese common goby (Acanthogobius flavimanus). Gen. Comp. Endocrinol, 2003, 131: 353~364
    [244] Ohkubo, N., K. Mochida, S. Adachi, A. Hara, K. Hotta, Y. Nakamura and T. Matsubara. Estrogenic activity in coastal areas around Japan evaluated by measuring male serum vitellogenins in Japanese common goby (Acanthogobius flavimanus). Fish. Sci, 2003, 69: 1133~1143
    [245] Pakdel, F., S. Feon, F. Legac, F. Le Menn and Y. Valotaire. In vivo estrogen induction of hepatic estrogen receptor messenger~RNA and correlation with vitellogenin messenger-RNA in rainbow trout. Mol. Cell. Endocrinol, 1991, 75: 205~212
    [246] Hiramatsu N., Cheek A.O., Sullivan C.V., Matsubara T. and Hara A. Vitellogenesis and endocrine disruption. Biochemistry and Molecular Biology of Fishes, 2005, 6: 431~471
    [247] Fange R. Lymphoid organs in sturgeons (Acipenseridae). Vet Immunol Immunopathol., 1986, 12: 153~161
    [248] Tytler P. Morphology of the pronephros of the juvenile brown trout, Salmo trutta. J Morphol., 1988, 195: 189~204
    [249] Maaike Joerink, Huub F.J. Savelkoul, Geert F. Wiegertjes Evolutionary conservation of alternative activation of macrophages: Structural and functional characterization of arginase 1 and 2 in carp (Cyprinus carpio L.). Molecular Immunology, 2006, 43: 1116~1128
    [250] S. Betoulle*, C. Duchiron, P. Deschaux Lindane differently modulates intracellular calcium levels in two populations of rainbow trout (Oncorhynchus mykiss) immune cells: head kidney phagocytes and peripheral blood leucocytes. Toxicology, 2000, 145: 203~215
    [251] Jiang H, Ma C, Lu ZQ, Kanost MR. Beta-1, 3-Glucan recognition protein-2 (betaGRP-2) from Manduca sexta: an acute-phase protein that binds beta-1, 3-glucan and lipoteichoic acid to aggregate fungi and bacteria and stimulate prophenoloxidase activation. Insect Biochem Molec, 2004, 34: 89~100
    [252] Zou Y, He L, Huang SH. Identification of a surface protein on human brain microvascular endothelial cells as vimentin interacting with Escherichia coli invasion protein IbeA. Biochem Bioph Res Co, 2006, 351: 625~630
    [253] Chen X, Resh MD. Activation of Mitogen~activated Protein Kinase by Membrane-targeted Raf Chimeras Is Independent of Raft Localization. J BIOL CHEM 276, 2001, (37): 34617~34623
    [254] do Vale A, Marques F, Silva MT. Apoptosis of sea bass (Dicentrarchus labrax L.) neutrophils and macrophages induced by experimental infection with Photobacterium damselae subsp. piscicida. Fish Shellfish Immunol, 2003 Aug, 15(2): 129~144
    [255] DeVelasco EA, Dekker HA, Antal P, Jalink KP, van Strijp JA, et al.. Adjuvant Quil A improves protection in mice and enhances the opsonic capacity of antisera induced by pneumoccocal polysaccharide conjugate vaccines. Vaccine, 1994, 12: 1419~1422
    [256] Avarre JC, Lubzens E and Babin PJ. Apolipocrustacein, formerly vitellogenin, is the major egg yolk precursor protein in decapod crustaceans and is homologous to insect apolipophorin II/I and vertebrate apolipoprotein B. Bmc Evol Biol, 2007, 7: 3
    [257] Byrne BM, Gruber M, Ab G. The evolution of egg yolk proteins. Prog Biophys Mol Biol, 1989, 53: 33~69
    [258] Sappington TW, Raikhel AS. Molecular characteristics of insect vitellogenins and vitellogenin receptors. Insect Biochem Mol Biol, 1998, 28: 277~300
    [259] Hiramatsu N, Cheek AO, Sullivan CV, Matsubara T, Hara A. Vitellogenesis and endocrine disruption. In: Mommsen TP, Moon TW, editors. Biochemistry and Molecular Biology of Fishes. London: Elsevier Science, 2005. 6: 431~471
    [260] Shyu AB, Raff RA, Blumenthal T. Expression of the vitellogenin gene in female and male sea urchin. Proc Natl Acad Sci USA, 1986, 83: 3865~3869
    [261] Della-Cioppa G, Engelman F. The vitellogenin of Leucophaea maderate: synthesis of a largephosphorylated precursor. Insect Biochem, 1987, 17: 401~415
    [262] Dhadialla TS, Raikhel AS. Biosynthesis of mosquito vitellogenin. J Biol Chem, 1990, 265: 9924~9933
    [263] Amdam GV, Norberg K, Hagen A, Omholt SW (2003) Social exploitation of vitellogenin. Proc Natl Acad Sci USA 100: 1799~1802
    [264] Amdam GV, Norberg K, Page RE, Erber J, Scheiner R. Downregulation of vitellogenin gene activity increases the gustatory responsiveness of honey bee workers (Apis mellifera). Behav Brain Res, 2006, 169: 201~205
    [265] Guidugli KR, Nascimento AM, Amdam GV, Barchuk AR, Omholt S, et al. Vitellogenin regulates hormonal dynamics in the worker caste of a eusocial insect. FEBS Lett, 2005, 579: 4961~4965
    [266] Nelson CM, Ihle KE, Fondrk MK, Page RE, Amdam GV. The gene vitellogenin has multiple coordinating effects on social organization. PLoS Biol, 2007, 5: 0673~0677
    [267] Seehuus SC, Norberg K, Gimsa U, Krekling T, Amdam GV. Reproductive protein protects functionally sterile honey bee workers from oxidative stress. PNAS, 2006, 103: 962~967
    [268] Nakamura A, Yasuda K, Adachi H, Sakurai Y, Ishii N, et al. Vitellogenin~6 is a major carbonylated protein in aged nematode, Caenorhabditis elegans. Biochem Bioph Res Co. 1999, 264: 580~583
    [269] Amdam GV, Hartfelder K, Norberg K, Hagen A, Omholt SW. Altered physiology in worker honey bees (Hymenoptera: Apidae) infested by the mite Varroa destructor (Acari: Varroidae): a factor in colony loss during over~wintering? J Econ Entomol, 2004, 97: 741~747
    [270] Zhang SC, Sun YN, Pang QX, Shi XD. Hemagglutinating and antibacterial activities of vitellogenin. Fish Shellfish Immunol, 2005, 19: 93~95
    [271] Janeway CA, Medzhitov R. Innate immune recognition. Annu Rem Immunol, 2002, 20: 197~216
    [272] Janeway CA. Approaching the asymptote? Evolution and revolution in immunology. Cold Spring Harbor Symp Quant Biol, 1989, 54: 1~13
    [273] Hoffmann JA, Kafatos FC, 18.Janeway CA, Ezekowitz RAB. Phylogenetic perspectives in innate immunity. Science, 1999, 284: 1313~1318
    [274] S?derh?ll K, Cerenius L. Role of the prophenoloxidase~activating system in invertebrate immunity. Curr Opin Immunol, 1998, 10: 23~28
    [275] Rabinovitch M. Professional and non~professional phagocytes: an introduction. Trends Cell Biol, 1995, 5: 85~87
    [276] Garcia~Garcia E, Rosales C. Signal transduction during Fc receptor-mediated phagocytosis. J Leukoc Biol, 2002, 72: 1092~1108
    [277] Roos A, Xu W, Castellano G, Nauta AJ, Garred P, et al. Mini-review: a pivotal role for innate immunity in the clearance of apoptotic cells. Eur J Immunol, 2004, 34: 921~929
    [278] Gordon S. Pattern recognition receptors: doubling up for the innate immune responses. Cell, 2002, 111: 927~930
    [279] Jomori T, Natori S. Function of the lipopolysaccharide~binding protein of Periplaneta americana as an opsonin. FEBS Lett, 1992, 296: 283~286
    [280] Levashina EA, Moita LF, Blandin S, Vriend G, Lagueux M, et al. Conserved role of a complement~like protein in phagocytosis revealed by dsRNA knockout in cultured cells of the mosquito, Anopheles gambiae. Cell, 2001, 104: 709~718
    [281] Ramet M, Manfruelli P, Pearson A, Mathey-Prevot B, Ezekowitz RA. Functional genomic analysis of phagocytosis and identification of a Drosophila receptor for E. coli. Nature, 2002, 416: 644~648
    [282] Akira S, Uematsu S, Takeuchi O. Pathogen Recognition and Innate Immunity. Cell, 2006, 124: 783~801
    [283] Kurata S, Ariki S, Kawabata S. Recognition of pathogens and activation of immune responses in Drosophila and horseshoe crab innate immunity. Immunobiology, 2006, 211: 237~24
    [284] Royet J. Infectious non-self recognition in invertebrates: lessons from Drosophila and other insect models. Mol Immunol, 2004, 41: 1063~1075
    [285] Yu Y, Yu Y, Huang H, Feng K, Pan M, et al. A shot-form C-type lectin from amphioxus acts as a direct microbial killing protein via interaction with peptidoglycan and glucan. J Immunol, 2007, 179: 8425~8434
    [286] Brown GD, Gordon S. Fungal beta~glucans and mammalian immunity. Immunity, 2003, 19: 311~315
    [287] Peiser L, Mukhopadhyay S, Gordon S. Scavenger receptors in innate immunity. Curr Opin Immunol, 2002, 14: 123~128
    [288]陈魁,SNAP-23蛋白在鲈鱼巨噬细胞白细胞介素1β分泌过程中的功能。中国知网CNKI数据库,2007。
    [289] Della-Cioppa G, Engelman F. The vitellogenin of Leucophaea maderate: synthesis of a large phosphorylated precursor. Insect Biochem, 1987, 17: 401~415
    [290] Zhaojie Li, Shicui Zhang, Qinghui Liu. Vitellogenin Functions as a Multivalent Pattern Recognition Receptor with an Opsonic Activity. PLoS ONE, 2008, 3 (4): e1940
    [291] Qing-Hui Liu, Shi-Cui Zhang, Zhao-Jie Li, Chun-Ren Gao. Characterization of a pattern recognition molecule vitellogenin from carp (Cyprinus carpio). Immunobiology, 2008, In press
    [292] M. Motizuki, T. Itoh, T. Satoh, S. Yokota, M. Yamada, S. Shimamura, T. Samejima, K. Tsurugi. Lipid~binding and antimicrobial properties of synthetic peptides of bovine apolipoprotein A-II, Biochemistry J, 1999, 342: 215~221
    [293] W.T. Heller, A.J. Waring, R.I. Lehrer, T.A. Harroun, T.M. Weiss, L. Yang, H.W. Huang. Membrane thinning effect of the beta-sheet antimicrobial protegrin. Biochemistry, 2000, 39: 139~145
    [294] E. Gazit, A. Boman, H.G. Boman, Y. Shai. Interaction of the mammalian antibacterial peptide cecropin PI with phospholipid vesicles. Biochemistry, 1995, 34: 11479~11488
    [295] C.B. Park, H.S. Kim, S.C. Kim. Mechanism of action of the antimicrobial peptides buforin II kills microorganisms by penetrating the cell membrane and habiting cellular functions. Biochem. Biophys. Res. Commun, 1998, 244: 253~257
    [296] Su-Pin Koo, Micheal R. Yeaman, Cynthia C. Nast, and Arnold S. Bayer. The Cytoplasmic Membrane Is a Primary Target for the Staphylocidal Action of Thrombin-Induced Platelet Microbicidal Protein. Infection and immunity, 1997, 65 (11): 4795~4800
    [297] Yanhong Yu, Yingcai Yu, Huiqing Huang, Kaixia Feng, Minming Pan, Shaochun Yuan, Shengfeng Huang, Tao Wu, Lei Guo, Meiling Dong, Shangwu Chen, and Anlong Xu A. Short-Form C-Type Lectin from Amphioxus Acts as a Direct Microbial Killing Protein via Interaction with Peptidoglycan and Glucan1. The Journal of Immunology, 2007, 179: 8425~8434
    [298] Yan Q. Xiong, Kasturi Mukhopadhyay, Michael R. Yeaman, Jill Adler-Moore, and Arnold S. Bayer. Functional Interrelationships between Cell Membrane and Cell Wall in Antimicrobial Peptide-Mediated Killing of Staphylococcus aureus. Antimicrobial agents and chemotherapy, 2005, 49 (8): 3114~3121
    [299] Z. Shen, W. Cho. Membrane leakage induced by synergetic action of Lys-49 and Asp-49 Agkistrodon piscivorus piscivorus phospholipase A2: implications in their pharmacological activities. Int. J. Biochem. Cell Biol, 1995, 27: 1009~1013
    [300] Wang, M. h., L. H. Liu, S. Wang, X. Li, X. Lu, D. Gupta and R. Dziarski. Human peptidoglycan recognition proteins require zinc to kill both Gram-positive and Gram-negative bacteria and are synergistic with antibacterial peptides. J. Immunol, 2007, 178: 3116~3125
    [301] Wittmann, M., U. Linne, V. Pohlmann and M. A. Marahiel. Role of DptE and DptF in the lipidation reaction of daptomycin. FEBS J, 2008, 275: 5343~5354
    [302] Wojda, I., P. Kowalski and T. Jakubowicz. JNK MAP kinase is involved in the humoral immune response of the greater wax moth larvae Galleria mellonella. Arch. Insect Biochem. Physiol, 2004, 56 (4): 143~154
    [303] MingHua Dai, Sara Ziesman, Thomas Ratcliffe, Ryan T. Gill, Shelley D. Copley Visualization of protoplast fusion and quantitation of recombination in fused protoplasts of auxotrophic strains of Escherichia coli. Metabolic Engineering , 2005, 7: 45~52
    [304] Yan Q. Xiong, Kasturi Mukhopadhyay, Michael R. Yeaman, Jill Adler-Moore, and Arnold S. Bayer. Functional Interrelationships between Cell Membrane and Cell Wall in Antimicrobial Peptide-Mediated Killing of Staphylococcus aureus. Antimicrobial agents and chemotherapy, 2005, 49 (8): 3114~3121
    [305] Su-Pin Koo, Michael R. Yeman, Cynthia C. Nast, and Arnold S. Bayer. The Cytoplasmic Membrane Is a Primary Target for the Staphylocidal Action of Thrombin-Induced Platelet Microbicidal Protein. Infection and immunity, 1997, 65 (11): 4795~4800
    [306] Iram Liaqat, Anjum Nasim Sabri. Analysis of Cell Wall Constituents of Biocide-ResistantIsolates from Dental-Unit Water Line Biofilms. Curr Microbiol, 2008, 57: 340~347
    [307] Don-wheeler Grace, Engelmann Franz. The Biosynthesis and Processing of Vitellogenin in the Fat Bodies of Females and Males of the Cockroach Leucophaea maderae. Insect Biochem. Molec. Biol, 1997, 27 (11): 901~918
    [308] Cash, H. L., C. V. Whitham, C. L. Behrendt and L. V. Hooper. Symbiotic bacteria direct expression of an intestinal bactericidal lectin. Science, 2006, 13: 1126~1130

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700